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Simple Summary: Gastrointestinal nematode (GIN) infections are serious parasitosis that cause
disease in grazing livestock. The impact of these parasites is associated with important economic
losses related to decreased production and the cost of anthelmintic treatments. Previous studies
have reported that GIN infections, mainly those caused by Teladorsagia circumcincta, are associated
with specific IgA levels. The goal of this study was to characterize IgA levels in naturally infected
sheep belonging to Assaf, Castellana, and Churra breeds in different samples (blood, nasal secretions,
and saliva). The association between IgA and fecal egg count, breed, and age was also studied.
The infection risk according to age and/or breed was measured by a multilevel random intercept
model. As a result, the model predicted that breed was not a factor influencing the risk of infection,
while age was determinant. On the other hand, this study concludes that nasal secretions could be a
useful sample to detect natural infections in young animals from any of the breeds included in this
study. Further studies in sheep belonging to other breeds would be interesting in the future to verify
this test.

Abstract: Specific IgA antibody has been shown to play an important role in resistance to gastroin-
testinal nematode (GIN) infections in sheep, particularly in Teladorsagia circumcincta parasitosis. In
some breeds, negative associations have been shown between IgA levels and worm burden in experi-
mentally infected sheep. In the present study, we have studied the relationship between IgA levels in
naturally infected sheep (582 ewes in total; 193 younger than one year old and 389 older than one
year old) and fecal egg count (FEC) in the Assaf, Castellana, and Churra breeds. ELISA assays were
performed to measure IgA levels against the somatic antigen of T. circumcincta third larval stage (L3)
and a 203-amino-acid fragment of the protein disulfide isomerase from the same GIN species. A
multilevel random intercept model was developed to predict the infection risk according to age or
breed. Spearman’s correlation rank was used for statistical analysis. The prediction model showed
that breed was not an influential factor in this study, although the Assaf breed could be considered
slightly more susceptible than the others. In addition, age affected the infection risk, with the young
ewes more susceptible to infection than the adult groups, except for the Castellana breed, whose risk
of infection was similar at all ages. The most significant positive association was found between FEC
and IgA measured in the nasal secretions of young ewes using both antigens (Rho = 0.5; p = 0.00); the
correlation of FEC with IgA in serum was moderately significant (Rho = 0.306; p = 0.00). Comparing
both antigens, the protein disulfide isomerase antigen was less reactive than the somatic antigen from
L3. In conclusion, under natural conditions, specific IgA against GIN was positively associated with
FEC in sheep, with nasal secretions from young animals being the sample where this association is
stronger, which, therefore, could be used as a marker of infection in further studies.
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1. Introduction

In temperate countries, the high prevalence of gastrointestinal nematodes (GIN) in
small ruminants is a major constraint in sheep production systems, reducing milk, meat,
and wool production on farms and affecting their economic performance [1–3]. According
to the most recent published reports, Teladorsagia circumcincta is the most prevalent GIN
species in sheep in these regions, followed by Trichostrongylus spp., Haemonchus contortus,
Oesophagostomum spp., and Chabertia ovina [4–7]. Broad-spectrum anthelmintic drugs
have been used for more than 40 years to effectively control infections. However, their
improper administration has led to the appearance and evolution of anthelmintic resistance
(AR) [8–10]. Owing to the progression of AR worldwide, it has been necessary to develop
alternative control methods, such as selective treatment, grazing management, or biological
control, among others, to reduce the use of anthelmintic drugs [7,11–14]. One of the
most promising alternative methods is the selection of hosts with a phenotype resistant to
GIN infections because it allows for long-lasting and regular control of nematodosis [15].
In the absence of reliable biological markers to recognize resistant or susceptible sheep
populations, fecal egg count (FEC) has been the most used method for the identification of
hosts with a resistant phenotype. In fact, Martinez-Valladares et al. [16] found a positive
and significant correlation between FEC and the number of T. circumcincta adult worms
in the abomasum (Rho = 0.502; p < 0.05) or the number of eggs present in the uterus of
adult females (Rho = 0.438; p < 0.05). Breeding selection programs based on FEC and its
heritability have even been developed in Merino sheep in Australia [17,18]. However,
FEC is limited by several factors, including the variation in the fecundity of each GIN
species, the sheep breed, the composition of feed, stress, or the host’s immune system
condition [19,20]. Moreover, some authors have reported that to obtain reliable FEC results,
it is necessary for sheep to have not been treated with AH for at least 14 weeks before the
analysis [20–22]. Due to these disadvantages, numerous studies have suggested IgA activity
as a more convenient marker of infection than FEC [16,23,24]. An increase of IgA activity
in abomasal mucosa, plasma, and saliva has been associated with lower FEC in naturally
infected Scottish Blackface and Lleyn lambs against the somatic antigen of T. circumcincta
third (L3)- and fourth-stage larvae (L4), indicating probable control of the fecundity of
adult females by IgA [25–27]. This association has also been found in naturally infected
Pelibuey lambs when IgA ismeasured against the somatic antigen of H. contortus [28].
Under experimental conditions, IgA levels have been measured in serum, saliva, and
nasal secretions in adult Churra ewes against the somatic antigen of T. circumcincta L4,
establishing negative associations between FEC and IgA levels [16].

Secretory IgA antibody (IgA) is the most abundant humoral component on the mucosa
surface and has been detected in certain biological fluids such as saliva, nasal secretions,
and lachrymal glands [29,30]. Helminth infections are known to generate an immunological
response where the IgA antibody is secreted, acting asan important mediator to control
the infections. IgA is involved in immune elimination and immune exclusion of some
pathogens, GINs among them [16,29]. During GIN infections, IgA detects specific antigens
and binds to them as part of immune protection, but little is still known about its role [29,31].
Accordingly, several studies are focused on identification of antigens to be used to detect
anti-GIN IgA levels [32,33]. The somatic antigen is composed of a great variety of antigenic
molecules, protein disulfide isomerase (PDI) among them. This protein has been detected
in all larval stages of T. circumcincta, T. colubriformis, and H. contortus [34,35]. PDI is an
essential enzyme found in the endoplasmic reticulum whose main role is catalytic, via
disulfide bond formation during protein folding, and is overexpressed in the secretory
cells; thus, PDI could go through the endoplasmic membrane and be detected in the cell
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environment [29,36,37]. In a previous study, members of our group identified, isolated,
cloned, and tested one of the most conserved antigenic fragments of T. circumcincta PDI
protein (PDI-Tc) [35]. This specific fragment has a 203 amino acid size and corresponds
to one of the activity sites. Subsequently, it was tested to measure specific IgA levels in
blood, saliva, and nasal secretions in Churra sheep during a T. circumcincta experimental
infection [38].

Spain has the highest number of sheep in the European Union, as it isan essential
economic sector in rural regions [39]. According to the Spanish Ministry of Agriculture,
Fisheries and Food, in the sampled area, Assaf, Castellana, and Churra are the most
important sheep breeds in production terms. Castellana and Churra are autochthonous
breeds, with the Assaf breed being introduced to improve milk yields. The management
system of flocks is mainly semi-extensive, due to the large natural land extension available
in the area [40]. The most recent studies showed 100% GIN prevalence, with T. circumcincta
the most common species (present in 100% of the flocks), followed by Trichostrongylus spp.
(present in 92% of the flocks) [7].

In order to evaluate the specific IgA response against natural GIN infections in different
breeds of sheep—Assaf, Castellana, and Churra—saliva, nasal secretions, and blood were
analyzed in young and adult sheep belonging to different flocks from the northwest of
Spain. IgA levels were then related to the infection level measured by the FEC. A multilevel
random intercept model was developed to explain the variability in the infection. Specific
IgA against NGI was positively associated with FEC in sheep; the nasal secretions of young
animals provided the samples where this association was stronger, and such samples could
therefore be used as a marker of infection. Moreover, the model showed that breed is not
an influencing factor in this case, although the Castellana breed is likely more infected than
the others. As expected, young animals showed a higher probability of suffering from
these infections than adult ewes, with the exception of the Castellana breed, for which all
animals showed the same probability regardless ofage.

2. Materials and Methods
2.1. Animal Selection

The study was carried out on195 ewes younger than oneyearold and 394 adult ewes,
for a total of 589. The ewes belonged to the Assaf, Castellana, and Churra breeds and
came from 15 commercial flocks situated in the northwest of Spain. All flocks were under
semi-intensive management, grazing for at least 6 h per day. The selected animals were not
given any deworming treatment for at least three months before sampling and were not
pregnant. The Assaf breed is raised for milk production, but the Churra and Castellana
breeds are destined for a mixed production of milk and meat. In this area, communal
pastures are the most common system, where several flocks share the same grazing lands.

The number of animals, as well as the breed and type of pasture foreach flock, are
summarized in Table 1.

Table 1. Number of ewes (N), breed, and type of pasture for each flock. Communal land is shown as
CL, while owned land is shown as OL.

Flock Breed N Type of Pasture

1 Churra 42 CL
2 Churra 40 CL
3 Assaf 13 OL
4 Assaf 40 CL
5 Assaf 24 OL
6 Assaf 46 CL
7 Churra 48 CL
8 Castellana 40 CL
9 Castellana 40 CL
10 Assaf 40 CL
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Table 1. Cont.

Flock Breed N Type of Pasture

11 Castellana 53 CL
12 Assaf 36 OL
13 Castellana 40 CL
14 Castellana 41 CL
15 Castellana 43 OL

Total 589

2.2. Animal Sampling

Feces were collected directly from the rectum to determine the FEC. The number of
eggs per gram of feces (epg) was analyzed using the McMaster technique, with a lower limit
of detection of 15 epg [41]. One coproculture per flock was performed for the morphological
identification of larval species.

Blood samples were taken from the jugular vein and deposited into glass tubes without
anticoagulant (Vacutainer; Barcelona, Spain) to obtain serum. Serum samples were stored
frozen (−20 ◦C) until further analysis [16].

Nasal secretions were collected by introducing two cotton swabs (Deltalab; Barcelona,
Spain) into each nostril; four swabs per animal were taken and placed into a tube with
4 mLof 1× PBS (VWR; Barcelona, Spain). Then, the tubes were shaken and incubated
overnight at 4 ◦C. The swabs were discarded and the tubes were centrifuged at 2000 rpm
to obtain the supernatant, which was stored at −20 ◦C until use. For saliva samples, four
swabs per animal were also used to collect the sample; these samples were processed
following the same protocol as the nasal secretions [16].

2.3. Antigen Production
2.3.1. Somatic Antigen from Third-Stage Larvae of T. circumcincta

Somatic antigen of T. circumcincta L3 (L3SE-Tc) was prepared based on Sinski et al. [23],
with slight modifications. Briefly, 500,000 T. circumcincta L3 were washed in cold sterile
PBS and then mashed in liquid nitrogen with a hand-held homogenizer. The mixture
was diluted in an inhibition solution (1mM EDTA, 1 mM PMSF, and 0.05 M of Tris-HCl)
and homogenized using an ultrasound (80%, 0.5 s, 10 cycles). The mixture was frozen
for 60 min at −80 ◦C and centrifuged at 8000 rpm for 60 min. The supernatant was
sterilized via filtration through a 0.22 µm pore diameter filter (Sigma-Aldrich; Madrid,
Spain). The protein concentration was estimated using the Bradford method with bovine
serum albumin (BSA) standards and then stored in 50 µL aliquots [42].

2.3.2. Recombinant Protein Disulfide Isomerase of T. circumcincta

The 203-amino-acid sequence of the protein disulfide isomerase of T. circumcincta
(PDI-Tc) was previously described by Martínez-Valladares et al. [35] (DQ357222.1). The
recombinant protein of this fragment was produced by Proteogenix (Strasbourg, France).
In brief, the cDNA sequence was cloned in expression vector pQE30 and expressed in
Escherichia coli. Protein purification was performed by affinity chromatography against
His-tag on nickel resin. Elution was carried out using imidazole buffer. The concentration
of extracted protein was measured viathe Bradford method.

2.4. Indirect ELISA against Gastrointestinal Nematodes

An indirect ELISA, using either L3SE-Tc or PDI-Tc antigen, was performed according
to Martínez-Valladares et al. [38] and Atlija et al. [41], with slight modifications. Microtiter
plates (BRAND plates®immunoGrade; Madrid, Spain) were coated with 100µLof PBS
containing 2.5 µg/mL of L3SE-Tc or 5 µg/mL of PDI-Tc and were incubated overnight at
4 ◦C. After discarding the contents, the plates were blocked using 200 µL of 4% PT-milk
(4 g of powdered milk + 100 mL PBS–Tween20) (PBS–Tween20: 1 L PBS; pH = 7.4 + 1 mL
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Tween20) and incubated at 37 ◦C for 30 min. Then, the blocking buffer was discarded
and the plates were washed four times for the L3SE-Tc assays or six times for the PDI-Tc
assays using 200 µL of PBS-Tween20. A total of 100 µL of each sample was prepared and
added following each dilution, as shown in Table 2. The plates were incubated with each
sample at 37 ◦C for 30 min or 45 min in the case of L3SE-Tc or PDI-Tc, respectively. Then,
the plates were washed as previously described, and 100 µL of Rabbit Anti-Sheep IgA-HRP
(Abcam;Cambridge, United Kingdom;) was added and diluted in blocking buffer; the
used dilution was 1/500 for all samples and antigens, with the exception of the serum
against PDI-Tc, which was 1/250. The plates were incubated at 37 ◦C for 30 min for L3SE-Tc
and 45 min for PDI-Tc. After the final wash step, 100 µL of 3,3′,5,5′-Tetramethylbenzidine
(Sigma-Aldrich; Madrid Spain) substrate was added and incubated at 25 ◦C for 10 min.
Then, the reaction was stopped by the addition of 100 µL of 2M H2SO4. Absorbance was
measured at 450 nm. To ensure the standardization of IgA measurement, positive and
negative controls were included in each plate.

The optical density (OD) index was calculated as follows:

OD index
OD sample − OD negative
OD positive− OD negative

Table 2. Dilutions used for each type of sample and antigen.

L3SE-Tc PDI-Tc

Sample Antibody Sample Antibody

ELISA-Saliva 1/3 1/500 1/2 1/500
ELISA-Nasal secretions 1/4 1/500 1/2 1/500
ELISA-Serum 1/1 1/500 1/2 1/250

2.5. Statistical Analysis

Extreme values were removed (Mean ± 3SD) to minimize the inclusion of extreme
values. A Kolmogorov–Smirnov test was employed to determine if data were adjusted to
a normal distribution. All ewes were classified according to their individual FEC in four
different phenotypes (F1: 0–14 epg; F2: 15–100 epg; F3: 115–300 epg; F4: >300 epg) and then
the proportion of animals for each phenotype and breed was calculated. A Kruskal–
Wallis test was used to determine if there were significant differences between these
four phenotypes. Associations between FEC and OD were measured using Spearman’s
correlation rank. The significance level was set at p < 0.05.

Due to the high percentage of ewes with 0 epg, the risk of being infected depending on
different variables (age, breed, type of pasture) was measured, and a multilevel model to fit
the logit of the odds (log probability of being infected/probability of not being infected) was
constructed and tested using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC,
USA). The model included the breed (Assaf, Churra, and Castellana), the age of the animals
(Young < 12 months; Adult > 12 months), and the interactions as fixed effects. Pearson
chi-squared/DF values were nearest to 1 (0.99–1.01), suggesting no effect of overdispersion
on probability values.

3. Results
3.1. Fecal Egg Count and Risk of Infections Depending on the Breed

After measuring the individual level of infections in all sampled ewes (n = 589), the
extreme data were removed and the final sample size was 193 young ewes and 394 adult
ewes (n = 582 in total). FEC values ranged from 0 to 975 epg depending on the age and
sheep breed. The percentage of ewes with a value of 0 for the FEC represented 64.66% of
ewes sampled (20.58% of young ewes and 44.08% of adult ewes) (Table 3). The percentage
of ewes belonging to each phenotype according to their FEC is shown in Figure 1. After
morphological identification of L3, most of them were classified as T. circumcincta (21–100%)
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and Trichostrongylus ssp. (15–85%). For percentages lower than 10%, other species were
identified as Chabertia ovina or Oesophagostomum spp.

Table 3. Size, mean, range, and percentage of positives for each breed, age, and total of ewes.

FEC

Breed Total Ewes Young Ewes Adult Ewes

Assaf

Mean ± SD
Range

132 ± 180
(0–975)

122 ± 159
0–825

128 ± 181
0–975

% positive FEC 64.97% 62.22% 65.79%
N 197 45 152

Castellana

Mean ± SD
Range

108 ± 162
0–915

99 ± 140
0–735

113 ± 164
0–915

% positive FEC 67.06% 58.76% 75.19%
N 255 126 129

Churra

Mean ± SD
Range

151 ± 181
0–945

155 ± 157
0–735

151 ± 181
0–945

% positive FEC 59.68% 81.81% 54.63%
N 129 22 108

Total ewes

Mean ± SD 113 ± 173 108 ± 164 113 ± 173
Range 0–975 0–825 0–975
% positive FEC 64.43% 85.50% 54.24%
N 582 193 389
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3.2. Prediction of Infection Risk

A multilevel random intercept model was used to predict the influence of breed and
age factors on predicting risk of infection (FEC > 0). According to this model, breed is not
an influential factor in this study. However, age was considered a significant factor as the
probability of infection was 2.39 times higher in young animals, although not in the same
way in all breeds; while the Churra and Assaf breeds showed this differentiation between
young and adult ewes, age did not affect the probability of infection in the Castellana breed
(Table 4).
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Table 4. Odds ratios of factors explaining the prevalence ofinfection by T. circumcincta. 1 Lead mean
square on the probability scale (prevalence). 2 Odds ratio using the Churra breed as a reference level.
Significance is shown as * p < 0.05 and ** p < 0.01.

Odds Ratio (95% CI) p-Value Estimated Prevalence 1

Breed

Assaf Reference 0.5976
Castellana 0.76 (0.46–1.24) 0.2684 0.5285
Churra 0.69 (0.33–1.44) 0.3221 0.5053
Castellana 1.10 (0.56–2.13) 2 0.7835

Age

Adult ewes Reference 0.4354
Young ewes 2.39 (1.37–4.19) 0.0022 * 0.6488

Breed × Age

AdultAssaf Reference 0.4550
Young Assaf 3.16 (1.35–7.43) 0.0083 * 0.7255
Adult Castellana Reference 0.5391
Young Castellana 0.92 (0.51–1.67) 0.7806 0.5180
Adult Churra Reference 0.3197
Young Churra 4.72 (1.42–15.7) 0.0115 * 0.6895

Pasture type

Farm pastures Reference 0.3113
Communal pastures 6.97 (3.84–12.6) 0.0001 ** 0.7592

The type of pasture (communal or owned pastures) was included as a possible influ-
ential factor in the probability of infection. This model showed that animals grazing in
communal pastures had a higher probability of infection than those who did not share
pasture land (Table 4).

3.3. IgA Levels against GIN as a Marker of Infection Level

Since the multilevel random intercept model showed the variable of breed did not
affect the probability of infections, breed was not taken into account in the analysis of IgA
and its possible association with FEC (Table 5). IgA detected in serum samples showed a
significant positive correlation with FEC using the L3SE-Tc antigen in both groups, with
a stronger association in the young ewes (Rho = 0.306; p = 0.00) than in the adult group
(Rho = 0.123; p = 0.00); using the PDI-Tc antigen, no significant correlations were detected
in this sample.

Table 5. Spearman’s rank correlation between fecal egg count (FEC) and IgA levels for each antigen.
N: number of ewes.

Young Ewes (N = 193) Adult Ewes (N = 389)

L3SE-Tc PDI-Tc L3SE-Tc PDI-Tc

Serum Rho = 0.306 **
p = 0.000

Rho = 0.107
p = 0.159

Rho = 0.123 **
p = 0.000

Rho = 0.091
p = 0.077

Nasal Rho = 0.504 **
p = 0.000

Rho = 0.498 **
p = 0.000

Rho = 0.031
p = 0.554

Rho = 0.179 **
p = 0.000

Saliva Rho = 0.058
p = 0.137

Rho = 0.295 **
p = 0.000

Rho = 0.059
p = 0.246

Rho = 0.001
p = 0.989

** Significant correlations (p < 0.000).
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The association between FEC and IgA in the nasal secretions of young ewes was posi-
tive, high, and similar for both the L3SE-Tc (Rho = 0.504; p = 0.00) and PDI-Tc (Rho = 0.498;
p = 0.00) antigens. In adult ewes, a significant correlation between these variables was only
present using the PDI-Tc antigen (Rho = 0.179; p = 0.00).

Regarding the saliva samples, a unique association was found between FEC and IgA
levels in the young group of ewes (Rho = 0.295; p = 0.00) when using the PDI-Tc antigen.

3.4. Association between IgA Levels for the Different Biological Samples

Associations between IgA levels measured by the two indirect ELISAs against the
L3SE-Tc or PDI-Tc antigens were evaluated for each type of biological sample. Correlations
between these ELISAs were found in nasal secretions (Rho= 0.497; p = 0.00) as well as
in saliva (Rho = 0.149; p = 0.00). A correlation was not found in the serum samples.
Interestingly, in the nasal secretions, this association between ELISAs was kept in both
groups, in young (Rho = 0.554; p = 0.00) and adult ewes (Rho = 0.441; p = 0.00).

In addition, the association between the IgA levels in the different types of samples
was measured. The serum showed a positive correlation using the L3SE-Tc antigen only
with saliva (Rho = 0.183; p = 0.00). However, using PDI-Tc antigen, the serum showed
positive correlations with saliva (Rho = 0.146; p = 0.00) and also with nasal secretions
(Rho = 0.110; p = 0.00). A correlation was found between saliva and nasal secretions using
both L3SE-Tc (Rho = 0.178; p = 0.00) and PDI-Tc (Rho = 0.255; p= 0.00) (Table 6A,B) antigens.

Table 6. (A) Spearman’s rank correlations between IgA levels measured for each sample using the
L3SE-Tc antigen. (B) Spearman’s rank correlations between IgA levels measured foreach sample
using the PDI-Tc antigen.

(A) L3SE-Tc

Serum Nasal secretions Saliva

L3SE-Tc

Serum 1

Nasal secretions Rho = 0.05
p = 0.205 1

Saliva Rho = 0.183 **
p = 0.000

Rho = 0.178 **
p = 0.000 1

(B) PDI-Tc

Serum Nasal secretions Saliva

PDI-Tc

Serum 1

Nasal secretions Rho = 0.110 **
p = 0.000 1

Saliva Rho = 0.146 **
p = 0.000

Rho = 0.255 **
p = 0.000 1

** Significant correlations (p < 0.00).

4. Discussion

The development of more sustainable control methods has become an urgent need due
to the increase of anthelmintic resistance in GINs infecting ruminants. Under this premise,
it is essential to understand the mechanism through which some ruminants can control GIN
infections in a better way than others. The immune response against GIN involves the pro-
duction of IgA, and its increase has been related to more resistant sheep under experimental
conditions, especially against T. circumcincta and H. contortus. Indeed, in experimentally
infected sheep, increasedlevels of IgA in adult Churra sheep and lambs belonging to the
Scottish Blackface and Canarian Hair breeds have been associated with shorter female
nematodes and, consequently, with a lower number of female worm eggs in utero [25,43,44].
Most of the IgA present in saliva is produced by B-lymphocytes that migrate through the
blood from the lymphoid tissue associated with gastrointestinal mucosa; however, the
relationship between IgA in saliva and plasma remains to be determined [45,46]. Saliva and
nasal secretions are biological samples more easily accessible than blood and less invasive
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for animals. Moreover, analysis of antibody levels can be performed in the laboratory on
a large scale in a very short time, overcoming the difficulties of conventional techniques,
such as coprological methods [27,47,48].

The development of immunity to GIN in sheep is complex and highly variable among
breeds, and also among individuals belonging to the same breed. Consequently, breed
has been suggested as an important factor in immune control, despite most breeds having
been poorly studied. According to some studies performed under experimental conditions,
certain breeds are considered more resistant than others to GIN infections; in particular, hair
sheep breeds (Canarian Hair breed, Blackbelly, or Pelibuey) in comparison to wool breeds
(Suffolk, Canarian Sheep) [49–53]. Based on the Spanish Ministry of Agriculture, Fisheries
and Food database, the most common sheep breeds in the sampling area of the present
study are Assaf and the autochthonous breeds Castellana and Churra, all of them being
wool breeds. In the literature, there is no information about how these three breeds are able
to control GIN infections under natural conditions. In this study, the results showed that
the infection risk is not linked to any of these breeds.

On the other hand, age is another variable to be considered. The development of
immunity is variable. Lambs start to show immune competence from 2–3 months of age,
reaching apeak at 12 months when protective immune capacity is fully developed [54,55].
As expected, in this study, infection risk was associated with age, being higher in young
ewes, but not in the same way for the three breeds, since there was no difference regarding
the risk of infection between young and adult Castellana ewes.

In experimental infections, negative correlations have been described between FEC
and IgA levels in serum samples measured using the L4 somatic antigen of T. circumcincta
or PDI-Tc in Churra sheep, but also in Blackface and Soay sheep using the L3 somatic
antigen of T. circumcincta [16,56–59]. However, the relationship between FEC and IgA in
natural infections is not clear yet; Shaw et al. [60] measured specific IgA in saliva against
the CarLA antigen and detected a negative association with FEC in Romney and Texel
cross lambs. CarLA is a surface antigen from Trichostrongylus colubriformis and presents
only in the L3 stage. A commercial test, called the CARLA TEST, is used to select those
animals that are able to control infection in a better way than others. However, De la
Chevrotére [61] used the excretory/secretory antigens of L3 H. contortus and showed that
IgA levels measured in the serum samples of goat kids naturally infected with H. contortus
correlated positively with FEC. In the current study, all the associations between FEC and
IgA were positive, being stronger in young ewes for all samples. In the serum and saliva
samples, these associations were moderate against L3SE-Tc (Rho = 0.306; p = 0.000) and
PDI-Tc (Rho = 0.295; p = 0.000); however, they were stronger in nasal secretions, regardless
of the antigen used, either the L3SE-Tc antigen (Rho = 0.504; p = 0.00) or the PDI-Tc antigen
(Rho = 0.498.; p = 0.000). These data suggest that young ewes with a higher FEC produce
more IgA under natural conditions, where the animals are continuously exposed to GIN
infections. Accordingly, IgA from nasal secretions could be a possible GIN infection marker
in young ewes.

The sheep that are infected under natural conditions are usually infected by mixed-
nematode species [62]. Among these species, some, such as H. contortus or T. circumcincta,
are more pathogenic or prevalent than others, and therefore their control is of greater
interest [63,64]. Generally, IgA detection in sheep and goats using somatic and excre-
tory/secretory antigens is not highly specific and presents an extensive cross-reactivity
between species of the Trichostrongylidae family, such as H. contortus, T. circumcincta, and
Trichostrongylus spp. [65,66]. Cuquerella et al. [67] found an intense cross-reaction in the
serum of lambs infected with T. circumcincta using somatic extract of H. contortus adults.
Smith et al. [68] isolated a membrane glycoprotein of T. circumcincta that was also recog-
nized by H. contortus. Additionally, Martinez-Valladares et al. [35] were the first to produce
a recombinant fragment of the PDI protein in T. circumcincta and to describe a cross-reaction
with Trichostrongylus spp. This has conditioned the use of the ELISA test as a specific diag-
nostic method. Some studies have tried to solve cross-reactions between some species, such
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as T. colubriformis, H. contortus, T. circumcincta, Cooperia curticei, and Nematodirus spathiger,
using recombinant antigens, but not always successfully [69]. However, the low specificity
of these antigens could be beneficial in natural conditions, where the aim is to detect the
infection caused by any of these GIN species. In this study, the most frequent species were
T. circumcincta and Trichostrongylus spp. in all flocks; therefore, any of the antigens tested
in this study might be able to detect antibodies against both species. Consequently, the
application of these tests would depend on the GIN population infecting sheep. Further
studies are needed to confirm their utility with another mix of species.

IgA is the most common antibody in saliva fluid [46]. It is produced by plasma cells
that are supposed to originate from lymphoid tissue in the intestinal mucosa and then
migrate via the circulatory system to salivary-duct-associated lymphoid tissue [20,46]. This
seems to be the explanation as to why IgA levels against GIN in saliva reflect the immune
response in gastric mucosa in infected sheep [20]. We measured the correlation between IgA
levels in serum and saliva to confirm if there is a direct relationship. Our results showed a
slight positive correlation with both antigens (L3SE-Tc; Rho = 0.183; p = 0.00 and PDI-Tc;
Rho = 0.146; p = 0.00). Escribano et al. [33] detected an increase in IgA levels measured
in the serum and saliva ofsheep experimentally infected with H. contortus. These authors
hypothesized that IgA in saliva could recognize and bind L3 during the intake and then
act together with mast cells or eosinophils once they reach the gut, limiting larval number,
maturation, and egg shedding.

5. Conclusions

Specific IgA against GIN was positively associated with FEC in naturally infected
sheep, with the nasal secretions from young animals providing the samples where this
association was stronger, which could therefore be used as markers of infection. Moreover,
the predictive model explained that variation in the risk of infection is not influenced by
any of the breeds included in this study—Assaf, Castellana, and Churra. However, as
expected, the model showed that age was a key factor and young animals have a greaterrisk
of infection than adult ewes, except for the Castellana breed, where all animals showed the
same risk regardless of age.
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