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Abstract: Accurate information on the spatial distribution of weeds is the key to effective site-specific
weed management and the efficient and sustainable use of weed control measures. This work focuses
on the early detection of johnsongrass, common cocklebur and velvetleaf present in a corn field using
high resolution airborne hyperspectral imagery acquired when corn plants were in a four to six leaf
growth stage. Following the appropriate radiometric and geometric corrections, two supervised
classification techniques, such as spectral angle mapper (SAM) and spectral mixture analysis (SMA)
were applied. Two different procedures were compared for endmember selections: field spectral
measurements and automatic methods to identify pure pixels in the image. Maps for both, overall
weeds and for each of the three weed species, were obtained with the different classification methods
and endmember sources. The best results were achieved by defining the endmembers through
spectral information collected with a field spectroradiometer. Overall accuracies ranged between
60% and 80% using SAM for maps that do not differentiate the weed species while it decreased to
52% when the three weed species were individually classified. In this case, the SMA classification
technique clearly improved the SAM results. The proposed methodology shows it to be a promising
prospect to be applicable to low cost images acquired by the new generation of hyperspectral sensors
onboard unmanned aerial vehicles (UAVs).

Keywords: site-specific weed management; maize; airborne hyperspectral images; field spectroscopy;
spectral angle mapper (SAM); spectral mixture analysis (SMA)

1. Introduction

The expansion of geospatial technologies, information and communication technolo-
gies, new sensors and precision farming machinery has opened the possibility of adapting
crop and pest management to fit the spatial variability conditions found within agricultural
fields. Site-specific weed management is the application of this concept to one particular
aspect of crop protection: weed control. This site-specific management is based on the fact
that weed populations are commonly unevenly distributed in patches within crop fields,
which enables applying chemical and/or physical weed control actions only where and
when they are really needed [1,2].

Any site-specific weed management program demands accurate weed monitoring.
This can be achieved in two different approaches: (a) generation of field weed maps,
using them as predictive information in succeeding control operations; (b) real-time weed
detection by integrating the sensor and the actuation system [3]. Spatial explicit information
on weed distribution may be acquired from image sensors installed either on the ground or
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aerial platforms. The benefits and limitations of both approaches have been extensively
reviewed by Fernández-Quintanilla et al. [4], Gerhards et al. [5], Lati et al. [6] and Lopez-
Granados [7]. The ground-based approach typically produces high resolution images,
allowing an early detection of relatively low weed densities and discrimination of the
major weed species [8–10], but operational implementation is limited due to technological
constraints and excessive operating costs. Sensors placed on satellites or aerial platforms
allow larger areas to be inspected, but image spatial resolution is usually lower [11,12],
which challenges the identification of small or low density patches, especially for early
(seedling) weed detection. Airborne digital imaging systems have been extensively used in
the United States and Australia from late 90s, to map weeds on rangelands, crop residue and
seedling crops [13]. Most of these early studies were based in multi-spectral sensors using
supervised classification methods, which demand a prior knowledge on the location of
representative weed and non-weed sites in the image to train the processor to discriminate
those two categories. Additional factors limiting the accuracy of airborne high resolution
imaging systems in weed mapping were identified in those pioneer studies, such as the
mixed pixels or the lack of essential information linking relevant remote sensing parameters,
such as leaf area index and percentage plant coverage, to key management parameters,
(e.g. plant density or weed typology) [14]. An alternative to satellite and airborne systems
that contributes to lessen or even solve the mixed-pixel problem is the use of unmanned
aerial vehicles (UAVs). These platforms can fly at low altitudes, which increase the spatial
resolution of the images. Peña et al. [15] and de Castro et al. [16] were able to generate weed
maps in early corn, sunflower and cotton crops by combining ultra-high spatial resolution
multispectral images obtained from UAVs and an entirely automatic object-based image
analysis (OBIA). The main weakness of UAV systems applied to weed monitoring is that
they usually carry multispectral sensors, able to obtain information in a reduced number of
spectral bands (usually 3 to 5). This can limit the discrimination ability, especially in early
growth stages when spectral differences between crops and weeds are small and there is a
strong influence from the soil background. The maximum potential for weed identification
using UAV platforms relies on the use of image-based machine learning techniques applied
to hyperspectral data combining appropriate spatial, spectral and temporal resolutions.
Some analyses have revealed the potential of hyperspectral data for this application, using
ground or lab-based spectroradiometers [17–19] and cameras [20–22]. However, a robust
and operational implementation of these methods to hyperspectral images acquired from
airborne systems or UAVs is still in progress [23].

The use of hyperspectral sensors offers the possibility to improve the accuracy of
weed detection and species discrimination. Zhang et al. [12] used a ground hyperspectral
image-based plant recognition system to discriminate various weed species from tomato
plants in an early growth stage. Aerial detection of late-season weed infestation can offer
good results when there is no strong soil background influence, the weeds exceed the
crop canopy, and there are quantifiable spectral differences between crops and weeds [7].
Late-season maps can be used in combination with population dynamics knowledge to
estimate future weed distribution and to define long-term management plans [24,25]. How-
ever, in order to make in-season weed control decisions, it is desirable to detect weed
populations at an early growth stage of the crop. Although various studies have shown the
possibilities of creating early-season weed maps through multispectral airborne imagery,
in many cases, the accuracy of these maps was not as high as desirable [26,27]. Airborne
platforms allow using, not only multispectral, but also hyperspectral sensors able to acquire
information in hundreds of bands in different spectral regions (from visible to thermal
infrared). A number of such systems are currently available, including: the airborne hy-
perspectral imaging AisaFENIX 1K (Specim, Spectral Imaging Ltd., Oulu, Finland), with
up to 620 bands from 380 to 2500 nm; the airborne visible infrared imaging spectrom-
eter (AVIRIS) and next generation (AVIRIS-NG), with 224 bands covering from 400 to
2500 nm [28]; the airborne hyperspectral scanner AHS (ArgonST, Fairfax, VA, USA) with
80 bands covering from 450 nm to 1280 nm; the HySpex imaging spectrometers (Norsk
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Elektro Optikk AS, Oslo, Norway) with different band configurations, including the visible
(VIS), near infrared (NIR) and shortwave infrared (SWIR) spectral domains; the HyMap
imaging spectrometer (Integrated Spectronics Inc., Sydney, Australia) which provides
128 bands across the reflective solar wavelength region from 450 to 2450 nm; the APEX
airborne prism experiment, an imaging spectrometer developed by a Swiss-Belgian consor-
tium, on behalf of the European Space Agency (ESA) [29], which acquires information in
300 bands in the wavelength range between 400 nm and 2500 nm and is being used as a
simulator for the calibration and validation of future spaceborne hyperspectral imagers;
and the hyperspectral all-in-one compact airborne spectral imager CASI 1500H (Itres Re-
search Limited, Calgary, AB, Canada) with up to 288 bands in the VIS-NIR spectral region.
The CASI imager has been used for early-season aerial weed detection in corn fields by
Goel et al. [30] and Karimi et al. [31], while Yang and Everitt [32] used a CCD camera-based
hyperspectral imaging system on board a Cessna 404 twin-engine aircraft to map two
terrestrial weeds and one aquatic weed. Nowadays, with advances in UAV technologies
and their cost-effectiveness, these unmanned vehicles are often preferred to manned aerial
platforms [33]. A wide range of new mini-sized and low-cost hyperspectral cameras that
can be mounted in UAVs have been developed in the last years and are available for
commercial use, generating unprecedented opportunities for weed monitoring combining
very high spatial and spectral resolutions.

A number of classification techniques can be used to analyze hyperspectral images,
including supervised and unsupervised classifiers [34]. Supervised classification requires
a prior knowledge and only known categories are used to train the classifier. Spectral
angle mapper (SAM) is a supervised method that admits very quick classification using the
spectral angle information derived from the image and reference spectra. Vyas et al. [35]
used the SAM to discriminate tropical vegetation and Kumar et al. [36] combined the SAM
and spectral information divergence (SID) models to discriminate different species of the
same plant genus. They found that this hybrid approach resulted in a better discriminator
than the SAM or SID on their own. In agriculture applications, the SAM has been suc-
cessfully used to map the spatial and temporal dynamics of tillage practices over broad
geographic areas [37]. Spectral mixture analysis (SMA) is another supervised classification
technique that can be used for both, multi and hyperspectral images [38]. The spectral
mapping/unmixing technique can be used as a potential way to solve the challenge of
classifying mixed pixels, as they consist of the spectral response of different materials at
different proportions. This problem is common in heterogeneous landscapes as urban areas
but it is also the case of infested fields where pixels can easily include crops, weeds and soil
covers. Miao et al. [39] used images obtained with a CASI sensor and classified by SMA for
early mapping of yellow star-thistle (Centaurea solstitialis) infesting California‘s grasslands.
Uncertainty of the unmixing results was estimated using a Monte-Carlo approach. The
low density of yellow star-thistle (<10%) was well estimated and the uncertainty was less
than 4%.

In spite of the unprecedented availability of remote sensing data with potential applica-
tion in site-specific weed management, the operational use of very high spatial and spectral
resolution images obtained from airborne or UAV platforms still require addressing key
questions related with: (a) the instrumentation (e.g., platform stability, sensor integration
and payload problems); (b) the image quality (e.g., radiometric calibration, geometric
distortions); and (c) the processing techniques for image information extraction, including
spectral, spatial and temporal analysis algorithms and processing workflows [33]. Further
research is needed to quantify the sensitivity of hyperspectral remote-sensing systems for
detecting and mapping weeds in terms of weed biomass or density, as well as to better
understand the suitable relations between weed species, patch size/density and image
spectral/spatial resolution to derive truly operational herbicide prescription maps. In this
context, the main objective of this study was to explore the use of AHS airborne hyper-
spectral scanner as a tool for the early-season mapping of some of the major weed species
present in corn crops: johnsongrass, common cocklebur and velvetleaf. These species have
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been reported as troublesome weeds in corn fields in Central Spain [40] and in extensive
corn growing areas of the USA [41]. Previous studies have shown that these three species
were present following aggregated distributions [25,40,42]; consequently, we can hypoth-
esize that they are appropriate targets for site-specific weed management. Two different
supervised classification techniques, SAM and SMA, were compared and the complemen-
tary use of ground spectral information was explored in order to evaluate the potential
of high spatial and spectral resolution images to produce general (presence/absence of
weeds), as well as species-specific weed maps with the appropriate spatial and temporal
characteristics required in site specific management.

2. Materials and Methods
2.1. Study Area

The study was conducted on a 5.2 ha (520 m by 100 m) field at the CSIC experimental
farm “La Poveda” located in Arganda del Rey, Madrid, Spain (40.31◦ N, 3.49◦ W). Corn
(cv. Helen) was planted on 1 April 2007 with 0.75 m row spacing and a population of
85,000 plants ha−1. Corn had been grown continuously during the previous nine years in
the eastern half of the field, using conventional tillage and sprinkler irrigation. In the other
half, in the three years prior to corn, the field was sown with barley.
Although the field received a pre-emergence herbicide treatment with S-metolachlor
(1.20 kg a.i. ha−1) + mesotrione (0.12 kg a.i. ha−1), relatively high weed populations
of johnsongrass, common cocklebur and velvetleaf were established in different areas of
the field.

2.2. Data Acquisition: Hyperspectral Images and Ancillary Ground Information

An airborne campaign was conducted over the experimental field on 18 May 2007
using an airborne hyperspectral scanner (AHS) flown onboard a C-212-200 RS aircraft
(CASA, Getafe, Spain). The AHS is an 80 bands hyperspectral optical-thermal sensor
operated by the National Institute of Aerospace Technology (INTA) as a service to public
institutions and private companies for scientific and commercial applications. It is a
linescanner with an instantaneous field of view (IFOV) of 2.5 mrad and a total field of view
(FOV) of 90◦. The AHS records incoming radiation in five optical ports (Table 1). For each
of the ports, a grating disperses the radiation and a secondary optical assembly focuses it
onto an array of detectors, which defines the final set of (contiguous) spectral bands [43].
In this study, only optical data acquired by ports 1 and 2/2A in the VIS, NIR and SWIR
spectral regions were used.

Table 1. AHS spectral configuration.

Port 1
VIS/NIR

Port 2A
SWIR

Port 2
SWIR

Port 3
MIR

Port 4
TIR

Spectral range (nm) 440–1020 1490–1650 1900–2600 3000–5500 8000–13,000
Bandwidth (nm) 28 160 18 30–40 400–550
Number of bands 20 1 42 7 10

The flight date were selected with the purpose of temporarily matching with the
optimal period for the application of herbicides, which would demonstrate the ability of
these images to discriminate weed patches at the most appropriate time for operational use
of this technology. In order to obtain the best spatial detail, flight altitude was set to 1000 m
above ground level which allowed for obtaining images with the sensor’s maximum spatial
resolution of 2 m. Image was acquired at 11:30 UTC and flight configuration followed the
solar plane in order to minimize the effect of shadows in canopy reflectance.

Simultaneous to the image acquisition, field measurements were performed using
an ASD Fieldspec3 FR portable field spectroradiometer (ASD Inc., Boulder, CO, USA) on
invariant surfaces (bare soil, asphalt and different fabrics and plastic) to support the image
radiometric calibration. This instrument measures the hemispherical-conical reflectance
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factor (HCRF) from 350 to 2500 nm. The ASD was handled using bare fiber with a nominal
FOV of 25◦. Spectra were acquired at an approximate height of 1.2 m, rendering a sensor
footprint diameter of about 53 cm.

Spectral signatures of the target covers were also measured in-situ using a GER2600
field portable spectroradiometer (Spectra Vista Corporation, Poughkeepsie, NY, USA)
with 350 nm to 2500 nm spectral range and 3◦ FOV. The radiometer was mounted on a
tripod to ensure nadiral observations in all measurements. This configuration meant that
there was a drawback when trying to move the instrument in the field to the different
weed patches. Since the measurements need to be performed in a short period of time to
ensure homogeneity in the illumination conditions, we decided on an alternative method to
measure quickly and easily the different weed species in the field. The method consisted in
placing the spectroradiometer within the field, in the nearest area to several weed patches.
There, we fixed the instrument on the tripod at a height of 177 cm, which generated an
elliptical FOV of about 30 cm × 24 cm. Plants from the three selected (most abundant)
weed species (johnsongrass, common cocklebur and velvetleaf) were collected and located
in the area observed by the spectroradiometer. To avoid the influence of ground reflectance
in the measured spectral signal, the plants were placed on a tray covered with black paper
which was probed to have a high absorbance (>98%) in the full spectral range covered by
the spectroradiometer. To simulate as much as possible the actual geometry of a dense
and homogeneous cover, each plant was collected keeping the stem, which served to hold
them in the black tray, as shown in Figure 1. Similar methodology has been used by other
authors [44] to characterize the spectral behavior of individual species at canopy level
but simplifying natural field conditions, especially in the context of grasslands and forb
systems where relatively small plants dominate the ecosystem.
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Figure 1. Experimental configuration of field spectral measurements of pure weed covers. The lower
part of the tray shows the inserted stems that allow for replicating plant structure (a). The upper part
of the tray is covered with black paper to avoid background contribution to the measured weed´s
pure signal (b).

In order to obtain a good spectral characterization of the weed species, between 10 and
20 spectra per species were acquired. Bare soil spectra were also obtained to characterize
the spectral behavior of this background cover. This information was used to define the
reference spectral signatures or endmembers required in classification algorithms applied
to the AHS image.

2.3. Hyperspectral Image Pre-Processing

Different AHS image products are available to the users according to their process-
ing level. In this study we used L2c products, which include geometric and radiomet-
ric corrections. In L2c images, the radiometric calibration applied transforms the pixel
values from digital numbers to at-sensor radiance (Ls). This is further converted to
the hemispherical-directional reflectance factor (HDRF) using ATCOR®4 (ReSe Appli-
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cations Schläpfer, Langeggweg, Switzerland), a look up table-based implementation of
MODTRAN®5 (Spectral Sciences, Inc., Burlington, MA, USA, and the U.S. Air Force Re-
search Laboratory, Dayton, OH, USA), an atmospheric radiative transfer model for airborne
scanner data. A complete description of the calibration of the AHS bands and the radiomet-
ric and atmospheric correction methods applied by INTA can be found in [43].

The HDRF calculated by ATCOR®4 is susceptible to deviations between the real
and modeled atmosphere used as reference, calibration errors or the presence of cirrus
clouds and contrails in the sky. In order to minimize these problems, an empirical line
(EL) correction was used to force image data to match selected field reflectance spectra.
This correction was applied to ATCOR®4 output HRDF using a linear regression between
the AHS and field spectra measured on invariant surfaces with the ASD Fieldspec3 FR
simultaneously with the image acquisition. Some studies suggested that the application of
EL to model-based corrected data was much more effective than applying it to the original
radiance [45]. This method allows for assessing a priori homogeneity of the surfaces used
in terms of reflectance and a more direct comparison with the field spectra.

Image geolocation was performed using the direct georeferencing code PARGE® (ReSe
Applications Schläpfer, Langeggweg, Switzerland). It performs an ortho-rectification of
line scanner imagery using a digital elevation model (DEM), on the basis of high precision
flight parameters, such as global positioning system (GPS) location and attitude angles.
In this case, a high resolution 5 m DEM provided by the Spanish National Geographic
Institute (IGN) was used. The output geometry file reports the geographic (ETRS89 UTM)
easting and northing values derived by the geolocation process for each original image
pixel. A nearest neighborhood resampling algorithm was applied to extrapolate pixel
values from the image to the UTM coordinates. For a flat terrain, it is assumed that
the accuracy obtained with this correction is better than one pixel without using control
points. To confirm this, the geometric accuracy was evaluated using orthophotographs at a
0.25 m pixel size provided by the Spanish National Plan of Aerial Photography (PNOA) as
a reference. Up to ten control points were located both in the AHS and reference images
and the root mean square error (RMSE) was calculated.

A final step in the pre-processing chain consisted in a radiometric quality check in order
to detect and remove potential noisy bands due to instrumental problems. Spectral profiles
for selected pixels located in homogenous covers as water and asphalt were produced and
those bands exhibiting anomalous spectral behavior were discarded for further analysis.

2.4. Image Classification: Weed Maps

Airborne hyperspectral sensors allow for obtaining comprehensive information on
the Earth’s surface due to its high spectral resolution. This makes them very suitable in
applications requiring discrimination between covers/objects having very similar spectral
behavior (e.g., in the differentiation of plant species). Paradoxically, the high spectral
dimensionality of these sensors can also result in a degradation of the classification ac-
curacy as a result of the “curse of dimensionality”, that can lead to an overfitting of the
training data [46]. Trying to overcome this problem, new spatial and spectral classification
schemes have been proposed to be specifically applied to hyperspectral remote sensing
data [47]. These algorithms need to solve two major obstacles: spectral variability and
background interference. The first one is related to the spectral behavior of the target cover.
Unfortunately, variabilities in material composition, atmospheric interferences and sensor
noise, introduce random variations in the spectral signature of the different covers which
hinder its detection and identification. Moreover, even in high spatial resolution images,
measured spectra generally include a mixture of different covers/objects at a pixel level
which also complicate their discrimination.

In this work, we have tested the performance of two different supervised classifiers
commonly applied to hyperspectral images. A workflow diagram in Figure 2 provides a
graphic overview of the process. Both classifiers are popular spectral matching algorithms
that use different error metrics and constraints to determine the existence of a spectral
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similarity between each image pixel spectrum and a set of known/reference “pure” spectra.
They have been used in a wide range of applications, including mineral identification [48],
monitoring land cover change [49], estimation of fractional vegetation cover [50] and
mapping agricultural tillage practices [37], among others. The first method applied is
the SAM, a physically-based spectral classification algorithm that calculates the angular
distance between spectral signatures of image pixels and training spectral signatures,
assuming that they are vectors in an n-dimensional space where n is the number of available
bands [51]. One of the main advantages of this method is that it is reasonably insensitive to
illumination conditions since the angle between the vectors is independent of its length.
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The second algorithm, commonly referred in the literature as SMA, is based on the
linear spectral mixture model [52]. This technique has been used to derive subpixel
vegetation information, both for multi and hyperspectral images. SMA assumes that
the scene is composed of a few fundamental components, or endmembers, each of which
is spectrally distinctive from the others. It allows for calculating, in a mixed pixel, the
proportion occupied by each component, according to their characteristic spectral behavior.
The hypothesis of a linear relationship to explain the meaning of reflectance values in
mixed pixels is the most accepted so far. Contrary to what happens in classical classification
methods, which generate a single image where each pixel has a code that identifies it
as belonging to a particular category, the SMA offers as many images as categories to
discriminate. In these images, every pixel is assigned a value representing the percentage
of the area occupied by each category.

A common problem to SAM and SMA spectral matching algorithms is to correctly
identify the reference spectral signatures of those elements/covers we want to identify in
the image, i.e., characteristic spectral values of the endmembers. The term pure member
or endmember, commonly used in studies of geochemistry, has been adopted here to
designate the spectral response that ideally presents, in the absence of noise, a completely
pure pixel, one in which 100% of its area is occupied by only one cover type. These
endmembers are of great importance because classification accuracy largely depends on
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its correct definition. Several methods have been proposed in the literature to define the
pure image members or reference spectral signatures for the target covers. In some cases
spectral measurements performed in the laboratory or the field are used; in others, the pure
pixels are identified in the same image using automatic methods that can be supported by
auxiliary information (maps or images of higher spatial resolution). In this study, we tested
both approaches in order to analyze their performance by using the spectral signatures of
the target covers measured in-situ using a GER2600 field portable spectroradiometer and
also with an endmember extraction algorithm applied for finding pure signatures in the
AHS image. For the latter, we selected the pixel purity index (PPI), a widely used algorithm
implemented in ENVI® 5.1 image analysis software (L3Harris Geospatial Solutions, Inc.).
It searches for a set of vertices of a convex hull which are supposed to be pure signatures
present in the image [53]. The PPI is computed by repeatedly projecting n-D scatter plots
on a random unit vector where extreme points are best candidates for being pure pixels.
In our case, the PPI was applied to the AHS image considering a total of 10,000 iterations
with a threshold value of 0.01 (reflectance units) to flag extreme (pure) pixels. A total of
four endmembers were defined corresponding to the three weed species plus the soil/corn
background cover. Since, at the time of the image acquisition, corn was in its initial growth
stage, its contribution to the soil spectral response was minimal.

As a first step, we tried to evaluate the ability of the SAM to discriminate weeds from
the background cover but without differentiating weed species. For this analysis, we used
endmembers obtained from field spectroscopy. Measurements of reference targets (weeds
and soil/corn) were convolved to the required wavelength of the AHS channels using
spectral response functions provided by the INTA. In a second step, both the SAM and
SMA were used to classify the three weed species, comparing the performance of the two
endmembers’ extraction methods. As a result, maps of the three weed species present in
the corn field were generated for the two classification algorithms and two endmember
selection methods previously described (Figure 2).

In order to validate the results, a total of 272 sampling frames (0.2 m2 in size), system-
atically distributed throughout the field (10 m × 10 m grid), were sampled simultaneously
with the image acquisition. All sampling points were georeferenced with a GPS receiver
with Omnistar differential correction working at a frequency of 5 Hz. Weed species within
the sampling frame were identified [54] and plant biomass (g m−2) for each species was
quantified and used as indicator of species dominance. Different biomass thresholds were
defined to compute the agreement between weed maps and field observations according to
weed abundance. Since the maps obtained with AHS do not quantify the weed biomass in
each pixel, but only its presence/absence, to compare field data with image classifications,
each sampling frame was assigned to the weed with the highest biomass of the three ana-
lyzed, provided that its biomass exceeded the value of the first quartile. This first quartile
included the lowest 25% of the biomass values and was fixed as the minimum detectability
threshold. If the total biomass of the weeds identified in the sampling frame was below
the first quartile, it was labeled as soil. Sampling frames, in which two weed species
had similar biomass values were discarded for validation to avoid misinterpretation of
the results.

Confusion matrices were calculated to analyze the performance of the image classifi-
cations. The confusion matrix shows not only the general accuracy of the weed maps, but
also the accuracy of each category and the conflicts between categories. From the confusion
matrix’s overall accuracy, the kappa index, as well as commission and omission errors, were
calculated. Overall accuracy was obtained by relating the diagonal cells of the confusion
matrix with the total number of validation points, while the kappa index was calculated
following the equation by Hudson [55]. This index measures the difference between the
map-reality agreement and that due to random chance. A kappa value of 1 indicates a total
agreement, whereas values close to 0 suggest the existence of random effects.



Agronomy 2023, 13, 528 9 of 19

3. Results
3.1. Hyperspectral Image Pre-Processing

Absolute radiometric accuracy of the image, evaluated by comparing image reflectance
values with the field spectra acquired with ASD Fieldspec3 FR on invariant surfaces,
showed good results. Image reflectance accurately agreed with the ASD reflectance with
RMSE values ranging between 0.010 and 0.085 (Figure 3a). The absolute geographical
accuracy of the images was also satisfactory with a total RMSE of 0.232 m.
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Figure 3. RMSE average values between the AHS image and ASD field spectroscopy reflectance
obtained for each spectral region (VIS, NIR and SWIR) over selected homogeneous reference targets
(asphalt, soil and water) (a); and spectral signatures of vegetation, soil and water covers using all
original AHS bands where anomalous SWIR port 2 channels (1917 to 2449 nm) can be identified (b).

Spectral profiles for selected pixels located in homogenous covers revealed anomalies
in several bands acquired by the port 2 of the sensor (bands 22 to 56 from 1900 to 2600 nm).
Some of these anomalies occurred when bands were located at the edge of atmospheric
windows, as in bands 22 and 23 (1917 and 1933 nm, respectively), while in other bands, the
problem was related with detector malfunctions, as reported by Miguel [43] (Figure 3b). In
both cases, a very low signal to noise ratio (SNR) made those bands unlikely to be useful.
As a result, we decided to discard all port 2 SWIR bands, therefore the final number of
bands used in the classification process was 21, covering the spectral range from 456 to
1650 nm.

3.2. Image Classification: Weed Maps
3.2.1. Endmember Selection

The PPI index applied to the AHS image enabled to identify four endmembers for
johnsongrass, two for common cocklebur, two for velvetleaf and eight endmembers for
soil/crop (which represents either bare soil pixels and those with a spectral mixture of soil
and vegetation but with soils as the predominant cover).

Average spectra of the endmembers obtained for each target cover method from the
AHS image using the PPI method (left) and field spectroscopy using a GER2600 field
portable spectroradiometer (right) are shown in Figure 4. Significant differences between
both methods were observed, especially for velvetleaf and soil covers. The differences were
small for johnsongrass and common cocklebur but still detectable, especially in the VIS
and NIR. In the VIS, these differences can be related to the soil background influence in
the pixel signal that contributes to slightly increase the reflectance in the red region in the
spectra obtained from the AHS image. In the NIR, the discrepancies can be related with the
different observation geometry of the field and airborne sensors. For velvetleaf, the spectral
signature of the endmember obtained from the image showed higher reflectance values
in the VIS but lower in the NIR which could reveal the selection in the image of mixed
pixels with relevant contribution from the soil background. Regarding the soil spectrum,
reflectance values were consistently higher in the average endmember obtained from the
image. This is likely related to the higher spectral variability of the soil cover across the
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image compared with the more restricted area measured with the spectroradiometer, but
especially to the automatic selection of pixels with low vegetation cover (soil mixed with
corn plants), which causes a typical absorption feature in the red and higher reflectance in
the NIR and SWIR bands.
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3.2.2. Spectral Angle Mapper Classification

Figure 5 shows the weed map obtained from the AHS image with the SAM classifica-
tion technique using endmembers derived from field spectroscopy. This map shows no
discrimination between the three weed species, but a general picture of weed infestation
in the field. As it can be observed, weeds were more profusely infesting the north and
northeast edges of the field and most of the central area. In contrast, the southwest half of
the field was relatively clean of weeds. The higher weed abundance along the field edges is
common in many agricultural farms and was previously reported for johnsongrass [25]. The
uneven distribution between the two halves of the field is likely because these two sections
were managed as independent fields in previous years, having different cropping histories,
as noted in Section 2.1. Comparison with the field data using a challenging low biomass
threshold (first quartile = 2 g m−2) which include very low density patches, showed an
overall accuracy of 60.3% and a kappa coefficient of 0.20, with large omission errors, close
to 75%, but low commission errors (Table 2). By increasing the biomass threshold to the
median biomass value (second quartile = 12.8 g m−2), the results substantially improved,
thereby decreasing the omission errors by more than 25%, while the overall accuracy and
kappa coefficient increased to 0.46 (Table 2). When a very high biomass threshold was
considered (third quartile = 25.4 g m−2), which means that only very dense weed patches
were used for validation, the overall accuracy reached 85.1% with a kappa coefficient of
0.72 (Table 2) and 25% omission errors.

The SAM classification results using the two endmember extraction methods, PPI
and field spectroscopy, for the discrimination of the three weed species are shown in
Figure 6. The two maps are consistent in the classification of johnsongrass, the predominant
weed species, while they differ significantly in the abundance and spatial distribution
of the other two species. Classification based on PPI endmembers (Figure 6a) detects an
important infestation of velvetleaf in the southwest half of the field, which is not observed
in the classification obtained from field spectroscopy endmembers (Figure 6b). In this
case, velvetleaf is mainly located in the center-south area of the field, mainly associated to
common cocklebur patches.
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Figure 5. Weed map including all weed species in the field, as obtained from the AHS image
classification using the SAM and field spectroscopy endmembers. Colored circles show, as a visual
reference, the location of the 272 sampling frames used for validation purposes and the total biomass
of all weed species identified in each frame.

Table 2. Results of the weed classification obtained with the AHS image using the SAM and field
spectroscopy endmembers.

Weed Biomass Threshold/
Quartiles *

(g m−2)
Cover Commission Error Omission

Error
Overall

Accuracy
Kappa

Coefficient

Q1 = 2.006
Weeds 15.8 75.4

60.3 0.20Soil/crop 43.7 4.5

Q2 = 12.826
Weeds 7.9 49.2

72.6 0.46Soil/crop 35 4.5

Q3 = 25.462
Weeds 5.5 25

85.1 0.72Soil/crop 21.2 4.5

* Q1 is the first quartile (25% of the data are below this value); Q2 is the second quartile or median and Q3 is the
third quartile (25% of the data are above this value).

The accuracy of the classification results was proven by comparison with the field data
through analyzing the spatial agreement of the four classes (three weeds and soil) with the
272 sampling frames previously assigned to the predominant weed species (as described in
Section 2.4). According to the confusion matrices, overall accuracies ranged from 32% to
35% (Tables 3 and 4). Omission errors were similar regardless of whether the classification
was based on PPI endmembers or field spectroscopy endmembers. In both methods, the
most accurate classification resulted in johnsongrass with omission errors of 52.4% and
47.6%, respectively, whereas a low accuracy (i.e., large omission errors) was observed in
common cocklebur and velvetleaf. Commission errors were also high (>42%), likely due to
confusion between johnsongrass and common cocklebur, but also to confusion between
vegetation and soil due to the low biomass threshold used to identify the presence of weeds
in each sampling frame (first quartile = 2 g m−2).
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Figure 6. Weed maps obtained from the AHS image classification using the SAM + PPI endmembers
(a) and the SAM + field spectroscopy endmembers (b). Colored circles show, as a visual reference,
the location of the 272 frames sampled in the field. Each sampling frame has been assigned to the
most abundant weed species.

Table 3. Confusion matrix for the AHS image classification using the SAM and PPI endmembers.

Ground Truth

AHS

Soil/Crop Johnsongrass Common
Cocklebur Velvetleaf Total Commission

Error (%)

Soil/Crop 66 17 91 27 201 67.2
Johnsongrass 0 20 41 1 62 67.7

Common Cocklebur 0 5 0 0 5 100
Velvetleaf 2 0 1 1 4 75

Total 68 42 133 29 272
Omission
Error (%) 2.9 52.4 100 96.5

Overall accuracy = 32%, kappa = 0.12.

3.2.3. Spectral Mixture Analysis Classification

The weed maps obtained with the SMA classifier and the two endmember extraction
techniques are shown in Figure 7. In the output images obtained with the SMA, every pixel
was assigned a value representing the percentage of the area occupied by each category
(weed species in this study). In order to transform these images in binary maps, a 30%
threshold was selected to label a pixel as covered by weeds. This threshold was set after
Martin et al. [56] who analyzed different thresholds to map johnsongrass using the SAM
and concluded that 30% provided the best fit with the field data.
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Table 4. Confusion matrix for the AHS image classification using the SAM and field
spectroscopy endmembers.

Ground Truth

AHS

Soil/Crop Johnsongrass Common
Cocklebur Velvetleaf Total Commission

Error (%)

Soil/Crop 65 1 67 24 167 61
Johnsongrass 3 22 56 4 85 74.1

Common Cocklebur 0 5 8 1 14 42.8
Velvetleaf 0 4 0 0 4 100

Total 68 42 131 29 270
Omission Error (%) 4.4 47.6 93.9 100

Overall accuracy = 35%, kappa = 0.16.
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Figure 7. Weed maps obtained from the AHS image classification using the SMA + PPI endmembers
(a) or the SMA + field spectroscopy endmembers (b). Colored circles show, as a visual reference, the
location of the 272 frames sampled in the field. Each sampling frame has been assigned to the most
abundant weed species.

As in the case of the SAM, both maps were similar regarding the extent and spatial
distribution of johnsongrass. However, significant differences were observed between the
two maps for the other two weed species. In the map obtained using PPI endmembers
(Figure 7a), velvetleaf was only detected in the southwestern edge of the field, whereas
the map generated with field spectroscopy endmembers (Figure 7b) showed velvetleaf
infestation over a larger area overlapping with some areas assigned to common cocklebur
by using PPI.

The validation results showed the best overall accuracy and kappa values for the
classification based on field spectroscopy endmembers (Tables 5 and 6). This classification
method, in general provided lower errors of commission and omission than PPI for the
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three weed species, although with very low accuracies for velvetleaf. The classification
based in PPI endmembers showed similar results from those obtained using the SAM with
a maximum overall accuracy of 32% and a kappa of 0.11. Confusion matrices revealed again
high omission and commission errors for velvetleaf and common cocklebur unless the latter
significantly reduced those errors in the classification obtained using field spectroscopy
endmembers. Velvetleaf showed large confusions, mainly with soil/crop areas, while
common cocklebur was incorrectly identified as johnsongrass except in most dense patches
located in the center-south area.

Table 5. Confusion matrix for the AHS image classification using the SMA and PPI endmembers.

Ground Truth

AHS

Soil/Crop Johnsongrass Common
Cocklebur Velvetleaf Total Commission

Error (%)

Soil/Crop 58 16 81 19 174 66.6
Johnsongrass 2 25 47 7 81 69.1

Common Cocklebur 8 1 5 3 17 7.6
Velvetleaf 0 0 0 0 0 -

Total 68 42 133 29 272
Omission Error (%) 17.7 40.5 96.2 100

Overall accuracy = 32%, kappa = 0.11.

Table 6. Confusion matrix for the AHS image classification using the SMA and field
spectroscopy endmembers.

Ground Truth

AHS

Soil/Crop Johnsongrass Common
Cocklebur Velvetleaf Total Commission

Error (%)

Soil/Crop 53 4 31 16 104 49
Johnsongrass 0 28 43 2 73 61.6

Common Cocklebur 10 10 59 10 89 33.7
Velvetleaf 5 0 0 1 6 83.3

Total 68 42 133 29 272
Omission Error (%) 22 33.3 55.6 96.5

Overall accuracy = 52%, kappa = 0.31.

4. Discussion

In recent years, advances in early season weed monitoring using remote sensing tech-
niques have been achieved thanks to the development of UAV technology [16]. However,
most of the studies so far are based on the use of RGB or multispectral cameras [57], able
to obtain information in a reduced number of spectral bands, which makes it difficult to
discriminate between crops and weed species when they exhibit similar spectral behavior.
The use of hyperspectral sensors offers the possibility to improve the accuracy of weed
detection and species discrimination. Our study demonstrated the potential of airborne
hyperspectral images to generate reliable spatial information on the distribution of three
major weed species in corn fields when the crop are in the optimal growing stage for the
application of herbicides. Overall accuracies ranged between 60% and 80% using the SAM
for maps that do not differentiate the different weed species. This agrees with results from
other studies using hyperspectral airborne data to discriminate weeds in rangelands [58]
where spotted knapweed was detected with the SAM classification algorithm, but only for
large cover densities (>70%) and populations larger than 0.1 ha. Another study also using
the SAM algorithm [59] established that 57% of known spotted knapweed infestations and
97% of known baby’s-breath infestations were identified through the use of airborne hyper-
spectral imagery. However, in this work, mixed pixels from associated vegetation produced
high omission errors. Authors discussed the need for applying unmixing algorithms to
estimate the relative fraction of each element to solve this problem as we did in our study.
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The use of high spatial and spectral resolution images is intended to progress on
one of the main challenges facing site-specific weed management, i.e., achieving a robust
weed classification method capable of accurately detecting and mapping, not only the
presence/absence of weeds, but also the different weed species [6]. The recognition of
specific weed community patterns among crops allows for the design of management
strategies adapted to the type and severity of the problem identified, its spatial extension
and temporal evolution, and its impact on crop yield. From a crop protection point of
view, early weed mapping is crucial because it coincides with the time to apply weed
control measures, i.e., at the right place and at the right time. Some authors support the
idea that site specific weed management does not require discrimination between weed
species, but it is enough with the classification of broad leaf and grass weeds for reducing
herbicide treatment [60,61]. Moreover, recent studies have demonstrated that some weed
communities are not adversely affecting crop yield and quality [62]. Therefore, further
research on weed population dynamics and their competition with crops are needed in
order to apply this knowledge to agricultural practices so as to specifically identify and
eradicate only harmful weed species [57].

Despite the improvement in species discriminability that hyperspectral information
facilitates, the spectral mixture between weeds, crops and bare soil is still critical in hy-
perspectral weed mapping. Improved spatial resolution, as provided by images acquired
from field platforms or UAVs, can contribute to solve this problem. This was proved by
Scherrer et al. [23] who used both ground-based and drone-based hyperspectral imagers to
discriminate for herbicide-resistant weeds. They obtained classification accuracies ranging
from 77% to 99% for spectra acquired by the ground-based imaging platform and from 25%
to 79% for images acquired from the drone-based platform flying 9.7 m above the crops
and weeds and providing a pixel size of about 2 mm. Authors discuss the need of testing
the model under multiple and varying field conditions including mixed pixels to explore
the efficacy of the proposed methods. In our work we have applied a spectral unmixing
methodology, the SMA, to deal with the mixed-pixel problem achieving a significant im-
provement (20% overall accuracy improvement) compared to the other spectral matching
algorithm applied, the SAM.

A common problem to the SMA and SAM classification techniques is the definition of
the pure/reference spectra. The two different endmember extraction techniques compared
in our study, in-situ spectral measurements of “pure” covers and automatic identification
of “pure” pixels in the image, indicates that field spectroscopy can provide complementary
information useful for weed mapping using airborne hyperspectral imagery, where pixel
sizes > 1 m are common, but which is also applicable to those obtained from UAV platforms
with smaller pixels. We propose a new field protocol that allows for obtaining pure
endmember spectra of the different weed species by reproducing homogeneous canopies
and avoiding soil background effects. However, the inherent image noise, primarily
related to the acquisition conditions (atmospheric and illumination effects) can cause
discrepancies between the measured response in the field and captured by the sensor,
causing poor endmember characterization using field spectroscopy. The use of the EL
method to improve image radiometric calibration by forcing image data to match selected
field reflectance spectra obtained over invariant surfaces, has contributed to reduce those
discrepancies. Using image-based extraction methods, such as the PPI, bypasses the need
for ground spectral measurements as well as the need to obtain accurate image radiometric
calibrations. However, to identify pure pixels in crop fields, it is often extremely difficult
given the heterogeneity of the target covers at the remote sensing scale, even at a very high
spatial resolution, as is the case in using airborne sensors. In our study, the endmember
selection based on field spectroscopy outperformed the image-based extraction method,
especially in the SMA classification were the former improved by 20% in the overall
classification accuracy.

Johnsongrass, always offered the lower omission errors both with the SMA (40.5% to
52.4%) and SAM (33.3 % to 47.6%), probably because it was concentrated in more dense
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patches. The SMA offered better results than the SAM when compared with the field data
for the other two weed species (common cocklebur and velvetleaf) but both classification
methods failed to identify velvetleaf (omission errors >96%), which can be related to the
smaller validation sample and the lower biomass of this species in the study site.

The weed map obtained with the SMA and field spectroscopy endmembers is quite pre-
cisely reflecting the history of the field and its influence on weed infestations
(Figure 7b). The eastern part of the field, which had been planted with corn in the preceding
5 years, shows higher infestation and different species (mainly common cocklebur and john-
songrass) than the western part, where the previous corn crop was followed by three years
of barley cropping. It is also interesting to see how the area between these two subplots
shows also a clear distinctive pattern, with little and very variable infestation. This location
overlapped with the area where a small fertilization experiment was conducted several
years prior to the hyperspectral flight (C. Fernández-Quintanilla, personal communication).

Even though the high cost of acquiring airborne hyperspectral images limits the oper-
ational use of the proposed methodology, our work demonstrates its potential application
to low cost images provided by new hyperspectral sensors onboard UAVs. The emergence
of a new generation of UAVs with advanced cameras and sensors either by combining
optical, thermal and Lidar instruments, or by increasing the spectral resolution of the
optical cameras by up to tens/hundreds of bands in the VIS-NIR, but also in the SWIR
regions, will facilitate the accurate monitoring of weeds causing damage by competition
with crops. The methods proposed in our study can be also applicable to recognize spe-
cific patterns typical of weed invasive species, such as Amaranthus palmeri in corn [63]
and Centaurea maculosa and Gypsophila paniculata in semiarid rangeland and irrigated
pastures [59]. Based on spectral characteristics of invasive plants, these may be detectable
at late growing stages when the plant community [64] or the structure of the agricultural
habitat [65] is changing, using the new generation of hyperspectral satellite sensors, such
as the Italian Hyperspectral Precursor of the Application Mission (PRISMA) or the German
Environmental Mapping and Analysis Program (EnMAP).
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