Supporting Information

Carbonyl-trapping by phenolics and the inhibition of the formation of

carcinogenic heterocyclic aromatic amines with the structure of

aminoimidazoazaarene in beef patties

Francisco J. HIDALGO and Rosario ZAMORA*

Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario – Edificio 46, 41013-Seville, Spain

Figure S1. Phenylacetaldehyde disappearance during incubation at 60 °C in the absence (\Box) and in the presence (\bigcirc) of phloroglucinol. Phenylacetaldehyde was determined directly by GC-MS.

Figure S2. Acrolein disappearance during incubation at 100 °C in the absence (\Box) and in the presence (\bigcirc) of phloroglucinol. Acrolein was determined by GC-MS after derivatization with *O*-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine.

Figure S3. Chemical structures of assayed phenolic compounds.

Table S1

Optimization of MRM transitions for detection of HAAs and carbonyl/phloroglucinol adducts

Compound	Monitored transition	DP	CE	CXP
PhIP	$225.021 \rightarrow 206.900$	120	20	6
	$225.021 \rightarrow 210.000$	80	40	8
	$225.021 \rightarrow 190.900$	120	40	6
MeIQx	$214.048 \rightarrow 199.000$	60	40	6
	$214.048 \rightarrow 131.000$	60	50	8
	$214.048 \rightarrow 172.000$	60	40	6
IQ	$199.020 \rightarrow 184.000$	80	40	8
	$199.020 \rightarrow 157.000$	60	50	8
	$199.020 \rightarrow 129.900$	60	50	8
MeIQ	$213.037 \rightarrow 198.000$	60	40	6
	$213.037 \rightarrow 170.000$	60	50	8
	$213.037 \rightarrow 84.900$	60	40	6
Adduct 4	$228.997 \rightarrow 151.000$	80	20	10
	$228.997 \rightarrow 123.000$	80	30	10
	$228.997 \rightarrow 117.000$	80	50	10
Adduct 7	$183.039 \rightarrow 139.000$	20	20	12
	$183.039 \rightarrow 67.000$	20	30	12
	$183.039 \rightarrow 77.000$	20	60	12
Adduct 8	$239.002 \rightarrow 151.000$	80	30	12
	$239.002 \rightarrow 139.000$	80	30	12
	$239.002 \rightarrow 176.900$	80	20	12
Adduct 10	$295.016 \rightarrow 277.100$	80	20	12
	$295.016 \rightarrow 233.100$	80	30	12
	$295.016 \rightarrow 189.000$	80	15	12
IS	$195.019 \rightarrow 137.900$	36	27	32
	$195.019 \rightarrow 110.100$	36	31	14
	$195.019 \rightarrow 123.100$	36	41	8

Abbreviations: DP, declustering potential; CE, collision energy; CXP, collision cell exit potential. Transition employed for quantification purposes is in bold.

NMR and MS data of compound (4)

2-Styrylbenzene-1,3,5-triol

¹**H NMR** (500 MHz, CD₃OD): δ 5.92 (s, 2H, H4 and H6), 7.13 (tt, 1H, *J* = 1.3 Hz, *J* = 7.5 Hz, H6'), 7.28 (tt, 2H, *J* = 1.3 Hz, *J* = 7.5 Hz, H4' and H8'), 7.41 (d, 1H, *J* = 16.5 Hz, H1'), 7.44 (m, 2H, H5' and H7'), and 7.47 (d, 1H, *J* = 16.5 Hz, H2').

¹³C NMR (125.7 MHz, CD₃OD): δ 94.35 (C4 and C6), 104.71 (C2), 120.60 (C1'), 125.29 (C5' and C7'), 125.59 (C6'), 127.42 (C2'), 128.02 (C4' and C8'), 157.30 (C5), and 157.54 (C1 and C3).

MS, m/z (%, ion structure): 228 (100, M⁺), 211 (6, M⁺ – OH), 150 (15, M⁺ – benzene), and 125 (19, phloroglucinol – H).

MS of the trimethylsilyl derivative, m/z (%, ion structure): 444 (100, M⁺), 429 (15, M⁺ – CH₃), 371 (5, M⁺ – (CH₃)₃Si), and 73 (76, (CH₃)₃Si).

MS of the acetate derivative, *m/z* (%, ion structure): 354 (8, M⁺), 312 (17, M⁺ – CH₂CO), 270 (29, 312 – CH₂CO), and 228 (100, 270 – CH₂CO).

NMR and MS data of compound (7)

Chromane-2,5,7-triol

¹**H NMR** (500 MHz, CD₃OD): δ 1.89 (m, 2H, H3), 2.61 (m, 2H, H4), 5.39 (dd, 1H, *J* = 2.6 Hz, *J* = 4.8 Hz, H2), 5.80 (d, 1H, *J* = 2.3 Hz, H8), and 5.91 (d, 1H, *J* = 2.3 Hz, H6).

¹³C NMR (125.7 MHz, CD₃OD): δ 14.97 (C4), 27.32 (C3), 92.09 (C2), 94.73 (C8), 94.79 (C6), 100.93 (C4'), 153.94 (C8'), 155.54 (C5), and 156.18 (C7).

MS, *m/z* (%, ion structure): 182 (36, M⁺), 163 (22), 139 (66, M⁺ – C₂H₃O), and 126 (100, phloroglucinol).

MS of the trimethylsilyl derivative, m/z (%, ion structure): 398 (6, M⁺), 383 (7, M⁺ – CH₃), 308 (27, M⁺ – (CH₃)₃SiOH), and 73 (100, (CH₃)₃Si).

MS of the acetate derivative, *m/z* (%, ion structure): 308 (2, M⁺), 248 (15, M⁺ – CH₃COOH), 206 (50, 248 – CH₂CO), and 164 (100, 206 – CH₂CO).

NMR and MS data of compound (8)

3,4,7,8-Tetrahydro-2H,6H-pyrano[3,2-g]chromene-2,5,8-triol

¹**H NMR** (500 MHz, CD₃OD): δ 1.89 (m, 4H, H3 and H7), 2.61 (m, 4H, H4 and H6), 5.46 (m, 2H, H2 and H8), and 6.13 (s, 1H, H10).

¹³C NMR (125.7 MHz, CD₃OD): δ 15.2 (C4 and C6), 28.3 (C3 and C7), 92.11 (C2

and C8), 95.01 (C10), 101.75 (C4' and C5'), 150.59 (C5), and 153.36 (C9' and C10').

MS, m/z (%, ion structure): 238 (44, M⁺), 220 (9, M⁺ – H₂O), 195 (23, M⁺ – C₂H₃O),

182 (65, chromane-2,5,7-triol), 151 (89, 182 - CH₃O), and 126 (100, phloroglucinol).

MS of the trimethylsilyl derivative, *m/z* (%, ion structure): 454 (11, M⁺), 439 (4, M⁺ – CH₃), 364 (8, M⁺ – (CH₃)₃SiOH), 338 (14, M⁺ – (CH₃)₃SiOC₂H₃), 337 (25, 338 – H), 323 (9, 338 – CH₃), 248 (16, 338 – (CH₃)₃SiOH), and 73 (100, (CH₃)₃Si).

MS of the acetate derivative, *m/z* (%, ion structure): 364 (11, M⁺), 305 (34, M⁺ – CH₃COO), 305 (34, M⁺ – CH₃COOH), 262 (71, 306 – CH₂CO), 244 (34, 306 – CH₃COOH), 220 (100, 262 – CH₂CO), and 202 (54, 244 – CH₂CO).

NMR and MS data of compound (10)

3,4,7,8,11,12-Hexahydro-2H,6H,10H-dipyrano[2,3-f:2',3'-h]chromene-2,6,10-

triol

HO 10 11 12 O 12' O 2 OH 8'' 4' 4' 4 7 0 O 0H OH (10)

¹**H NMR** (500 MHz, CD₃OD): δ 1.89 (m, 6H, H3, H7 and H11), 2.64 (m, 6H, H4, H8, and H12), and 5.45 (m, 3H, H2, H6, and H10).

¹³C NMR (125.7 MHz, CD₃OD): δ 15.01 and 15.12 (C4, C8, and C12), 27.11 and 27.17 (C3, C7, and C11), 91.99 and 92.07 (C2, C6, and C10), 101.81 and 101.83 (C4', C8', and C12'), 148.32 and 148.42 (C4", C8", and C12").

MS, *m/z* (%, ion structure): 294 (2, M⁺), 238 (5, M⁺ – acrolein), 182 (4, M⁺ – acrolein), and 126 (100, phloroglucinol).

MS of the trimethylsilyl derivative, *m/z* (%, ion structure): 510 (8, M⁺), 495 (1, M⁺ – CH₃), 394 (11, M⁺ – (CH₃)₃SiOCH=CH₂), 393 (20, M⁺ – H), 379 (2, 394 – CH₃), 304 (6, 394 – (CH₃)₃SiOH), 278 (7, 394 – (CH₃)₃SiOCH=CH₂), 263 (7, 278 – CH₃), and 73 (100, (CH₃)₃Si).

MS of the acetate derivative, *m/z* (%, ion structure): 420 (7, M⁺), 405 (5, M⁺ – CH₃), 361 (11, M⁺ – CH₃COO), 360 (7, M⁺ – CH₃COOH), 318 (8, 360 – CH₂CO), 300 (5, 360 – CH₃COOH), 258 (7, 300 – CH₂CO), 240 (5, 300 – CH₃COOH), and 202 (8, 240 – C₃H₂).