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Diurnal biting flies are strongly attracted to blue objects. This behaviour is
widely exploited for fly control, but its functional significance is debated.
It is hypothesized that blue objects resemble animal hosts; blue surfaces
resemble shaded resting places; and blue attraction is a by-product of attrac-
tion to polarized light. We computed the fly photoreceptor signals elicited
by a large sample of leaf and animal integument reflectance spectra,
viewed under open/cloudy illumination and under woodland shade. We
then trained artificial neural networks (ANNs) to distinguish animals from
leaf backgrounds, and shaded from unshaded surfaces, in order to find
the optimal means of doing so based upon the sensory information available
to a fly. After training, we challenged ANNs to classify blue objects used in
fly control. Trained ANNs could make both discriminations with high accu-
racy. They discriminated animals from leaves based upon blue–green
photoreceptor opponency and commonly misclassified blue objects as ani-
mals. Meanwhile, they discriminated shaded from unshaded stimuli using
achromatic cues and never misclassified blue objects as shaded. We conclude
that blue–green opponency is the most effective means of discriminating ani-
mals from leaf backgrounds using a fly’s sensory information, and that blue
objects resemble animal hosts through such mechanisms.
1. Background
Attraction to blue objects is virtually universal among diurnal biting flies,
including the Glossinidae (tsetse), Hippoboscidae (keds), Muscidae (e.g.
stable flies), Tabanidae (horse or march flies) and Simuliidae (blackflies)
[1–7]. This well-documented behaviour is exploited by a variety of blue traps
and insecticide-treated targets developed to control the flies and the diseases
they spread [8–13]. However, the functional significance of attraction to blue
for the flies themselves remains unclear, particularly since blue objects are
relatively rare in the natural environment.

Three competing hypotheses have been proposed to explain the attraction of
biting flies to blue objects, namely that blue objects resemble animal hosts
[1,14]; blue surfaces resemble shaded resting places [15,16]; and blue attraction
is a by-product of attraction to polarized light [17]. First, in terrestrial habitats
containing plants, the reflectance spectra of natural surfaces fall into three clas-
ses—(i) those of green leaves with a reflectance peak at approximately 555 nm
(termed ‘leaf green’); (ii) most inorganic and many organic surfaces, including
melanin-pigmented animal integuments, for which reflectance monotonically
increases with wavelength (here termed ‘grey–brown’); and (iii) those of signal-
ling colours such as fruits, flowers and ornaments that follow no particular
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pattern but contrast against a leaf background (termed ‘leaf
contrast’) [18]. In such environments, a host-seeking biting
fly must detect grey–brown spectra among a predominantly
leaf green background, and it has been proposed that blue
stimuli contrast against such backgrounds and activate the
perceptual mechanisms that make this classification [1,14].
Second, the shade that occurs under open canopies, or iso-
lated trees and other objects (termed ‘woodland shade’) is
relatively richer in shorter wavelengths of light compared
to direct sunlight, and thus these kinds of shadows appear
blueish [19]. On this basis, it has been suggested that blue
objects are attractive to biting flies such as tsetse because
they attend to the blueness and darkness of shadows to
locate cover such as tree bark fissures and rot holes in
which they frequently rest [15,16]. Finally, because some
blue- and UV-sensitive photoreceptor types of tabanid flies
have maximum sensitivity to linearly polarized light in
opposing planes, the flies’ perceptions of colour and polariz-
ation are confounded [17]. On this basis, it has been
suggested that the blue preference of these and other biting
flies is a by-product of a polarization sensing mechanism
that the flies are proposed to use to identify bodies of water
and to segregate potential hosts from background [17].

In attempting to differentiate these hypotheses, it is essen-
tial to consider how these stimuli are processed by the
perceptual mechanisms of a fly, which differ greatly from
those of humans. The visual systems of calyptrate flies have
been most thoroughly investigated in the housefly Musca
and blowfly Calliphora, and these flies possess five spectral
classes of photoreceptor across the majority of the compound
eye (excluding areas specialized for tracking mates and
receiving polarized light; figure 1a) [20]. In these flies, each
ommatidium has eight photoreceptors named R1–R8. R1–6
are similar in every ommatidium of the eye and contain a
photopigment with peak sensitivity (λmax) at ca 490 nm,
and three sensitivity peaks at approximately 332, 350 and
369 nm due to a sensitizing pigment [20,26]. The rhabdo-
meres of the R7 and R8 photoreceptors are stacked centrally
within each ommatidium. In about 30% of ommatidia the
‘p’ (pale) form occurs, in which R7p possesses a UV-sensitive
photopigment (λmax ca 335 nm), and R8p a blue-sensitive
photopigment (λmax ca 460 nm) [20]. In the other 70% of
ommatidia the ‘y’ (yellow) form occurs, in which R7y has
sensitivity peaks at 337, 355 and 373 nm due to a sensitizing
pigment, since its rhabdomere appears to contain both a blue-
sensitive photopigment and a carotenoid screening pigment
[20,27]. Meanwhile, R8y contains a photopigment sensitive
to green wavelengths (λmax ca 520 nm), but also contains a
UV-sensitive sensitizing pigment and experiences screening
from the overlying R7y rhabdomere [20,27,28]. Although
other calyptrate flies have been less intensively studied,
broadly the same basic arrangement appears to exist. For
example, genomic analyses show that Stomoxys calcitrans
and several tsetse (Glossina spp.) possess the same opsin
types [29,30], and although electrophysiological characteriz-
ation of tsetse photoreceptors is not complete, the same
classes of photoreceptor seem to be present with only
an approximately 10 nm increase in the λmax of the R1–6
photopigment [31]. Outside of the Calyptratae, slightly
more variation in the sensitivity of these five spectral
classes is evident. In Drosophila, the UV-sensitivity of the
R7y photoreceptor is conferred by an opsin rather than a
sensitizing pigment [32]. In the horsefly Tabanus bromius,
electrophysiological recordings indicate that the λmax of the
R1–6 photopigment is shifted to longer wavelengths com-
pared to Musca and Calliphora, the spectral sensitivities of
the UV-sensitive photoreceptors analogous to R7p and R7y
are similar to each other, and the photoreceptor analogous
to R8p appears to have an additional sensitivity peak in the
UV [17]. Nevertheless, the complement of photoreceptors in
the retinae of these higher flies is broadly similar.

Visual perceptions are formed by the neural processing of
photoreceptor signals. Where these mechanisms involve the
comparison of photoreceptor responses they are said to be
chromatic, corresponding to the qualities of hue and satur-
ation in human vision [33]. Where the mechanisms involve
single photoreceptor responses, or sums of photoreceptor
responses, they are said to be achromatic, corresponding to
brightness in human vision [33]. Our understanding of the
precise ways in which fly photoreceptor signals are processed
to create perceptions is still developing. The R7 and R8 photo-
receptors are believed to serve colour vision, and the
prevailing view, based on behavioural work on the blowfly
Lucilia, has been that their signals are processed via two
colour-opponent channels, each involving a comparison of
the R7 and R8 photoreceptor signals of a given ommatidial
type [34,35]. However, although the R1–6 photoreceptors pro-
vide an achromatic channel serving motion vision, it has now
been shown that these photoreceptors also contribute to
colour vision in Drosophila [36].

In this study, we test the hypotheses that blue objects
resemble animal hosts, and that blue objects resemble
shaded resting places, in terms of the sensory information
available to a fly. We also investigate whether the mechan-
isms that can best classify these stimuli rely on chromatic or
achromatic processing of fly photoreceptor signals. We
trained artificial neural networks (ANNs) to identify poten-
tial hosts, or resting places in woodland shade, using only
the five photoreceptor signals that would be available to a
typical fly. The process of training an ANN optimizes the
weights of connections between a network of artificial neur-
ons, meaning that stimuli could be classified based upon
chromatic or achromatic mechanisms in a manner analogous
to real nervous systems, free from assumptions about how
photoreceptor signals should be processed. Used in this
way, ANNs can be considered abstract mechanistic models
of the fly nervous system, replicating input–output relation-
ships and providing a practical working hypothesis
regarding mechanisms [37]. We do not expect that ANNs
will exactly mimic real fly nervous systems, but we anticipate
that they will capture key features of their processing because
evolution should also drive towards optimality in response
to the selective pressures imposed by behaviour. After train-
ing, we challenged ANNs with the photoreceptor signals
that would result from blue objects used for fly control,
investigating whether ANNs optimized to solve natural
classification problems using the sensory information avail-
able to a fly would misclassify those artificial blue stimuli
as animal hosts or resting places in woodland shade.
2. Methods
(a) Reflectance spectra
We focused our analysis on two out of the three main classes of
natural spectra [18] that we considered to be relevant to
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Figure 1. Input spectra for photoreceptor excitation calculations. (a) Flies possess five spectral classes of photoreceptor through the majority of their compound eyes,
and the responses of these photoreceptors provide the inputs to visually guided behaviours. Plot shows sensitivity functions for the photoreceptors of Musca and
Calliphora. Data were published in [20], copyright Elsevier, and are as used by [21]. Excitations for each of these photoreceptors were calculated for samples of leaf
and animal stimuli, and for blue, black and violet surfaces of biting fly control devices. (b) The sample of 72 leaf reflectance spectra used as stimuli in our analysis,
with the mean leaf reflectance spectrum plotted as a thick green line. Data are from the Floral Reflectance Database [22]. (c) The sample of 72 animal reflectance
spectra used as stimuli in our analysis, with the mean animal reflectance spectrum plotted as a thick brown line. Data are from [23]. (d ) The sample of 11 blue,
black and violet ( purple to a human eye) surfaces from biting fly control devices. Data were published in [3–5,24]. (e) Photoreceptor excitations for each stimulus
were calculated under both open/cloudy and woodland shade irradiance spectra. These were the mean spectra from [19] and are shown standardized so that photon
flux density values sum to 1. The spectra differed greatly in total intensity, and the total intensity of the woodland shade spectrum was 4.4% of that for the open/
cloudy spectrum. Further details on spectra are available at [25].
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host-seeking by biting flies: (i) ‘leaf green’ spectra (i.e. foliage)
and (ii) ‘grey–brown’ spectra (i.e. melanin-pigmented animal
integuments); we ignored ‘leaf contrast’ spectra (i.e. signalling
colours) since such spectra follow no particular pattern and are
relatively rare in natural visual environments. Our approach
was to represent the variability within the chosen spectral cat-
egories, and not to characterize the exact spectra that any
particular species of biting fly would experience. To represent a
diversity of leaf green spectra, we assembled a database of 72
leaf reflectance spectra for different plant species randomly
sampled from the Floral Reflectance Database (www.reflec-
tance.co.uk) [22], based upon their accession numbers. These
spectra were subsampled for 2 nm wavelength resolution
(figure 1b). To represent a diversity of grey–brown spectra, we
focused on the melanin-based coloration of animals. We obtained
72 reflectance spectra that were originally collected to sample the
diversity of melanin (including eumelanin and pheomelanin)-
based coloration in animals [23]. These spectra were for the feath-
ers and hair of 58 species of bird (59 spectra) and 12 species of
mammal (13 spectra), including colour patches that are black,
grey, brown and orange to the human eye [23] (figure 1c).
Because such spectra have a characteristic shape that depends
on their melanin chemical composition [23], the sample covered
a diversity of colorations rather than taxonomic groups. The
shapes of these spectra resemble those measured for biting fly
hosts such as cattle and deer [38]. These spectra were available
at 10 nm wavelength resolution, and we linearly interpolated
them to achieve equivalent resolution to the leaf spectra.
This choice was of no great importance since photoreceptor exci-
tation values calculated as below from spectra with 2 nm and
10 nm resolution were perfectly correlated (Spearman’s rank cor-
relation, Rs = 1.000, n = 288, p < 0.001). In addition, we obtained
11 spectra for effective biting fly control devices, comprising
blue but also black and violet fabrics [3–5,24] (figure 1d ). Further
details on these spectra are available at [25].
(b) Calculating photoreceptor signals
Photoreceptor responses and not reflectance spectra provide the
inputs to visually guided behaviour, so we next calculated
the responses in each of a fly’s five main classes of photoreceptor
to the stimuli described above (cf. [21,33,39]). We wanted to
consider a hypothetical, generic fly in an open area viewing a
stand of vegetation and visually searching it for a potential host
or a shaded resting place. We thus performed these calcula-
tions twice: first considering each stimulus under open/cloudy
(white) illumination as if in an unshaded position among the veg-
etation, and then considering each stimulus under woodland
shade illumination (blue–grey) as if in a shaded position [19].
The quantum catch, Q, for each photoreceptor type was calculated
as follows:

Q ¼
Ð 700
300 Is(l) � Rs(l) � Si(l) dl

Ð 700
300 Ib(l) � Rb(l) � Si(l) dl

,

where Is and Ib are the irradiance spectra on the stimulus and
background, respectively, Rs and Rb are the reflectance spectra of
the stimulus and predominant background, and S is the photo-
receptor sensitivity spectrum for receptor type i. The numerator
represents the quantum catch resulting from a stimulus of interest,

http://www.reflectance.co.uk
http://www.reflectance.co.uk
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and the denominator adjusts that response according to the back-
ground stimulation, representing the process of adaptation by
photoreceptors (cf. [39]). Since the predominant background
during the search of a vegetation stand is considered to be
leaves, Rb was the mean reflectance spectrum calculated across
our sample of 72 leaves (figure 1b). In all calculations, Ib was the
mean open/cloudy irradiance spectrum recorded by [19]
(figure 1e). When carrying out these calculations for stimuli in
unshaded positions, Is was the same mean open/cloudy irradi-
ance spectrum, and for stimuli in shaded positions, Is was the
mean woodland shade irradiance spectrum recorded by [19]
(figure 1e). Irradiance spectra had units of photon flux, since
energy units are irrelevant to studies of vision [40]. Si were the
photoreceptor sensitivity spectra characterized for Musca and Cal-
liphora, originally obtained from [20] and as used by [21]
(figure 1a). This choice was justified because photoreceptor sensi-
tivity spectra are most thoroughly characterized in these species,
the spectral sensitivities of other higher fly species appear to be
broadly similar (see §1) and the Muscidae include the obligate,
cosmopolitan blood feeders of the genus Stomoxys.

Since photoreceptor responses relate nonlinearly to the
number of quanta absorbed, we calculated values to represent
photoreceptor excitation, E, as follows (cf. [41]):

E ¼ ln(Q):

In total, our database contained E values for a fly’s five main
classes of photoreceptor for a total of 288 stimuli comprising 72
leaves and 72 animal integuments, each viewed under open/
cloudy and woodland shade illumination.

To check the importance of assumptions, we repeated our
work using alternatives to the nonlinearization step above and
calculating E values using photoreceptor sensitivities recorded
for the tsetse Glossina morsitans (electronic supplementary
material, Results, section A). Our findings were not sensitive to
these assumptions.

(c) Training and evaluation of artificial neural networks
One way to analyse similarities and differences in colour from an
animal’s point of view is to employ colour space approaches to
visualize chromatic information (see electronic supplementary
material, Results, section C) (e.g. see [33]). However, in discrimi-
nating natural stimuli flies may use chromatic and/or achromatic
information, so we employed ANNs in a manner analogous to
photoreceptor-based models of colour choice that statistically
relate calculated photoreceptor signals to behaviour [33]. In this
context, ANNs have an advantage over traditional statistical
approaches since they allow for parallel and nonlinear processing
of photoreceptor signals closer to what we expect to occur in real
nervous systems, so we suggest that they provide a useful tool
with which to address such problems, especially where the
dimensionality of colour vision is high.

We constructed ANNs to classify stimuli as ‘animal’ versus
‘leaf’ regardless of the illuminant (henceforth ‘animal-ANNs’),
and ‘shaded’ versus ‘unshaded’ regardless of the stimulus type
(henceforth ‘shaded-ANNs’), using the nnet package for R
[25,42]. The ANNs were fully connected, feed-forward networks
with three layers: an input layer, a hidden layer and an output
layer. A single hidden layer was used to permit a nonlinear
relationship between inputs and outputs without excessive com-
plexity. Of principal interest were ANNs using the calculated
excitations, E, of all five fly photoreceptors as their input layer.
However, to better understand the mechanisms by which stimuli
were classified, we also created ANNs with input from subsets of
these photoreceptors. We created ANNs receiving four inputs to
test the importance of excluding any single photoreceptor signal,
two inputs to test which opponent comparisons could achieve
effective classification, and single inputs to test whether classifi-
cation could be achieved using achromatic information. In all
cases, the hidden layer had three artificial neurons, and the
output layer had one neuron with logistic activation function,
which produced a binary outcome (i.e. 0 corresponding to
‘leaf’ or ‘unshaded’ classifications, and 1 corresponding to
‘animal’ or ‘shaded’ classifications; inflection point 0.5).

For each model type, we trained ANNs as follows. The
stimulus dataset was randomly split to use 60% of the stimuli
for training and 40% for testing. One-hundred ANNs were
then trained on the training data using different randomly deter-
mined starting weights and maximum conditional likelihood to
optimize performance. After training, maximum conditional
likelihood was used to select the best model from the set of
100. This process was then repeated 20 times, each time using
a new random assortment of the stimuli into training and testing
subsets. Thus, we created an ensemble of 20 best-fitting ANNs
selected from 2000 that were trained in total, with each of the
selected ANNs trained using different subsets of our stimulus
dataset. We deemed this sample adequate given that model accu-
racy varied little (see §3). After training, the selected ANNs were
made to classify the 40% of stimuli that were set aside as test data
for validation. To quantify classification accuracy, we recorded
the proportion of classifications that were correct (i.e. true posi-
tives plus true negatives).

To evaluate how our 20 best-fitting ANNs processed photo-
receptor signals to achieve accurate classification, we employed
the clamping technique [43]. First, each ANN was made to clas-
sify the complete database of 288 stimuli and its accuracy was
recorded. The performance of the network was then re-evaluated
with one of its photoreceptor inputs clamped at the median
value for that photoreceptor across all of the stimuli considered,
meaning that it carried no useful information to aid in classifi-
cation. During clamping, other photoreceptor inputs were
presented to the network without any alteration. If clamping
caused a notable reduction in the network’s classification accu-
racy (using the level of random chance classification as a
reference), then the clamped photoreceptor was deemed impor-
tant. If a photoreceptor was deemed important, we further
investigated how it contributed to the network’s decision
making. To do this, we identified the stimuli whose classifi-
cations changed as a result of the clamping procedure. For
each of these stimuli, we calculated the difference between
clamped and original excitation values for the photoreceptor in
question. We then checked whether there was an association
between the sign of these differences and the likelihood of reclas-
sification as a particular stimulus class (e.g. whether increases in
a given photoreceptor excitation value were associated with a
greater proportion of stimuli being reclassified from ‘leaf’ to
‘animal’, versus ‘animal’ to ‘leaf’). The clamping procedure was
applied to each photoreceptor in turn, allowing us to evaluate
the way in which each individual photoreceptor contributed to
classification. In addition, we provide connection weights for
our 20 best-fitting ANNs of each type (electronic supplementary
material, Results, section B).

(d) Evaluating the appearance of blue stimuli
We next investigated how artificial, blue stimuli would appear to
our trained ANNs to test the hypotheses that blue objects
resemble animal hosts, and that blue objects resemble shaded
resting places, in terms of the sensory information available to
a fly. We obtained the reflectance spectra for a variety of blue fab-
rics used in biting fly control devices, or found to be highly
attractive to biting flies in field studies (figure 1d ; data from
[3–5,24]). These included classic phthalogen blue-eyed cottons,
which have very high attractiveness to biting flies and are tra-
ditionally used in control devices [3–5,13], and several modern
blue polyesters produced by Vestergaard S.A. and used in
biting fly control devices past and present [5,24]. Since black
and violet (purple to a human eye) control devices are also
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effective for tsetse, we also obtained spectra for such fabrics
[5,24]. Using these reflectance spectra, we calculated fly photo-
receptor excitations as described above. We presented these
data to our 20 best-fitting animal-ANNs and shaded-ANNs inde-
pendently, and checked how often they elicited ‘animal’ and
‘shaded’ classifications, respectively. We expressed these data
as a proportion for each artificial stimulus, wherein a value of
zero indicated that all 20 models made ‘leaf’ or ‘unshaded’ classi-
fications, and a value of one indicated that all 20 models made
‘animal’ or ‘shaded’ classifications. This proportion provided
an estimate of the probability that an artificial stimulus would
be mistaken for an animal or a shaded resting place, respectively,
with high probabilities supporting the hypotheses that artificial
and natural stimuli share salient features of the sensory infor-
mation available to a fly.
roc.R.Soc.B
290:20230463
3. Results
(a) Performance of artificial neural networks
We trained animal-ANNs to classify ‘animal’ versus ‘leaf’
stimuli, and shaded-ANNs to classify ‘shaded’ versus
‘unshaded’ stimuli, using varying numbers of fly photo-
receptor signals as inputs (figure 2a). Shaded-ANNs using
all five fly photoreceptor signals as input classified test
stimuli with very high accuracy (99.8% on average;
figure 2a). Compared to this full model, shaded-ANNs receiv-
ing only one photoreceptor signal as input were similarly
accurate in classifying stimuli (figure 2a). Thus, we conclude
that shaded stimuli can be accurately classified using the
achromatic information available in the response of any
single photoreceptor type. Animal-ANNs using all five
photoreceptor inputs were also effective, but had slightly
lower accuracy in classifying test stimuli than the equivalent
shaded-ANNs (84.7% on average; figure 2a). While the
accuracy of some two-photoreceptor input animal-ANNs
approached random chance, others maintained similar classi-
fication accuracy to the full model (figure 2a). Notably, three
of the four best-performing animal-ANNs of this type
received input from the green-sensitive R8y photoreceptor
and various blue-sensitive photoreceptors (R1–6, R7y
or R8p). The other received input from R1–6 and R8p,
which are both blue-sensitive but have different λmax values
(figure 1a). The classification accuracy of animal-ANNs
receiving a single photoreceptor signal input approached
that of random chance, with most accuracy achieved by the
ANN using the green-sensitive R8y signal as input. Thus,
shaded stimuli could be classified accurately using the achro-
matic information available in the response of a single
photoreceptor, but accurate animal classifications could only
be achieved using the information available in the responses
of more than one photoreceptor type.

(b) Artificial neural network mechanisms
The mechanisms by which ANNs function can be difficult to
determine from the connection weights of fitted models, but
those for the full, five-input ANNs indicated the use of chro-
matic information (i.e. photoreceptor response comparison)
by animal-ANNs, and achromatic information (i.e. photo-
receptor response sums) by shaded-ANNs (electronic
supplementary material, Results, section B). To interrogate
these mechanisms, we challenged the full, five-input ANNs
with the full dataset of photoreceptor excitation signals with
the responses of a single photoreceptor clamped at its
median value to negate its use in classification. The accuracy
of shaded-ANNs was unaffected by clamping any single
photoreceptor at its median value (figure 2b), indicating that
these five channels of sensory information were redundant,
and aligning with our previous finding that successful shade
classification could be achieved on the basis of any single
photoreceptor signal. Meanwhile, the accuracy of animal-
ANNs fell to the level of random chance if any single photo-
receptor response was clamped (figure 2b), indicating that
classifications were made by these models using information
available across all the photoreceptor signal inputs.

To understand the mechanisms used by animal-ANNs,
we examined all classifications that changed as a result of
clamping a given photoreceptor signal to its median value.
We divided these according to whether clamping increased
or decreased the original photoreceptor signal and examined
the proportion of these reclassifications that changed from
‘leaf’ to ‘animal’, rather than ‘animal’ to ‘leaf’, in each case
(figure 2c). Photoreceptor inputs had opposite effects on
classification. For blue-sensitive photoreceptors R1–6 (and
UV-sensitive R7p), increases in excitation tended to cause
an increase in animal classifications, while decreases in exci-
tation tended to cause an increase in leaf classifications. For
green-sensitive photoreceptor R8y (and UV–blue-sensitive
R7y), increases in excitation tended to cause an increase in
leaf classifications, while decreases in excitation tended to
cause an increase in animal classifications. There was vari-
ation in these effects across models, indicating that a variety
of classification mechanisms could be effective (see also elec-
tronic supplementary material, Results, section A). In
explanation of this, applying the same method to the best
two-photoreceptor input animal-ANNs fitted above revealed
that increased excitation in various blue-sensitive photo-
receptors promoted animal classifications, while increased
excitation in the green-sensitive R8y promoted leaf classifi-
cations (electronic supplementary material, Results, section B).
Thus, these data provide evidence that chromatic information
from the opponent processing of blue- and green-sensitive
photoreceptors is an effective means of discriminating animals
from leaves, but that a variety of different photoreceptors can
be effective in these roles.

(c) Classification of blue stimuli
Finally, we challenged our 20 best-fitting animal-ANNs and
shaded-ANNs with photoreceptor excitations generated
from the reflectance spectra of blue, black and violet fabrics
that were investigated in previous studies of biting fly attrac-
tion (table 1). When viewed under open/cloudy illumination,
these fabrics were very likely (0.75–1.00 probability) to be
classified as animals. However, under such illumination,
these fabrics were never classified as shaded. When viewed
under woodland shade illumination, their probability of
being classified as animals was little changed, but all fabrics
were likely to be correctly classified as shaded (table 1). Thus,
animal-ANNs often misclassified blue objects as animals, but
shaded-ANNs did not misclassify them as shaded.
4. Discussion
In this study, we used ANNs to understand the functional
significance of attraction to blue stimuli in biting flies. We
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Figure 2. Evaluation of ANNs trained to distinguish ‘animal’ and ‘shaded’ stimuli. (a) The accuracy of trained ANNs in classifying a set of test stimuli not encountered
during training, according to the number of photoreceptor excitation inputs they received. Animal-ANNs with more photoreceptor inputs had greater classification
accuracy, but shaded-ANNs were similarly accurate regardless of their number of photoreceptor inputs. (b) The accuracy of trained ANNs in classifying the complete
dataset of stimuli with the excitation value of individual photoreceptor inputs clamped to their median values. Data are for the full ANNs receiving all five photo-
receptor inputs. Clamping any photoreceptor excitation value reduced the accuracy of animal-ANNs to random chance, indicating that all were important to accurate
classification. However, clamping had no effect on the accuracy of shaded-ANNs, demonstrating that no single photoreceptor input was critical. (c) The contribution
of photoreceptor excitation signals to classification by animal-ANNs. Plot considers only those stimuli whose classification changed as a result of clamping in (b). The
proportion of these reclassifications in which the classification changed from ‘leaf’ to ‘animal’, rather than ‘animal’ to ‘leaf’, is shown, according to whether clamping
increased or decreased the relevant photoreceptor excitation value for a given stimulus (direction of change in excitation values is indicated by an arrow). Increases in
the excitation of blue-sensitive R1–6 (and UV-sensitive R7p) are associated with stimuli being reclassified as animals, and decreases are associated with reclassifica-
tion as leaves. Increases in the excitation of green-sensitive R8y (and UV–blue-sensitive R7y) are associated with stimuli being reclassified as leaves, and decreases
are associated with reclassification as animals. Each plot presents results for the best 20 ANNs of each type. In (a) and (b), these are collated as means and sample
s.d. In (c), individual datapoints are plotted (circles), superimposed over boxplots showing 25th, 50th and 75th percentiles.
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found that ANNs could be trained to discriminate animals
from leaves, and shaded from unshaded surfaces, based
upon the photoreceptor signals available to a fly. ANNs
trained to discriminate animals from leaves did so based
upon an opponent interaction between green- and blue-sensi-
tive photoreceptors, and commonly misclassified artificial
blue stimuli as animals. Meanwhile, ANNs trained to dis-
criminate shaded from unshaded stimuli did so based upon
achromatic information and never misclassified blue stimuli
as shaded. Thus, blue–green opponency appears to be an
effective mechanism for discriminating animal hosts from
leaf backgrounds using the sensory information available to
a fly, and through this mechanism blue objects resemble
animal hosts.

We define chromatic information as information available
through the comparison of photoreceptor responses [33], and
our results provide several lines of evidence suggesting the
importance of a blue–green comparison for a fly to discrimi-
nate animals from leaves (see also electronic supplementary
material, Results, sections A–C). Animal-ANNs receiving
input from a single photoreceptor type were considerably
less accurate than many of those receiving input from mul-
tiple photoreceptors, indicating that achromatic information
available in the responses of single photoreceptors was insuf-
ficient for this classification task. However, animal-ANNs
receiving only two-photoreceptor inputs could perform simi-
larly to the animal-ANN receiving all five, provided that
those inputs were from green- and/or blue-sensitive photo-
receptors. The connection weights of the animal-ANNs
receiving all five photoreceptor inputs indicated photo-
receptor response comparison at several levels within the
trained networks (electronic supplementary material, Results,
section B). By the clamping procedure, we showed that
decreased excitation in green-sensitive R8y, and increased
excitation in blue-sensitive photoreceptors, e.g. R1–6, was
commonly associated with a greater likelihood of a stimulus
being classified as ‘animal’, although there was variation in
photoreceptor contributions across models (see also elec-
tronic supplementary material, Results, section A). The
same principle was evident in the best two-photoreceptor



Table 1. The proportion of the 20 best ANNs of each type that classified
fabrics used in biting fly control as ‘animals’ or as ‘shaded’. Proportions are
for fabrics under open/cloudy illumination, with those for woodland shade
illumination in brackets.

fabric
‘animal’
classifications

‘shaded’
classifications

phthalogen blue cotton [5] 1.00 (1.00) 0.00 (1.00)

phthalogen blue cotton [3] 0.75 (0.80) 0.00 (1.00)

blue fabric [4] 0.80 (0.85) 0.00 (1.00)

‘phthalogen blue’

polyester [5]

1.00 (1.00) 0.00 (1.00)

royal blue polyester [5] 1.00 (0.95) 0.00 (1.00)

typical blue polyester [24] 1.00 (1.00) 0.00 (0.70)

ZeroFly® blue polyester [24] 0.90 (0.95) 0.00 (1.00)

black cotton [5] 0.75 (0.70) 0.00 (1.00)

black polyester [5] 0.75 (0.60) 0.00 (1.00)

black cotton [24] 0.85 (0.70) 0.00 (1.00)

violet polyester [24] 1.00 (1.00) 0.00 (1.00)
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input animal-ANNs, wherein accurate classification could be
achieved by pairing the green-sensitive R8y with various
different blue-sensitive photoreceptors, or two blue-sensitive
photoreceptors with varying λmax (electronic supplementary
material, Results, section B). R1–6 have a broadband response
and are usually associated with encoding luminance infor-
mation, but it is now known that they contribute to colour
vision in Drosophila [36]. R7y and R8y are often assumed to
form an opponent pair [34,35], and the interaction of these
photoreceptors has been implicated by photoreceptor-based
models explaining tsetse catches at coloured targets in the
field [14,21]. Our approach does not allow us to say which
specific photoreceptor response comparisons are more prob-
able in the nervous system of a real fly and instead our
results suggest that several different comparisons can achieve
comparable classification accuracy. We conclude that some
form of blue–green opponency is sufficient to distinguish
animal hosts from leaves using the sensory information
available to a fly.

We define achromatic information as that present in indi-
vidual photoreceptor responses, or sums of photoreceptor
responses [33]. Shaded-ANNs discriminated shaded from
unshaded stimuli based upon achromatic information since
a shaded-ANN receiving any single photoreceptor input
was just as accurate as a shaded-ANN receiving all five, con-
nection weights in the full trained models indicated that
photoreceptor responses were summed and not compared
(electronic supplementary material, Results, section B), and
in those full models, the five photoreceptor inputs provided
redundant information as clamping had no effect on classifi-
cation accuracy (see also electronic supplementary material,
Results, section A). All photoreceptors performed similarly
in this respect, and there was no special importance to
blue-sensitive photoreceptors. This finding was unsurprising
given the very large difference in intensity between wood-
land shade and open/cloudy illuminants, making low
luminance by far the most obvious cue for discriminating
shaded surfaces. On sunny days, as modelled here, the
woodland shade illumination spectrum is relatively richer
in shorter wavelengths versus the open/cloudy spectrum
[19]. Therefore, subtle chromatic cues may have been avail-
able, but were not used by shaded-ANNs. In the real
world, the illuminant spectra for shaded and open habitats
are similar on overcast days [19], meaning that chromatic
information might not always be available for this task.

Animal-ANNs commonly misclassified artificial blue
stimuli as animals. Meanwhile, shaded-ANNs did not mis-
classify these stimuli as shaded. This suggests that, to a
fly’s eye view, blue objects are attractive because they share
salient features of potential hosts, and not of shade. In sup-
port of this idea, tsetse caught at coloured targets in field
experiments are relatively starved, indicating that they were
seeking hosts [44]. Numerous previous field experiments
have shown that biting flies are most attracted to targets
that reflect blue wavelengths but not green or UV wave-
lengths [3–6]. In general, these properties agree with those
used by our animal-ANNs, with the exception that the
ANNs did not find any strong evidence for a negative influ-
ence of a UV-sensitive photoreceptor on animal
classifications. This likely results from the fact that neither
animal nor leaf stimuli reflect significant amounts of UV
light, and thus this was not a feature that could be used to
distinguish the two stimulus types investigated in this
work. This fact might also explain why flies were not
attracted to targets with significant UV reflectance in those
field studies [3–6].

In constructing these models, we used a database of
stimulus reflectance spectra intended to sample variation in
the coloration of melanin-pigmented animal integuments
and plant leaves. This was because spectra of each type con-
form to well-described patterns [18], so our intention was to
represent natural variation in these patterns and consider the
attraction of a generic biting fly towards a generic host in a
generic environment. This meant that we did not specifically
sample important animal hosts of any given biting fly
species, nor leaves found within their natural environment,
because the shapes of these spectra were represented by
our stimulus set. In support of this point, spectra recorded
for biting fly hosts such as cattle and deer have similar
shapes to the animal spectra in our stimulus set [38].

Our study did not include sensory information beyond
the responses of the five main classes of photoreceptor, and
in doing so allowed us to focus solely on the importance of
chromatic and achromatic visual information. However,
information in other sensory modalities is undoubtedly
important in host seeking. As described in our §1, natural
spectra are said to belong to three classes, and those of
animal melanin pigments are part of a large class of stimuli
that includes many organic and inorganic surfaces, including
tree bark, dead vegetation, rocks, and soil [18]. Thus, colour
cannot on its own identify a potential host, and additional
sensory information would be required, e.g. odour cues [1].
Interestingly, tsetse from savannah habitats are more respon-
sive to odour than those from riverine habitats [12], and
it is possible that odour cues are of greater relative impor-
tance when visual backgrounds contain a lot of dry, dead
vegetation as opposed to green leaves.

One additional sensory cue that deserves special attention
is polarization, because previous work on tabanids has shown
that neural comparisons of photoreceptor responses confound
colour and polarization cues, leading to the suggestion that the



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230463

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

ul
y 

20
23

 

blue preference shown by biting flies is a by-product of a
polarization sensing mechanism [17]. Polarization cues have
been shown to be useful in the discrimination of bodies of
water [45]. Tabanid flies seek bodies of water for egg laying,
and some tsetse are associated with riverine habitats. It has
also been proposed that polarization cues can be useful in
discriminating sunlit animals with dark pelage from shaded
vegetation backgrounds, because the former can appear
highly polarizing [46]. However, it has been shown that the
apparent high degree of polarization from dark surfaces is
sometimes likely to be an artefact of the calculation procedures
employed to quantify it [47], and our animal-ANNs were able
to discriminate animals from leaves using colour, regardless of
their illuminant, and without access to polarization cues. Fur-
thermore, the dorsal margin of the housefly eye houses R7 and
R8 photoreceptors specialized for the detection of polarized
light and possessing the same spectral sensitivity [20], so evol-
ution has equipped flies with an ability to detect polarization
that is not confounded by colour. While our study cannot
argue against the use of polarization cues by host-seeking taba-
nids, it has shown that a blue preference is functional in itself
for identifying hosts, and while this might in some cases be
enhanced by a co-occurring polarization sensitivity, it appears
not to be a non-functional by-product of that mechanism.

Finally, biting flies are not alone among insects in being
attracted to blue stimuli, as naïve pollinators commonly
show such a preference [48,49], but obviously do not seek
animal hosts. However, since flowers belong to the leaf con-
trast spectral class whose spectra follow no predictable
pattern [18], the primary behavioural requirement of a
naïve pollinator is to identify objects that are not foliage in
order that those objects can be investigated and learnt associ-
ations with rewarding flower types formed. Therefore, this
classification task is analogous to that investigated for
biting flies in this study, and the similar behaviour likely
occurs because blue–green opponency is an efficient way to
segregate the reflectance spectra of natural objects using the
sensory machinery of an insect eye.
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