
CERN-TH.6422/92

LAL 92-10

TESTING QCD WITH TAU DECAYS

F. Le Diberdera) and A. Pich b;�)

a) Laboratoire de l'Acc�el�erateur Lin�eaire, Centre d'Orsay, F-91405 Orsay Cedex, France

b) Theoretical Physics Division, CERN, CH-1211 Geneva 23, Switzerland

ABSTRACT

The invariant-mass distribution of the hadronic �nal state in � decay can be used for

testing fundamental aspects of the strong interactions. Using standard QCD techniques,

it is possible to compute certain weighted integrals of the hadronic spectrum. We work

out some QCD predictions which will be useful for analysing the data. They provide

a direct way to simultaneously measure �s(m
2
� ) and the parameters characterizing the

non-perturbative dynamics, allowing for a better control of the theoretical errors in the

determination of �s(m
2
� ).
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1. INTRODUCTION

The total � hadronic width can be accurately calculated using analyticity and the

operator product expansion [1{8]. The result, which is known to order �3s(m
2
� ), turns

out to be very sensitive to the value of the strong coupling constant. Therefore, precise

experimental measurements of the � lifetime or its leptonic branching ratio can be used to

infer a value of �s(m
2
� ). Moreover, non-perturbative contributions can be shown [8] to be

strongly suppressed, which allows for a reliable estimate of the theoretical uncertainties.

It is the inclusive nature of the total semi-hadronic decay rate that makes a rigorous

theoretical calculation possible. Predictions can also be made for those semi-inclusive � -

decay widths associated with speci�c quark currents. One can separately compute the

vector and axial-vector components of the � hadronic width, and resolve these further into

non-strange and strange contributions. This provides an independent way of extracting

�s(m
2
� ), using the measured semi-inclusive � -decay rates into an even or odd number of

pions/kaons. Thus, the hadronic � -decay data allow us to make a consistency check of the

reliability of the theoretical analysis.

A detailed study of the � hadronic width has already been done in ref. [8], where the

value of �s(m
2
� ) implied by present data has been worked out. The purpose of the present

paper is to spell out the additional information that can be obtained from the invariant-

mass distribution of the hadronic �nal state in � decay1. Although the distributions

themselves cannot be predicted at present, it is possible to compute certain weighted inte-

grals of the hadronic spectrum, using standard QCD techniques [5]. Generally speaking,

the accuracy of these theoretical calculations can be much worse than the one of the total

� hadronic width, because non-perturbative e�ects then are not necessarily suppressed. In

fact, choosing an appropriate weight function, non-perturbative e�ects can even be made

to dominate the �nal result. But this is precisely what makes these integrals interesting:

They can be used to measure the parameters characterizing the non-perturbative dynamics

and therefore improve our understanding of QCD at long distances. In particular, they

provide a direct way to experimentally measure the small non-perturbative contributions

to the total � hadronic width, allowing for a better control of the theoretical errors in the

determination of �s(m
2
� ).

1 Some QCD tests using hadronic � -decay data have already been done in refs. [9].
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It is convenient to normalize the hadronic � -decay width to the electronic one, i.e. to

de�ne the ratio

R� �
�(�� ! ��hadrons())

�(�� ! ��e���e())
; (1:1)

where () represents possible additional photons or lepton pairs. The theoretical analysis

of R� involves the two-point correlation functions for the vector V
�
ij =

� j
� i and axial

vector A
�

ij =
� j

�5 i colour singlet quark currents:

�
��

ij;V (q) � i

Z
d4x eiqxh0jT (V �

ij (x)V
�
ij (0)

y)j0i ; (1:2a)

�
��

ij;A(q) � i

Z
d4x eiqxh0jT (A�

ij (x)A
�
ij (0)

y)j0i : (1:2b)

Here, the subscripts i; j = u; d; s denote light-quark avours. The vector (V ) and axial

vector (A) correlators in (1:2) admit the Lorentz decompositions

�
��

ij;V=A
(q) = (�g��q2 + q�q�)�

(J=1)

ij;V=A
(q2) + q�q� �

(J=0)

ij;V=A
(q2); (1:3)

where the superscript (J) denotes the angular momentum, J = 1 or J = 0, in the hadronic

rest frame.

The imaginary parts of the correlators �
(J)

ij;V=A
(q2) de�ned in (1.3) are proportional

to the spectral functions for hadrons with the corresponding quantum numbers. The semi-

hadronic decay rate of the � can be written as an integral of these spectral functions over

the invariant mass s of the �nal-state hadrons:

R� = 12�SEW

Z m2

�

0

ds

m2
�

�
1�

s

m2
�

�2 ��
1 + 2

s

m2
�

�
Im�(0+1)(s) � 2

s

m2
�

Im�(0)(s)

�
;

(1:4)

where SEW ' 1:0194 is an electroweak correction factor [10], which will be omitted in the

following. The appropriate combinations of correlators are

�(J)(s) � jVudj
2
�
�
(J)

ud;V (s) + �
(J)

ud;A(s)
�
+ jVusj

2
�
�
(J)

us;V
(s) + �

(J)

us;A
(s)
�
: (1:5)

Following ref. [8] we will decompose the di�erent contributions to R� into three

categories:

R� = R�;V +R�;A +R�;S : (1:6)

Here R�;V and R�;A denote the vector and axial-vector contributions in the Cabibbo-

allowed sector; they correspond to the �rst two terms in the r.h.s. of eq. (1.5); R�;S

contains the remaining Cabibbo-suppressed contributions.
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In principle the hadronic spectral functions should be calculable within QCD. How-

ever, since they are sensitive to the non-perturbative dynamics which binds quarks into

hadrons, we are still very far away from being able to do that, specially in the low-s region.

Nevertheless, weighted integrals of these spectral functions can be calculated systemati-

cally, by exploiting the analytic properties of the correlators �
(J)

ij;V=A
(s) which, for any

arbitrary weight function W (s) without singularities in the region jsj � s0, implyZ s0

0

dsW (s) Im�
(J)

ij;V=A
(s) =

i

2

I
jsj=s0

dsW (s)�
(J)

ij;V=A
(s): (1:7)

Eq. (1.7) relates the weighted integral of the spectral function along the physical cut with a

contour integral in the complex plane running counter-clockwise around the circle jsj = s0.

Thus, in order to study these weighted integrals, one only needs to know the correlators

for complex s of order s0.

For s0 values not too small, one can assume the validity of the short-distance Operator

Product Expansion (OPE) to hold [11] . One can then organize the perturbative and non-

perturbative contributions to the correlators into an expansion in powers of 1=s,

�
(J)

ij;V=A
(s) =

X
D=0;2;4;:::

1

(�s)D=2

X
dimO=D

C
(J)

ij;V=A
(s; �)hO(�)i ; (1:8)

where the inner sum is over local gauge-invariant scalar operators of dimension D. The

parameter � in (1.8) is an arbitrary factorization scale which separates long-distance non-

perturbative e�ects, which are absorbed into the vacuum matrix elements hO(�)i, from

short-distance e�ects, which are incorporated into the Wilson coe�cients C
(J)

ij;V=A
(s; �). The

D = 0 term (unit operator) corresponds to the pure perturbative contributions, neglecting

quark masses. The leading quark-mass corrections generate the D = 2 term. The �rst

dynamical operators involving non-perturbative physics appear at D = 4.

An updated review of the present status of the OPE for vector and axial vector

correlators can be found in ref. [8], where all known information on their Wilson coe�cients

is given. We will use those results to work out the QCD predictions for certain weighted

integrals, which we �nd particularly well suited to be �tted to the data. Inserting the

OPE (1.8) into (1.7) and evaluating the integration along the circle, the weighted integrals

can be expressed as an expansion in powers of 1=s0, with coe�cients depending only

logarithmically on s0.

In Section 2 we discuss spectral moments (W (s) = sk), which allow a simple theoretical

study to be made. Weighted integrals of the directly measured hadronic-mass distribution

3



are considered in Section 3; although formally more involved, these integrals are more

suitable for performing an experimental analysis. A discussion of the results is �nally

given in Section 4, where we evaluate the potential sensitivity of a combined �t ot these

weighted distributions.

2. SPECTRAL MOMENTS

From the invariant-mass distributions of the hadronic �nal state in � decay it is

possible to extract the corresponding spectral functions. One can then de�ne integrals of

the type [5,12,13] (k � 0):

M
(J)

ij;V=A
(s0; k) � 4�(k + 1)

Z s0

0

ds

s0

�
s

s0

�k
Im�

(J)

ij;V=A
(s) : (2:1)

From the theoretical point of view, these integrals are nice objects to study because they

separate the di�erent power corrections in the OPE in a very clean way [13]. In the

chiral limit, and neglecting the small �s(s) dependence of the (D 6= 0) Wilson coe�cients

C
(J)

ij;V=A
(s; �), one gets

M
(0+1)

ij;V=A
(s0; k) = F (k)[a(s0)] + 4�2(�1)k

k + 1

sk+10

X
dimO=2k+2

C
(0+1)

ij;V=A
(�)hO(�)i ; (2:2)

where

F (k)[a(s0)] =
X
n=0

Kn

1

2�i

I
jxj=1

dx

x
(1� xk+1) an(�xs0) �

X
n=0

Kn I
k+1
n [a(s0)] (2:3)

contains the pure perturbative contribution. Here, a(s) � �s(s)

�
, and the coe�cients Kn

are de�ned by the perturbative expansion of the logarithmic derivative of the relevant

correlator function:

D(s) � �s
d

ds
�
(0+1)

ij;V=A
(s)
���
pert

=
1

4�2

X
n=0

Kn a(�s)
n ; (2:4)

which is known [14{16] to O(a3): K0 = K1 = 1, K2 = 1:6398, K3(MS) = 6:3711.

F (k)[a(s0)] can be simply expanded in powers of a(s0); one gets

F (k)[a(s0)] = 1 + a(s0) +

�
K2 �

�1

2(k + 1)

�
a2(s0)

+

�
K3 �

1

k + 1

�
K2�1 +

�2

2

�
+
�21
4

�
2

(k + 1)2
�
�2

3

��
a3(s0) +O(a

4):

(2:5)
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However, the large log (s) range (i.e. 2�i) over which �s(s) is made to run when calculating

the integrals along the unit circle in eq. (2.3), gives rise to larger expansion coe�cients

than in eq. (2.4). The e�ect of higher-order corrections then appears more sizeable2,

specially for small values of k. The slow apparent convergence of the expansion in powers

of a(s0) should not be attributed to the original Kn expansion of the dynamical two-

point correlation function D(s). Note that there is no deep reason to stop the integral

expansions to O(a3). One can calculate them to all orders in �s, up to the unknown

�n>3 contributions. In other words, the integrals Ik+1n [a(s0)] in eq. (2.3) are well-de�ned

functions which can be numerically computed, by using for �s(s) the exact solution of the

renormalization-group �-function equation [17]. We checked that the di�erence between

using the one- or two-loop approximation to the � function is already quite small, while

the change induced by the three-loop corrections is completely negligible (� 0:1%). The

�nal perturbative result is then very stable, and the error induced by the truncation of the

� function at third order can be safely neglected. Equation (2.3) then provides a much

better expansion of F (k)[a(s0)], which appears to converge faster than the D(s) expansion.

As shown in eq. (2.2), the k moment of the spectral function isolates the contributions

of dimension D = 2k + 2 in the OPE. Choosing di�erent values of k, it is then possible

to study the di�erent terms in the OPE. This nice property is no longer true when the

�s(s) dependence of the (D 6= 0) Wilson coe�cients is taken into account. This is however

a small O(�2s) e�ect, which can be taken into account in a combined �t of the di�erent

moments.

3. WEIGHTED DISTRIBUTIONS

The spectral moments discussed in the previous section allow a simple analysis to be

made. However, on the theoretical side, they su�er from two drawbacks. On the one hand,

when expressed in the form of an integration along a close contour in the complex plane,

these moments may receive contributions from the region near the real axis, where the use

of the OPE is not justi�ed; in the case of R� , these contributions are suppressed by the

kinematical factor (1� s=m2
� )

2. On the other hand, the dependence of the M
(J)

ij;V=A
(s0; k)

moments on s0 is not well de�ned, in the sense that their derivatives with respect to this

2 In fact, the radius of convergence of the �s expansion in eq. (2.5) is quite small

[17]: for a(s0) values slightly larger than 0:11 the perturbative expansion of F (0)[a(s0)] in

powers of a(s0) becomes non-convergent.
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variable involve Im�(s0), which, for s0 � O(1 GeV2) on the real axis, is not a quantity

within the reach of perturbative QCD, even supplemented by the OPE expansion.

In addition, on the experimental side, these spectral moments su�er also from two

drawbacks. On the one hand, what is directly measured is the hadronic invariant-mass

squared distribution dR�
ds

, which, because of the same (1 � s=m2
� )

2 factor, is statistically

very limited at the end point of the spectrum. On the other hand, because of the �nite

experimental resolution on s, the raw distribution extends above the kinematical limit s =

m2
� . This raw distributionmust therefore be corrected in order to obtain detector-e�ect free

moments to be compared with the QCD predictions. Such a correction stage in the analysis

implies systematic e�ects which are going to a�ect mostly the tail of the distribution. It is

therefore ill-advised to use moments built upon Im�(s) / [(1�s=m2
� )

2(1+2s=m2
� )]

�1� dR�
ds

,

since they enhance dramatically the contribution of the statistically- and systematically-

limited tail of the s-distribution.

The above considerations tend to favour the use of integrals of the type (k; l � 0)

Rkl
� (s0) �

Z s0

0

ds

�
1�

s

s0

�k �
s

m2
�

�l
dR�

ds
: (3:1)

Here the factor (1� s=s0)
k supplements (1� s=m2

� )
2 for s0 6= m2

� , in order to squeeze the

integrand at the crossing of the positive real-axis and, therefore, it improves the reliabil-

ity of the theoretical analysis through the OPE. This factor implies, moreover, that the

determination of �s and the non-perturbative parameters, through a simultaneous �t of

di�erent Rkl
� moments, ought to be stable with respect to changes in s0; this is because

their �rst k derivatives with respect to s0 do not involve Im�(s0) directly. For s0 ' m2
� ,

the same (1� s=s0)
k factor, which is no longer needed from the theoretical point of view,

reduces the contribution from the tail of the distribution, which is badly de�ned exper-

imentally. Of course, the precisions of the experimental Rkl
� measurements are going to

worsen when k and/or l grow, but this can be accounted for, together with the strong

correlations between the various measurements (cf. section 4).

Using the decomposition (1.6), we can analogously de�ne the corresponding weighted

distributions Rkl
�;V (s0), R

kl
�;A(s0) and Rkl

�;S(s0), involving the measured semi-inclusive �

decays into an even/odd number of pions, and an odd number of kaons respectively. These

three moments obviously add up to (3.1)

Rkl
� (s0) = Rkl

�;V (s0) +Rkl
�;A(s0) +Rkl

�;S(s0): (3:2)
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The theoretical expressions for the Rkl
� moments, although straightforward to obtain,

look rather cumbersome. We will organize the results in the form:

Rkl
� (s0) =

�
jVudj

2 + jVusj
2
�
Pkl(s0) +

X
D=2;4;:::

�kl(s0;D); (3:3a)

Rkl
�;V (s0) = jVudj

2

8<
:1

2
Pkl(s0) +

X
D=2;4;:::

�kl
ud;V (s0;D)

9=
; ; (3:3b)

Rkl
�;A(s0) = jVudj

2

8<
:1

2
Pkl(s0) +

X
D=2;4;:::

�kl
ud;A(s0;D)

9=
; ; (3:3c)

Rkl
�;S(s0) = jVusj

2

8<
:Pkl(s0) +

X
D=2;4;:::

�kl
us(s0;D)

9=
; ; (3:3d)

where

�kl
ij (s0;D) = �kl

ij;V (s0;D) + �kl
ij;A(s0;D); (3:4a)

�kl(s0;D) = jVudj
2�kl

ud(s0;D) + jVusj
2�kl

us(s0;D): (3:4b)

The function Pkl(s0) stands for the purely perturbative part, neglecting quark masses,

which is the same for all the components of Rkl
� (s0). The inverse-power corrections of

dimension D are collected in the terms �kl
ij;V=A

(s0;D).

It is convenient to use the binomial expansion (1 � x=x0)
k =

P
m Ck

m(x0)x
m, where

x � s=m2
� , x0 � s0=m

2
� and

Ck
m(x0) =

(
(�1)mx�m0

�
k

m

�
if k � m � 0,

0 otherwise.

(3:5)

The results can then be written in a compact way in terms of the functions

hkm(x0) � Ck
m(x0)� 3Ck

m�2(x0) + 2Ck
m�3(x0);

jkm(x0) � Ck
m(x0)� 2Ck

m�1(x0) + Ck
m�2(x0):

(3:6)

3.1. Perturbative Contribution

Using the perturbative expansion (2.4), the function Pkl(s0) can be expressed as

Pkl(s0) = 3
X
n=0

KnA
kl
n [a; x0]; (3:7)

7



where

Akl
n [a; x0] = 2

X
r>0

xr0
r
hkr�l�1(x0) I

r
n[a(s0)]; (3:8)

are contour integrals [see eq. (2.3)], which only depend on x0 � s0=m
2
� and on the value

of the running coupling constant at the scale s0.

If the running coupling a(�xm2
� ) is expanded in powers of a(�2), one gets a pertur-

bative expansion of Akl
n [a; x0] which is regulated by the coe�cients of the QCD � function

times elementary logarithmic integrals in the complex plane [17]. Taking �2 = s0, the

resulting expansion for Pkl(s0) takes the form

Pkl(s0) = 3rkl� (x0)
X
n=0

�
Kn + gkln (x0)

�
an(s0); (3:9)

where rkl� (x0) is the parton-level prediction,

rkl� (x0) = 2
X
r>0

xr0
r
hkr�l�1(x0); (3:10)

and the coe�cients gkln (x0) depend on Km<n and �m<n. To order a
3(s0), one has

gkl0 (x0) = gkl1 (x0) = 0;

gkl2 (x0) = � �1H
kl
1 (x0);

gkl3 (x0) = �
�2

12
�21 � (2�1K2 + �2) H

kl
1 (x0) + �21 H

kl
2 (x0);

gkl4 (x0) = �
�2

4

�
�21K2 +

5

6
�1�2

�
�

�
3�1K3 + 2�2K2 + �3 � �31

�2

4

�
Hkl
1 (x0)

+

�
3�21K2 +

5

2
�1�2

�
Hkl
2 (x0) �

3

2
�31 H

kl
3 (x0);

(3:11)

where

Hkl
m (x0) =

1

rkl�

X
r>0

xr0
rm+1

hkr�l�1(x0): (3:12)

A sample of numerical values are given in table 1. Since a(m2
� ) � 0:1, the gkl4 (x0) values

indicate that the O(�4s) corrections are at the few per cent level. One observes that in

general the gkln (x0) contributions are larger than the direct Kn contributions. For example,

the bold guess K4 � K3(K3=K2) � 25 is to be compared with the gkl4 (1) � 100 values.

The reason of these large kl-dependent contributions has already been mentioned in

the previous section. These large contributions can be resummed, in order to keep the

8



Table 1

Parton level prediction rkl� (x0) and �rst gkln (x0) coe�cients, for x0 = 1 and di�erent
values of k and l

k, l rkl� (1) gkl2 (1) gkl3 (1) gkl4 (1)

0, 0 1.000 3.56 20.0 78.0

0, 1 0.300 2.14 0.51 �116:

0, 2 0.133 1.58 �5:30 �147:

0, 3 0.071 1.26 �8:14 �157:

1, 0 0.700 4.17 28.3 161.

1, 1 0.167 2.59 5.16 �90:6

1, 2 0.062 1.94 �2:03 �136:

1, 3 0.029 1.57 �5:60 �151:

2, 0 0.533 4.67 35.6 240.

2, 1 0.105 2.97 9.40 �63:8

2, 2 0.033 2.26 1.04 �123:

2, 3 0.013 1.84 �3:19 �144:

well-behaved Kn expansion, by computing the functions Akl
n [a; x0] numerically, using in

eq. (3.8) the exact solution for �s(s) obtained from the renormalization-group �-function

equation.

3.2. Leading Quark-Mass Corrections

The up and down quark-mass corrections are negligible (unless one considers very low

s0 values, where in any case the OPE is no longer valid). The correction from the strange

quark mass must be taken into account to analyse the Rkl
�;S moments; it is however unessen-

tial, because of the Cabibbo suppression, in the total Rkl
� moments. For completeness we

give here the resulting formulae:

�kl
ij;V=A(s0; 2) = 18

X
r�0

jkr�l(x0)

(
�
m2
i (s0) +m2

j (s0)

m2
�

Sr(s0)�
mi(s0)mj(s0)

m2
�

Qr(s0)

)

(3:13)
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S0(s0) =
1 + x0

2
+

7 + 11x0

6
a(s0) +O(a

2);

Sr�0(s0) =
xr0
r + 1

�
x0

2
�

�
1�

5

6
x0 +

1 + r(1 � x0)

r(r + 1)

�
a(s0)

�
+O(a2);

Qr(s0) =
xr+10

r + 1

�
1 +

�
17

3
+

2

r + 1

�
a(s0)

�
� �r;0

1

3
a(s0) +O(a

2):

(3:14)

3.3. Non-Perturbative Contributions

In the chiral limit, and neglecting the small logarithmic dependence of the Wilson

coe�cients C
(J)

ij;V=A
(s; �) on s, the contribution from dimension D operators to the Rkl

�

moments are found to be

�kl
ij;V=A(s0;D) = (�1)

D�2

2 12�2
hk
D=2�l�1

(x0)

mD
�

X
dimO=D

C
(0+1)

ij;V=A
(s; �)hO(�)i: (3:15)

When the logarithmic dependence of the Wilson coe�cients on s is taken into account,

the factors �kl
ij;V=A

(s0;D) get additional corrections, but they are suppressed by two powers

of �s(s0). The e�ect of non-zero quark masses is also very small. We will only consider

these corrections for the D = 4 term. Using the results of ref. [8], one �nds in this case

�kl
ij;V=A(s0; 4) = �

�2

m4
�

�
T 1
V=A C

k
1�l(x0) + T 2

V=A C
k
�l(x0)

+
X
r 6=0

xr0
r

�
T 3
V=A h

k
r�l+1(x0) + T 4

V=A j
k
r�l(x0)

��
;

(3:16)

where

T 1
V=A =

�
1�

11

18
a(s0)

�
h
�s

�
GGi + 12

�
1� a(s0)�

13

3
a2(s0)

�
hmi

� i i +mj
� j ji

� 16a(s0)

�
1 +

59

8
a(s0)

�
hmj

� i i +mi
� j j i

+
16

9
a(s0)

�
1�

�
257

72
� 9�(3)

�
a(s0)

�X
k

hmk
� k ki

+
3

7�2

�
42m2

i (s0)m
2
j (s0) +

�
�12a�1(s0) + 7

� �
m4
i (s0) +m4

j (s0)
�

�16mi(s0)mj(s0)
�
m2
i (s0) +m2

j (s0)
�
�
X
k

m4
k(s0)

�
; (3:17a)
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T 2
V=A =� 24 h(mi �mj)( � i i � � j j )i

+
3

7�2

�
24a�1(s0)� 11

�
[mi(s0)�mj(s0)]

�
m3
i (s0) �m3

j (s0)
�

�
18

�2
[mi(s0) �mj(s0)]

2
mi(s0)mj(s0); (3:17b)

T 3
V=A = a2(s0)

�
11

8

D�s
�
GG

E
+ 27 hmi

� i i +mj
� j ji

�36 hmj
� i i +mi

� j j i � 4
X
k

hmk
� k ki

)

+
9

�2

�
m4
i (s0) +m4

j (s0)
�
; (3:17c)

T 4
V=A =�

18

�2
[mi(s0) �mj(s0)]

�
m3
i (s0)�m3

j (s0)
�
: (3:17d)

4. DISCUSSION

By using the formulae given in the previous section, a combined �t of di�erent Rkl
� (s0)

moments should result in experimental values for �s(m
2
� ) and for the coe�cients of the

inverse-power corrections in the OPE. Contrary to what happens with the M
(J)

ij;V=A
(s0; k)

moments discussed in Section 2, the Rkl
� (s0) distributions mix power corrections of di�erent

dimensionality. As shown in eq. (3.15), the leading [O(�s)] non-perturbative corrections

are regulated by the factor hk
D=2�l�1(x0); thus R

kl
� (s0) gets contributions from operators

of dimension D in the ranges

2(l + 1 +m) � D � 2(k + l + 1 +m) (4:1)

where m = 0; 2; 3.

On the theoretical side, the value k = 0 is particularly attractive, for s0 = m2
� , since

only D = 2(l + 1), D = 2(l + 3) and D = 2(l + 4) contribute in that case. Note that

there is no contribution with D = 2(l + 2). Therefore, R0l
� (s0) is mainly sensitive to the

non-perturbative e�ects of dimension D = 2(l + 1), the next dimensionality contribution

being suppressed by four additional powers of s0. In particular, since there are no gauge-

invariant operators of dimension D = 2, only the D = 6 and D = 8 operators contribute

to R00
� . One recovers the conclusion that the leading non-perturbative terms of dimension

D = 4 are absent in the unweighted integral R00
� (m2

� ) = R� . Hence, non-perturbative
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corrections are tiny for the total � hadronic width, which is thus mainly sensitive to the

perturbative contributions and, therefore, to the value of �s [8]. This is however no longer

true for the moments Rkl
� , since h

k
1�l(x0) 6= 0 in general. In particular, R01

� (s0) tests the

D = 4 contributions to the OPE, R02
� (s0) the terms with D = 6, and so on.

Since the perturbative contribution Pkl(s0) is the same for all the components of

Rkl
� (s0), one can further test the non-perturbative dynamics by taking di�erences where

perturbative e�ects cancel:

Rkl
�;V (s0) �R

kl
�;A(s0) = jVudj

2
X

D=2;4;:::

n
�kl
ud;V (s0;D) ��kl

ud;A(s0;D)
o
: (4:2)

Again, taking k = 0 in eq. (4.2), the terms of dimensionD = 2(l+1) are cleanly separated.

The relative contribution of the perturbative term can also be reduced by taking ratios

of moments. This is because the leading O(�s) corrections cancel out in the ratios, since

K1 + gkl1 (x0) = 1 8k; l. Thus, the perturbative corrections to the normalized moments

Dkl
� � Rkl

� =R
00
� are O(�2s). The corrections are exactly known up to order �4s, because the

O(�4s) coe�cient does not depend on K4. For example, the �s expansion of the purely

perturbative prediction for D10
� reads

D10
� = 0:7(1 + 0:61 a2 + 7:74 a3 + 72:1 a4): (4:3)

Note that the �s correction remains sizeable (a = 0:1 implies a 2% correction on D10
� ).

While the total � hadronic width is mainly sensitive to the perturbative e�ects (a = 0:1

implies a 20% correction onR� ), the shape of the hadronic-mass distribution (and therefore

the normalized moments Dkl
� ) is also regulated by non-perturbative dynamics. But, as is

further demonstrated below, the Dkl
� moments still depend in a very signi�cant way on �s.

For the sake of illustration, to evaluate the potential sensitivity of a combined �t in-

volving weighted integrals, we consider a hypothetical experiment having measured a set

of Rkl
� moments, including R� itself. For simplicity, we assume that no attempt is made to

disentangle the vector/axial-vector or Cabibbo-suppressed contributions. Since R� = R00
�

is the overall normalization of the s distribution, only the shape of the latter provides

additional information with respect to R� . Thus the combined �t depends only on R� and

on the normalized moments Dkl
� .

The covariance matrix which describes the precision of the measurements can be

expressed in terms of moments. For R� , which is almost not correlated to the moments,

one gets

�[R� ] ' R�

s
1 +R�=2

Nh

; (4:4)
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where Nh is the total number of observed hadronic decays, and, for the Dkl
� moments,

�2[Dkl
� ;D

k0l0

� ] =
1

Ne�
h

(Dk+k0;l+l0

� �Dkl
� D

k0l0

� ); (4:5)

where Ne�
h < Nh is the e�ective number of hadronic decays used to calculate the weighted

integrals. Both Nh and Ne�
h are supposed to be reduced with respect of the \actually"

used number of events in order to account for systematic e�ects. In the following, we

use the conservative values Nh = 5000 and Ne�
h = 1000, which are already below the

data samples accumulated by each of the LEP experiments. It should be pointed out that

the systematical uncertainties are not expected to be overwhelming, since the needed Dkl
�

moments do not probe details of the s distribution, but only its gross features (e.g. the

average s value).

The Dkl
� moments are highly correlated quantities. For example, the correlation co-

e�cient between the moments D13
� and D14

� is already �13;14 = 0:97. This implies, in

particular, that there is very little information to gain by including D14
� in a �t already

using D13
� .

Since we are only concerned with the resolution power of such an experiment, we

can assume that its measurements coincide with the exact [O(K3)] predictions obtained

by choosing, for example, �s(m
2
� ) = 0:34 and by using for the calculations of the non-

perturbative contributions the numerical values quoted in [8] ; in particular,D�s
�
GG

E
= (0:02� 0:01)GeV4 ; and O(6) = (0:002� 0:001)GeV6; (4:6)

where O(D = 6) =
P

dimO=6 C
(0+1)

ij;V+A(s; �)hO(�)i. Neglecting the D � 8 terms, and using

the Kn expansion of eq. (3.7) (i.e. the numerical evaluation of the Akl
n functions), these

numerical values yield R� = 3:58 with an experimental error �[R� ] = 0:085, and, for the

set of the �rst four D1;l=0!3
� moments, the values quoted in table 2.

Table 2

Expected measurements and their precisions for Nh = 5000 and Ne�
h = 1000

k, l Dkl
� (1) �[Dkl

� ]

1, 0 0.7232 0.0072

1, 1 0.1479 0.0035

1, 2 0.0612 0.0015

1, 3 0.0272 0.0010
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Taking for granted the above non-perturbative constants, the experiment would obtain

�s = 0:34 � 0:04 from R� alone and �s = 0:34 � 0:03 from the four D1l
� moments. By

itself, such an agreement between the two �s determinations, if observed, would provide

a remarkable con�rmation of both the applicability of the perturbative QCD expansion

at this small energy scale, and the validity of the OPE applied in a context where non-

perturbative e�ects are present. Note that, although the e�ective statistics is assumed

to be �ve times smaller for the moment determinations, the precision achieved from the

shape of the s distribution is nevertheless better than the one derived from R� . This

is because there are several correlated but more accurately measured quantities entering

into the moment �t. Although the QCD correction to the Dkl
� moments is much smaller

than the one to R� [cf. eq. (4.3)], their individual contribution to the �t is of a similar

importance. This can be appreciated by considering their �s expansion. For example, the

precision on �s achieved by the R� measurement and the sole D10
� measurement can be

estimated, using table 1 with eq. (4.3) and table 2, to be

�[�s] '

�
dR�

d�s

��1
�[R� ] ' 0:03 ;

�[�s] '

�
dD10

�

d�s

��1
�[D10

� ] ' 0:04 ;

(4:7)

respectively.

Dropping the knowledge of the non-perturbative constants and performing a simul-

taneous four-parameter �t to the �ve quantities, the experiment would obtain �s =

0:34 � 0:042, h�s
�
GGi = (0:02 � 0:015) GeV4, O(6) = (0:002 � 0:002) GeV6 and

O(8) = (0:� 0:002) GeV8 (the non-perturbative term that is the most correlated with the

�s determination is the gluon condensate, for which � = �0:72). Therefore such an exper-

iment would be in a position to measure simultaneously �s(m
2
� ) and the non-perturbative

condensates [O(8) included] to a level of precision competitive with their presently avail-

able determinations, while keeping for �s an accuracy comparable to the one achieved

when using R� alone, but assuming the values of the non-perturbative contributions to be

known.

The above-quoted uncertainties can of course be improved by using a much larger

data sample. If enough statistics is accumulated, one could perform other interesting tests

[5,9] by disentangling the vector, axial-vector and strange-quark components of R� and

of the weighted integrals. The behaviour of the OPE itself and its validity range could
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be tested by performing the analysis at di�erent values of s0 and by a complementary

study of Dk0
� moments, with increasing values of k. One would expect the reliability

of the power expansion to deteriorate when going down to small s0 values or for large

k values. It would be interesting to see where the short-distance OPE analysis becomes

meaningless. The absence of a sizeable non-perturbative contribution of dimension 2 (there

are no gauge- and Lorentz-invariant operators with D = 2 in the OPE) could also be

checked experimentally: for example, by extracting �s from a subset of Rkl moments with

l 6= 0, since such moments receive no contributions from the O(2) term. However, allowing

for an extra O(2) term implies a considerable loss of precision on the �s measurement.

It is remarkable that the decay properties of the third-generation lepton not only al-

low for a measurement of the strong coupling constant at a rather low mass-scale, but, in

addition, provide a direct experimental way of bounding the size of the non-perturbative

contributions. Performing a combined �t such as the one advocated in this paper, the the-

oretical sources of errors in the �s determination from the � decays are essentially reduced

to the perturbative ones, which were shown to be very small in a previous publication

[17]. The reliability of the �s value derived from the � -decay analysis can be reinforced (or

disproved) by the comparison of the values obtained using the total width of the � lepton

and the s distribution.

Obviously, in order to perform such a test, rather good experimental data are needed

to control the systematic uncertainties. Hence, a not so large (Ne�
h � 1000) but clean

sample of � -decay events is required. In particular, owing to the semi-inclusive nature of

these distributions, good identi�cation of neutral particles is mandatory. The modern high-

statistics experiments have already reached the needed accuracy to allow a meaningful test

to be done. Larger samples of events collected at future � -factory machines will certainly

improve the sensitivity of the analysis, allowing us to extract the rich QCD-information

contained in the � decays.
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