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Mixing effects on the mass spectrum of light neutral pseudoscalar and vector mesons in the presence of
an external uniform magnetic field B⃗ are studied in the framework of a two-flavor Nambu-Jona-Lasinio
(NJL)-like model. The model includes isoscalar and isovector couplings both in the scalar-pseudoscalar
and vector sectors, and also incorporates flavor mixing through a ’t Hooft-like term. Numerical results for
the B dependence of meson masses are compared with present lattice QCD results. In particular, it is shown
that the mixing between pseudoscalar and vector meson states leads to a significant reduction of the mass
of the lightest state. The role of chiral symmetry and the effect of the alignment of quark magnetic moments
in the presence of the magnetic field are discussed.
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I. INTRODUCTION

It is well known that the presence of a large background
magnetic field B⃗ has a significant impact on the physics of
strongly interacting particles, leading to important effects on
both hadron properties and QCD phase transition features
[1–3]. By a “large” field it is understood here that the order
of magnitude of B competes with the QCD confining
scale ΛQCD squared, i.e., jeBj≳ Λ2

QCD, jBj ≳ 1019 G.
Such huge magnetic fields can be achieved in matter at
extreme conditions, e.g., at the occurrence of the electro-
weak phase transition in the early Universe [4,5] or in the
deep interior of compact stellar objects like magnetars [6,7].
Moreover, it has been pointed out that values of jeBj ranging
from m2

π to 15 m2
π (jBj ∼ 0.3 to 5 × 1019 G) can be reached

in noncentral collisions of relativistic heavy ions at RHIC
and LHC experiments [8,9]. Though these large background
fields are short lived, they should be strong enough to affect
the hadronization process, offering the amazing possibility
of recreating a highly magnetized QCD medium in the lab.
From the theoretical point of view, the study of strong

interactions in the presence of a large magnetic field

includes several interesting phenomena, such as the chiral
magnetic effect [10–12], which entails the generation of an
electric current induced by chirality imbalance, and the
so-called magnetic catalysis [13,14] and inverse magnetic
catalysis [15,16], which refer to the effect of the magnetic
field on the size of chiral quark-antiquark condensates and
on the restoration of chiral symmetry. Yet another interest-
ing issue is the possible existence of a phase transition of
the cold vacuum into an electromagnetic superconducting
state. For a sufficiently large external magnetic field, this
transition would be induced by the emergence of quark-
antiquark vector condensates that carry the quantum
numbers of electrically charged ρ mesons [17,18]. The
presence of such a superconducting (anisotropic and
inhomogeneous) QCD vacuum state has been discussed
in the past few years and still remains as an open problem
(see discussions in Refs. [19–24]).
It is clear that the study of the properties of light hadrons,

in particular π and ρ mesons, comes up as a crucial
task toward the understanding of the above mentioned
phenomena. This represents a nontrivial problem, since
first-principle theoretical calculations require to deal in
general with QCD in a low energy nonperturbative
regime. Therefore, the corresponding theoretical analyses
have been carried out using a variety of effective models
for strong interactions. The effect of intense external
magnetic fields on π meson properties has been studied
e.g., in the framework of Nambu-Jona-Lasinio (NJL)-like
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models [23,25–40], quark-meson models [41,42], chiral
perturbation theory (ChPT) [43–45], path integral
Hamiltonians [46,47], effective chiral confinement
Lagrangians [48,49] and QCD sum rules [50]. In addition,
several results for the π meson spectrum in the presence of
background magnetic fields have been obtained from lattice
QCD (LQCD) calculations [15,51–56]. Regarding the ρ
meson sector, studies of magnetized ρ meson masses in the
framework of effective models and LQCD can be found in
Refs. [18,23,30,34,47,57–60] and Refs. [51,52,54,61,62],
respectively.
In this work we study the mass spectrum of light neutral

pseudoscalar and vector mesons in the presence of an
external uniform magnetic field B⃗, considering a two-flavor
NJL-like model [63–65]. In general, in this type of model
the calculations involving quark loops for nonzero B
include the so-called Schwinger phases [66], which are
responsible for the breakdown of translational invariance
of quark propagators. However, in the particular case of
neutral mesons these phases cancel out, and one is free to
take the usual momentum basis to diagonalize the corre-
sponding polarization functions [25–29]. One also has to
care about the regularization procedure, since the presence
of the external field can lead to spurious results, such as
unphysical oscillations of various observables [67,68]. We
consider here a magnetic field independent regularization
(MFIR) method [27,28,35,69], which has been shown to be
free from these effects and reduces the dependence of the
results on model parameters. In addition, in our work we
consider two mixing effects that have been mostly
neglected in previous analyses. The first one is flavor
mixing in the spin zero sector; while we restrict to a two-
flavor model (keeping a reduced number of free parame-
ters, and assuming that strangeness does not play an
essential role), we consider quark-antiquark interactions
both in I ¼ 1 and I ¼ 0 scalar and pseudoscalar channels,
introducing a ’t Hooft-like effective interaction [70]. The
second one is the mixing between pseudoscalar and vector
mesons, which arises naturally in the context of the NJL
model. These mixing contributions are usually forbidden

by isospin and angular momentum conservation, but they
arise (and may become important) in the presence of the
external magnetic field. In fact, our analysis shows that
π0 − η − ρ0 − ω mixing has a substantial effect on the B
dependence of the lowest mass state. As a additional
ingredient, we consider the case of B-dependent effective
coupling constants; this possibility—inspired by the mag-
netic screening of the strong coupling constant occurring
for large B [71]—has been previously explored in effective
models [39,72–75] in order to reproduce the inverse
magnetic catalysis effect observed at finite temperature
in LQCD calculations.
In the case of the neutral vector mesons, we consider

both states with quantum numbers Sz ¼ 0 and Sz ¼ �1,
where Sz is the spin projection in the direction of the
magnetic field (it is worth noticing that only Sz ¼ 0 states
can mix with pseudoscalar states). Most LQCD results and
effective model calculations agree in the finding that the
masses of Sz ¼ �1 states get monotonically enhanced with
the magnetic field, while results for Sz ¼ 0 mesons are still
not conclusive [34,47,51,52,54,60,61]. In our framework,
which lacks a description of confinement, for large mag-
netic fields the masses of some of the Sz ¼ 0 states are
found to grow beyond the qq̄ pair production threshold;
therefore our results in this region should be taken just as
qualitative ones.
The paper is organized as follows. In Sec. II we introduce

the theoretical formalism used to obtain neutral pseudo-
scalar and vector meson masses. Then, in Sec. III we
present and discuss our numerical results, while in Sec. IV
we provide a summary of our work, together with our main
conclusions. We also include Appendices A–C to provide
some technical details of our calculations.

II. THEORETICAL FORMALISM

A. Effective Lagrangian and mean field properties

Let us start by considering the Euclidean action for an
extended NJL two-flavor model in the presence of an
electromagnetic field. We have

SE ¼
Z

d4x
�
ψ̄ðxÞð−i=DþmcÞψðxÞ − gs

X3
a¼0

½ðψ̄ðxÞτaψðxÞÞ2 þ ðψ̄ðxÞiγ5τaψðxÞÞ2�

− gv3ðψ̄ðxÞγμτ⃗ψðxÞÞ2 − gv0ðψ̄ðxÞγμψðxÞÞ2 þ 2gdðdþ þ d−Þ
�
; ð1Þ

where ψ ¼ ðudÞT , τa ¼ ð1; τ⃗Þ, τ⃗ being the usual Pauli-
matrix vector, and mc is the current quark mass, which
is assumed to be equal for u and d quarks. The model
includes isoscalar and isovector vector couplings, and also
a ’t Hooft-like flavor-mixing term where we have defined

d� ¼ det½ψ̄ðxÞð1� γ5ÞψðxÞ�. The interaction between the
fermions and the electromagnetic field Aμ is driven by the
covariant derivative

Dμ ¼ ∂μ − iQ̂Aμ; ð2Þ
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where Q̂¼diagðQu;QdÞ, withQu ¼ 2e=3 andQd ¼ −e=3,
e being the proton electric charge. In Euclidean space we
use the conventions γ4 ¼ iγ0, x4 ¼ it, A4 ¼ iA0, hence

=∂ ¼ γ4∂4 þ γ⃗ · ∇⃗. We consider the particular case in which
one has a homogenous stationary magnetic field B⃗ ori-
entated along the 3, or z, axis. Then, choosing the Landau
gauge, we have Aμ ¼ Bx1δμ2.
Since we are interested in studying meson properties, it is

convenient to bosonize the fermionic theory, introducing
scalar, pseudoscalar and vector fields σaðxÞ, πaðxÞ and
ρaμðxÞ, with a ¼ 0, 1, 2, 3, and integrating out the fermion
fields. The bosonized Euclidean action can be written as

Sbos ¼− lndetDþ 1

4g

Z
d4x½σ0ðxÞσ0ðxÞþ π⃗ðxÞ · π⃗ðxÞ�

þ 1

4gð1− 2αÞ
Z

d4x½σ⃗ðxÞ · σ⃗ðxÞþ π0ðxÞπ0ðxÞ�

þ 1

4gv3

Z
d4xρ⃗μðxÞ · ρ⃗μðxÞþ

1

4gv0

Z
d4xρ0μðxÞρ0μðxÞ;

ð3Þ

with

Dx;x0 ¼ δð4Þðx − x0Þ½−i=Dþm0 þ τaðσaðxÞ
þ iγ5πaðxÞ þ γμρaμðxÞÞ�; ð4Þ

where a direct product to an identity matrix in color space is
understood. Note that for convenience we have introduced
the combinations

g ¼ gs þ gd; α ¼ gd=ðgs þ gdÞ; ð5Þ

so that the flavor mixing in the scalar-pseudoscalar sector is
regulated by the constant α. For α ¼ 0 quark flavors u
and d get decoupled, while for α ¼ 0.5 one has maximum
flavor mixing, as in the case of the standard version of the
NJL model.
We proceed by expanding the bosonized action in

powers of the fluctuations of the bosonic fields around
the corresponding mean field (MF) values. We assume that
the fields σaðxÞ have nontrivial translational invariant MF

values given by τaσ̄a ¼ diagðσ̄u; σ̄dÞ, while vacuum expect-
ation values of other bosonic fields are zero; thus, we write

Dx;x0 ¼ DMF
x;x0 þ δDx;x0 : ð6Þ

The MF piece is diagonal in flavor space. One has

DMF
x;x0 ¼ diagðDMF;u

x;x0 ;DMF;d
x;x0 Þ; ð7Þ

with

DMF;f
x;x0 ¼ δð4Þðx − x0Þð−i=∂ −QfBx1γ2 þMfÞ; ð8Þ

where Mf ¼ mc þ σ̄f is the quark effective mass for each
flavor f.
The MF action per unit volume is given by

SMF
bos

Vð4Þ ¼
ð1 − αÞðσ̄2u þ σ̄2dÞ − 2ασ̄uσ̄d

8gð1 − 2αÞ
−

Nc

Vð4Þ
X
f¼u;d

Z
d4xd4x0trD ln ðSMF;f

x;x0 Þ−1; ð9Þ

where trD stands for the trace in Dirac space, and SMF;f
x;x0 ¼

ðDMF;f
x;x0 Þ−1 is the MF quark propagator in the presence of the

magnetic field. As is well known, the explicit form of the
propagators can be written in different ways [2,3]. For
convenience we take the form in which SMF;f

x;x0 is given by a
product of a phase factor and a translational invariant
function, namely

SMF;f
x;x0 ¼ eiΦfðx;x0Þ

Z
p
eipðx−x0ÞS̃fp; ð10Þ

where Φfðx; x0Þ ¼ qfBðx1 þ x01Þðx2 − x02Þ=2 is the so-
called Schwinger phase. We have introduced here the
shorthand notation

Z
p
≡
Z

d4p
ð2πÞ4 : ð11Þ

Now S̃fp can be expressed in the Schwinger form [2,3]

S̃fp ¼
Z

∞

0

dτ exp

�
−τ

�
M2

f þ p2
k þ p2⊥

tanhðτBfÞ
τBf

− iϵ

���
ðMf − pk · γkÞ½1þ isfγ1γ2 tanhðτBfÞ� −

p⊥ · γ⊥
cosh2ðτBfÞ

�
; ð12Þ

where we have used the following definitions. The
perpendicular and parallel gamma matrices are collected
in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ, and, similarly, we
have defined p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. Note that
we areworking in Euclidean space, where fγμ; γνg ¼ −2δμν.

Other definitions in Eq. (12) are sf ¼ signðQfBÞ and
Bf ¼ jQfBj. The limit ϵ → 0 is implicitly understood.
The corresponding gap equations can be obtained from

minimization of the mean field action SMF
bos with respect

to σ̄f. One obtains in this way
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Mu ¼ mc − 4g½ð1 − αÞϕu þ αϕd�;
Md ¼ mc − 4g½ð1 − αÞϕd þ αϕu�; ð13Þ

where

ϕf ¼ −Nc

Z
p
trDS̃

f
p ¼ −

NcMf

4π2

Z
∞

0

dτ
e−τM

2
f

τ2
τBf

tanhðτBfÞ
:

ð14Þ

Notice that, as anticipated, Eqs. (13) get decoupled for
α ¼ 0. On the other hand, for α ¼ 0.5 the right-hand sides
of these equations become identical, thus in that case one
gets Mu ¼ Md.
The integral in Eq. (14) is divergent and has to be

properly regularized. As stated in the Introduction, we use
here the magnetic field independent regularization (MFIR)
scheme: for a given unregularized quantity, the correspond-
ing (divergent) B → 0 limit is subtracted and then it is
added in a regularized form. Thus, the quantities can be
separated into a (finite) “B ¼ 0” part and a “magnetic”
piece. Notice that, in general, the “B ¼ 0” part still depends
implicitly on B (e.g., through the values of the dressed
quark masses Mf), hence it should not be confused with
the value of the studied quantity at vanishing external field.
The divergence in the “B ¼ 0” terms are treated here using
a 3D cutoff regularization scheme.
Following this procedure, the expression in Eq. (14) is

regularized as

ϕreg
f ¼ ϕ0;reg

f þ ϕmag
f ; ð15Þ

where

ϕ0;reg
f ¼ −NcMfI1f; ϕmag

f ¼ −NcMfI
mag
1f : ð16Þ

The form of I1f for the 3D cutoff regularization is given
by Eq. (A3) of Appendix A [64], while the function Imag

1f ,
which depends explicitly on B, reads [13,67]

Imag
1f ¼ 1

4π2

Z
∞

0

dτ
e−τM

2
f

τ2

�
τBf

tanhðτBfÞ
−1

�

¼ Bf

2π2

�
lnΓðxfÞ−

�
xf−

1

2

�
lnxfþxf−

ln2π
2

�
; ð17Þ

where xf ¼ M2
f=ð2BfÞ.

It is easy to see that ϕ0;reg
u and ϕ0;reg

d are in fact the
regularized expressions for the quark-antiquark conden-
sates, which can be obtained from the mean field action by
partial derivation with respect to the current quark masses
(i.e., ϕf ¼ hψ̄fψfi, f ¼ u; d).

B. Neutral meson system

As expected from charge conservation, it is easy to
see that the contributions to the bosonic action that are
quadratic in the fluctuations of charged and neutral mesons
decouple from each other. In this work we concentrate on
the neutral meson sector. For notational convenience
we will denote isospin states by M ¼ σa; πa; ρaμ, with
a ¼ 0, 3. Here σ0, π0 and ρ0 correspond to the isoscalar
states σ, η and ω, while σ3, π3 and ρ3 stand for the neutral
components of the isovector triplets a⃗0, π⃗ and ρ⃗, respec-
tively. Thus, the corresponding quadratic piece of the
bosonized action can be written as

Squad;neutralbos ¼ 1

2

Z
d4xd4x0

X
M;M0

δMðxÞGMM0 ðx; x0ÞδM0ðx0Þ:

ð18Þ

The functions GMM0 ðx; x0Þ can be separated in two terms,
namely

GMM0 ðx; x0Þ ¼ 1

2gM
δMM0δð4Þðx − x0Þ þ JMM0 ðx; x0Þ; ð19Þ

where δMM0 is an obvious generalization of the Kronecker
δ, and the constants gM are given by

gM ¼

8>>><
>>>:

g for M ¼ σ0; π3
gð1 − 2αÞ for M ¼ σ3; π0
gv3 for M ¼ ρ3μ

gv0 for M ¼ ρ0μ

: ð20Þ

The polarization functions JMM0 ðx; x0Þ can be separated
into u and d quark pieces,

JMM0 ðx; x0Þ ¼ F u
MM0 ðx0; xÞ þ εMεM0F d

MM0 ðx0; xÞ: ð21Þ

Here εM ¼ 1 for the isoscalars M ¼ σ0; π0; ρ0μ and εM ¼
−1 forM ¼ σ3; π3; ρ3μ, while the functions F

f
MM0 ðx0; xÞ are

found to be

F f
MM0 ðx0; xÞ ¼ NctrD½SMF;f

x;x0 ΓM0
SMF;f
x0;x ΓM�; ð22Þ

with

ΓM ¼

8>><
>>:

1 for M ¼ σ0; σ3
iγ5 for M ¼ π0; π3
γμ for M ¼ ρ0μ; ρ3μ

: ð23Þ

As stated, since we are dealing with neutral mesons, the
contributions of Schwinger phases associated with the
quark propagators in Eq. (10) cancel out, and the polari-
zation functions depend only on the difference x − x0, i.e.,
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they are translationally invariant. After a Fourier trans-
formation, the conservation of momentum implies that the
polarization functions turn out to be diagonal in the
momentum basis. Thus, in this basis the neutral meson
contribution to the quadratic action can be written as

Squad;neutralbos ¼ 1

2

X
M;M0

Z
q
δMð−qÞGMM0 ðqÞδM0ðqÞ: ð24Þ

Now we have

GMM0 ðqÞ ¼ 1

2gM
δMM0 þ JMM0 ðqÞ; ð25Þ

and the associated polarization functions are given by

JMM0 ðqÞ ¼ Fu
MM0 ðqÞ þ εMεM0Fd

MM0 ðqÞ: ð26Þ

The functions Ff
MM0 ðqÞ read

Ff
MM0 ðqÞ ¼ Nc

Z
p
trD½S̃fpþΓM0

S̃fp−ΓM�; ð27Þ

where we have defined p� ¼ p� q=2, and the quark
propagators S̃fp in the presence of the magnetic field have
been given in Eq. (12).
It is relatively easy to see that the functions JσaπbðqÞ are

zero for either a or b equal to 0 or 3. However, the
remaining polarization functions do not vanish in general.
Since we are interested in the determination of meson
masses, we consider here the particular case in which
mesons are at rest, i.e., we take q⃗ ¼ 0, q24 ¼ −m2, where m
stands for the corresponding meson mass. In that situation
the nondiagonal polarization functions that mix the neutral
scalar and vector mesons also vanish, i.e., for a, b ¼ 0, 3
one has Ĵσaρbμ ¼ 0, where the notation Ĵ indicates that the

polarization function is evaluated at the meson rest frame.
In this way, the scalar meson sector gets decoupled at
this level; we will not take into account these mesons in
what follows. It can also be shown that Ĵρaμρbν , with a,

b ¼ 0, 3, vanish for μ ≠ ν, while the functions Ĵπaρbμ , with
a, b ¼ 0, 3, turn out to be proportional to δμ3.
It is found that all nonvanishing polarization functions are

in general divergent. As done at the MF level, we consider
the magnetic field independent regularization scheme, in
which we subtract the corresponding “B ¼ 0” contributions
and then we add them in a regularized form. Thus, for a
generic polarization function ĴMM0 we have

ĴregMM0 ¼ Ĵ0;regMM0 þ Ĵmag
MM0 : ð28Þ

The regularized “B ¼ 0” pieces Ĵ0;regMM0 are given in
Appendix A; it is easy to see that all nondiagonal polari-
zation functions Ĵ0;regMM0 ,M ≠ M0, are equal to zero. In the case
of the “magnetic” contributions Ĵmag

MM0 , after a rather long
calculation it is found that they can be expressed in the form
given by Eq. (26), viz.

Ĵmag
MM0 ¼ F̂u;mag

MM0 þ εMεM0F̂d;mag
MM0 ; ð29Þ

where the functions F̂f;mag
MM0 are given by

F̂f;mag
πaπb ¼ −Nc½Imag

1f −m2Imag
2f ð−m2Þ�;

F̂f;mag
πaρbμ ¼ −F̂f;mag

ρaμπb ¼ iNcI
mag
3f ð−m2Þδμ3;

F̂f;mag
ρaμρbν ¼ Nc½Imag

4f ð−m2Þ1⊥μν þm2Imag
5f ð−m2Þδμ3δν3�; ð30Þ

with 1⊥ ¼ diagð1; 1; 0; 0Þ. The expression for Imag
1f has

been given in Eq. (17), whereas the integrals Imag
nf for

n ¼ 2;…; 5 read

Imag
2f ð−m2Þ ¼ 1

8π2

Z
1

0

dv

�
ψðx̄fÞ þ

1

2x̄f
− ln x̄f

�
;

Imag
3f ð−m2Þ ¼ sfMfBf

π2m

Z
1

0

dvðv2 þ 4M2
f=m

2 − 1Þ−1;

Imag
4f ð−m2Þ ¼ −Imag

1f −
m2

16π2

�Z
1

0

dvðv2 þ γÞ ln x̄f −
1

2

X
s¼�1

Z
1

0

dvðv2 þ sv=λþ γÞψðx̄f þ ð1þ svÞ=2Þ
�
;

Imag
5f ð−m2Þ ¼ 1

8π2

Z
1

0

dvð1 − v2Þ
�
ψðx̄fÞ þ

1

2x̄f
− ln x̄f

�
; ð31Þ

where λ ¼ m2=ð4BfÞ, γ ¼ 1þ 4M2
f=m

2 and x̄f ¼ ½M2
f − ð1 − v2Þm2=4�=ð2BfÞ. For m < 2Mf these integrals are well

defined. In fact, in the case of Imag
3f ð−m2Þ one can even get the analytic result

Imag
3f ð−m2Þ ¼ sfBf

2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2=ð4M2

fÞ
q arctan

0
B@ m

2Mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2=ð4M2

fÞ
q

1
CA; m < 2Mf: ð32Þ
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In the case of Imag
4f ð−m2Þ, it is worth noticing that in the

limit m2 → 0 the second term on the rhs of the correspond-
ing expression in Eqs. (31) is found to be equal to Imag

1f .
Thus, in this limit one has Imag

4f → 0, as it is required in
order to avoid a nonzero contribution to the photon mass
coming from the “magnetic piece” of the polarization
function. On the other hand, for m ≥ 2Mf (i.e., beyond
the qq̄ production threshold) the integrals are divergent.
To obtain finite results we perform in this case analytic
extensions. The corresponding expressions, as well as some
technical details, are given in Appendix B.
The vector fields ρ0μ and ρ3μ can be written in a

polarization vector basis. Since we assume that the mesons

are at rest, we can choose polarization vectors ϵðSzÞμ

associated to spin projections Sz ¼ 0;�1, namely

ϵð0Þμ ¼ ð0; 0; 1; 0Þ; ϵð1Þμ ¼ 1ffiffiffi
2

p ð1; i; 0; 0Þ;

ϵð−1Þμ ¼ 1ffiffiffi
2

p ð1;−i; 0; 0Þ ð33Þ

Notice that the fourth components of these vectors, which
are given in Euclidean space, are related to the temporal
components of the polarization vectors in Minkowski
space. We find it convenient to distinguish between vector

states with polarization ϵð�1Þ
μ , which have spin projections

Sz ¼ þ1 or Sz ¼ −1—i.e., the spin is parallel or

antiparallel to the magnetic field—from those with polari-

zation ϵð0Þμ , which have spin projections Sz ¼ 0—spin
perpendicular to the magnetic field. From Eqs. (30) it is
seen that for nonzero B pseudoscalar mesons get coupled
only to neutral vector mesons with spin projection Sz ¼ 0,
which we call ρ0⊥ and ρ3⊥. In fact, this is expected from
the invariance under rotations around the direction of B⃗.
In this way, taking into account Eq. (25), one can
define a 4 × 4 matrix G⊥ with elements GMM0 , where
M;M0 ¼ π0; π3; ρ0⊥; ρ3⊥. The pole masses of Sz ¼ 0

physical mesons, mðkÞ
⊥ (with k ¼ 1;…; 4), will be given

by the solutions of

det G⊥ ¼ 0: ð34Þ

For Sz ¼ �1 states we call our vector states ρ0k and ρ3k. In
this case, we get two identical 2 × 2 matrices Gk with
elements GMM0 , where M;M0 ¼ ρ0k; ρ3k. The pole masses

of Sz ¼ �1 physical mesons, mðkÞ
k (with k ¼ 1, 2), will be

given by the solutions of

det Gk ¼ 0: ð35Þ

Once the masses are determined, the spin-isospin com-
position of the physical meson states jki is given by the
corresponding eigenvectors cðkÞ. Thus, one has

jki ¼ cðkÞπ0 jπ0i þ cðkÞπ3 jπ3i þ icðkÞρ0⊥ jρ0⊥i þ icðkÞρ3⊥ jρ3⊥i; k ¼ 1;…; 4 for Sz ¼ 0 states;

jki ¼ cðkÞρ3k jρ0ki þ cðkÞρ3k jρ3ki; k ¼ 1; 2 for Sz ¼ �1 states:
ð36Þ

It is also useful to consider the flavor basis πf, ρf, where
f ¼ u, d. Isospin states can be written in terms of flavor
states using the relations

jπ0i¼
1ffiffiffi
2

p ðjπuiþjπdiÞ; jπ3i¼
1ffiffiffi
2

p ðjπui− jπdiÞ;

jρ0⊥i¼
1ffiffiffi
2

p ðjρu⊥iþjρd⊥iÞ; jρ3⊥i¼
1ffiffiffi
2

p ðjρu⊥i− jρd⊥iÞ:

ð37Þ

In the Sz ¼ �1 sector, where there is no mixing between
pseudoscalar and vector mesons, the states jρuki and jρdki
turn out to be the mass eigenstates that diagonalize Gk.
This can be easily understood noticing that the external
magnetic field distinguishes between quarks that carry
different electric charges, and this is what breaks the
u − d flavor degeneracy. In the flavor basis one has
Gk ¼ diagðGuk; GdkÞ, where

Gfkð−m2Þ ¼ 1

2gv
þ 4Nc

3
½ð2M2

f þm2ÞI2fð−m2Þ

− 2M2
fI2fð0Þ� þ 2NcI

mag
4f ð−m2Þ; ð38Þ

where the expression for I2fðq2Þ can be found in
Appendix A, and Imag

4f ð−m2Þ has been given in Eqs. (31).
A similar situation occurs in the Sz ¼ 0 sector if one has
α ¼ 0. In this particular case there is no flavor mixing either
in the pseudoscalar or vector meson sectors, hence the
4 × 4 matrix G⊥ can be written as a direct sum of 2 × 2
flavor matrices Gu⊥ and Gd⊥. Moreover, for a given value
of B, the meson masses of, e.g., u-like mesons (solutions of
the equation det Gu⊥ ¼ 0) can be obtained from those of
d-like mesons for B0 ¼ 2B, since jQuj ¼ 2jQdj and
detGf⊥ depends on Qf and B only through the combina-
tion Bf ¼ jQfBj (this also holds for the implicit depend-
ence on Qf and B through the quark effective masses Mf).
If one has α ≠ 0 this relation is no longer valid, and in
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general G⊥ cannot be separated into flavor pieces. In fact,
as we discuss below, in the pseudoscalar sector it is seen
that chiral symmetry largely dominates over flavor sym-
metry; for the range of values of B considered in this work,
we find that even for α ≪ 1 the lightest Sz ¼ 0 mass
eigenstates are very close to isospin states π3 and π0,
instead of approximating to flavor states πf.

III. NUMERICAL RESULTS

A. Model parametrization and mean field results

To obtain numerical results for the dependence of meson
masses on the external magnetic field, one first has to fix
the parameters of the model. Here we take the parameter
set mc ¼ 5.833 MeV, Λ ¼ 587.9 MeV and gΛ2 ¼ 2.44,
which—for vanishing external field—lead to effective
quark masses Mf ¼ 400 MeV and quark-antiquark con-
densates ϕ0

f ¼ ð−241 MeVÞ3, for f ¼ u, d. This para-
metrization properly reproduces the empirical values of
the pion mass and decay constant in vacuum, namely
mπ ¼ 138 MeV and fπ ¼ 92.4 MeV. Regarding the vector
couplings, we take gv3 ¼ 2.651=Λ2, which leads to mρ ¼
770 MeV at B ¼ 0, and gv0 ¼ gv3 , which is consistent with
the fact that mρ ≃mω at vanishing external field. For these
constants we use from now on the notation gv ≡ gv0 ¼ gv3 .
Finally, as stated in Sec. II A, the amount of flavor mixing
induced by the ’t Hooft-like interaction is controlled by the
parameter α. In this work we choose to take as a reference
value α ¼ 0.1, since it leads (at B ¼ 0) to an approximate η
meson mass mη ≃ 520 MeV, in reasonable agreement with

the physical value mphys
η ¼ 548 MeV. In fact, this mass is

very sensitive to minor changes in α. An alternative
estimate for this parameter can be obtained from the
η − η0 mass splitting within the 3-flavor NJL model [76],
which leads to α ≃ 0.2 [77]. In any case, to obtain a full
understanding of the effects of flavor mixing we will also
consider the values α ¼ 0 and α ¼ 0.5, corresponding to
the situation in which flavors are decoupled and in which
there is full flavor mixing, respectively. It is easily seen
that for α ¼ 0 the π and η mesons have equal (finite)
masses, while when α approaches 0.5 the mass of the pion
stays finite and that of the η meson becomes increas-
ingly large.
In Fig. 1 we show the numerical results obtained for the

magnetic field dependence of the dynamical quark masses
Mu andMd. Both masses are found to get increased with B,
and it is seen that for Mu (Md) the slope becomes larger
(smaller) as α decreases from α ¼ 0.5—where both masses
coincide—to α ¼ 0. Next, in Fig. 2, we show the depend-
ence of normalized light quark-antiquark condensates on B.
Following Ref. [16], we introduce the definitions

ΔΣ̄ ¼ ΔΣu þ ΔΣd

2
; Σ− ¼ ΔΣu − ΔΣd; ð39Þ

where ΔΣf¼−2mc½ϕfðBÞ−ϕ0
f�=D4, D¼ð135×86Þ1=2MeV

being a phenomenological normalization constant. In the
left and right panels of Fig. 2 we plot the values of ΔΣ̄
and Σ−, respectively, as functions of eB. The gray bands
correspond to LQCD values taken from Ref. [16], whereas
the red bands cover our results for the range α ¼ 0 to
α ¼ 0.5. We observe from this figure that the model
reproduces properly the zero-temperature magnetic cata-
lysis found in LQCD calculations. Moreover, it is seen that
the dependence on the flavor mixing parameter α is
rather mild.

B. Pseudoscalar and Sz = 0 vector meson sector

In this subsection we present and discuss the results
associated with the coupled system composed by neutral
pseudoscalar mesons and Sz ¼ 0 neutral vector mesons. As

discussed in Sec. II B, the corresponding masses mðkÞ
⊥ ,

k ¼ 1;…; 4, can be obtained from Eq. (34). The depend-
ence of these masses with the magnetic field for the
reference value α ¼ 0.1 are shown in Fig. 3. As discussed
below, the spin-isospin compositions of the associated
states do not coincide in general with those of the usual
B ¼ 0 states π0, η, ρ0 and ω. For this reason, we use for
these states the notation M̃, where in each case M is the

state that has the larger weight cðkÞM in the spin-isospin
decomposition given by Eq. (36) (see Table I). In Fig. 3
we also show the qq̄ production thresholds m ¼ 2Md and
m ¼ 2Mu (dotted and short-dotted lines, respectively),
beyond which some of the matrix elements of G⊥ get
absorptive parts. The presence of these absorptive parts
implies that for the states ρ̃ and ω̃ there are certain values of
the magnetic field above which the associated particles are
unstable with respect to an unphysical decay into a qq̄ pair.
In fact, the existence of such decays is a well known feature
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FIG. 1. Effective quark masses Mu (red upper band), Md (blue
lower band) as functions of eB. The extremes of the bands
correspond to α ¼ 0 (dashed lines) and α ¼ 0.5 (full line). The
dotted lines correspond to α ¼ 0.1.
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of the NJL model, even in the absence of an external field
[63–65]; it arises as a consequence of the lack of a
confinement mechanism, which is a characteristic of this
type of model. In the presence of the magnetic field, one
also has to deal with new poles that may arise from the
thresholds related to the Landau level decomposition of the
intermediate quark propagators. As customary, we will
assume that the widths associated to these unphysical
decays are small. Then, to determine the values of the
corresponding masses, we consider an extremum condition
for the meson propagators, similar to the method discussed,
e.g., in Ref. [78]. It has to be kept in mind, however,
that these predictions for the meson masses are less reliable
in comparison to those obtained for the states lying below
the quark pair production threshold, and should be taken
just as qualitative results. For this reason, in Fig. 3 we use
dashed lines to plot ρ̃ and ω̃ masses above the 2Md

threshold. It can be seen that for eB ≃ 0.15 GeV2 there
is a small bump in the curve for the ρ̃ mass. This can be
attributed to the mixing between vector meson states, since
in this region the ω̃ becomes unstable. Some similar
behavior has been found in Ref. [79], related with the
exchange of dominant scalar and pseudoscalar components
of mass eigenstates.
It is interesting at this stage to discuss the spin-isospin

composition of mass states and their variation with the
external field. As mentioned at the end of Sec. II B,
the magnetic field tends to separate the states according

to the charges of the quark components. In the case α ¼ 0,
although there is no flavor mixing, flavor degeneracy gets
broken due to the magnetic field. Therefore, mass eigen-
states turn out to be separated into particles with pure u or d
quark content. If we use the labels k ¼ 1, 3 and k ¼ 2, 4 for
u- and d-like states respectively, we get [see Eqs. (37)]
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FIG. 2. Normalized average condensate (left) and normalized condensate difference (right) as functions of eB, for values of α from
0 to 1 (see text for definitions). LQCD results from Ref. [16] (gray bands) are added for comparison.
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FIG. 3. Masses of Sz ¼ 0 mesons as functions of eB,
for α ¼ 0.1. The dotted lines indicate uū and dd̄ production
thresholds.
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jki ¼ cðkÞπu jπui þ icðkÞρu⊥ jρu⊥i ¼
cðkÞπuffiffiffi
2

p jπ0i þ
cðkÞπuffiffiffi
2

p jπ3i þ i
cðkÞρu⊥ffiffiffi
2

p jρ0⊥i þ i
cðkÞρu⊥ffiffiffi
2

p jρ3⊥i; k ¼ 1; 3;

jki ¼ cðkÞπd jπdi þ icðkÞρd⊥ jρd⊥i ¼
cðkÞπdffiffiffi
2

p jπ0i −
cðkÞπdffiffiffi
2

p jπ3i þ i
cðkÞρd⊥ffiffiffi
2

p jρ0⊥i − i
cðkÞρd⊥ffiffiffi
2

p jρ3⊥i; k ¼ 2; 4: ð40Þ

For definiteness, let us take mð1Þ
⊥ < mð3Þ

⊥ , mð2Þ
⊥ < mð4Þ

⊥ . Since
for α ¼ 0 and B ¼ 0 the Lagrangian shows an approximate
symmetry under SUð2ÞA ⊗ Uð1ÞA chiral transformations,
spontaneous symmetry breaking leads to four pseudo-
Goldstone bosons, viz. the three pions and the η meson.
In the presence of the magnetic field, chiral symmetry
is explicitly broken from SUð2ÞA⊗Uð1ÞA down to
Uð1ÞT3;A ⊗ Uð1ÞA; thus, one still has two neutral mesons—
combinations of the neutral pion and the η—that remain as
pseudo-Goldstone bosons. Moreover, according to the
previous discussion, the latter must be pure u and d-states.
Since they should be approximate mass eigenstates,

one expects to find ðcð1Þπu ; c
ð1Þ
ρu⊥Þ ≈ ðcð2Þπd ; c

ð2Þ
ρd⊥Þ ≈ ð1; 0Þ and

ðcð3Þπu ; c
ð3Þ
ρu⊥Þ ≈ ðcð4Þπd ; c

ð4Þ
ρd⊥Þ ≈ ð0; 1Þ. On the other hand, for

α ≠ 0 the presence of the ’t Hooft term introduces flavor
mixing at the level of scalar and pseudoscalar four-quark
interactions, breaking the Uð1ÞA symmetry. Thus, the spin-
isospin decomposition gets the more general form given in
Eq. (36), where the lightest state can still be identified as an
approximate Goldstone boson.When α approaches 0.5, the η̃
mass goes to infinity and, accordingly, the jπ0i component in
Eq. (36) disappears from the remaining states.
In Table I we quote the composition of the mass

eigenstates M̃ described in Fig. 3, for some representative
values of the magnetic field. For completeness, the coef-
ficients corresponding to both spin-isospin and spin-flavor
basis are included. We note that while the mass eigenvalues
do not depend on whether B is positive or negative, the
corresponding eingenvectors do. The relative signs in
Table I correspond to the choice B > 0.
Let us first discuss the composition of the π̃ state (k ¼ 1),

which is the one that has the lowest mass. We see that even

though α is relatively small, the effect of flavor mixing is
already very strong; the spin-isospin composition is clearly
dominated by the π3 component, which is given by an
antisymmetric equal-weight combination of u and d quark
flavors. Thus, the mass states are far from satisfying the
flavor disentanglement expected for the case α ¼ 0 [see
Eqs. (40)], in which one has two approximate Goldstone
bosons. In fact, once α is turned on, explicitly breaking the
Uð1ÞA symmetry, π3 is the only state that remains being a
pseudo-Goldstone boson; this forces the lowest-mass state
π̃ to be dominated by the π3 component. As discussed
above, the presence of the magnetic field distinguishes
between flavor components πu and πd instead of isospin
states. However, it is found that even for values of α as
small as 0.01 the mass state π̃ is still dominated by the π3
component (jcð1Þπ3 j2 ≳ 0.9) for the full range of values of eB
considered here. In other words, extremely large magnetic
fields would be required in order to rule the composition of
light mass eigenstates, which is otherwise dictated by the
invariance under Uð1ÞT3;A transformations. Coming back to
the case α ¼ 0.1, we see that, although relatively small, the
effect of the magnetic field on the composition of the π̃ state
can be observed from the values in Table I. When eB gets
increased, it is found that there is a slight decrease of the
component π3 in favor of the others. In addition, a larger
weight is gained by the u-flavor components, as one can see
by looking at the entries corresponding to the spin-flavor

states (last four columns of Table I): one has jcð1Þπu j2 þ
jcð1Þρu⊥ j2 ¼ 0.50ð0.66Þ for eB ¼ 0.05ð1.0Þ GeV2. This can
be understood noticing that the magnetic field is known to
reduce the mass of the lowest neutral meson state
[51,54,55]. Thus, for large eB it is expected that π̃ will

TABLE I. Composition of the Sz ¼ 0meson mass eigenstates for some selected values of eB. Results correspond to α ¼ 0.1. Relative
signs hold for the choice B > 0.

State eB ½GeV2�
Spin-isospin composition Spin-flavor composition

cðkÞπ0 cðkÞπ3 cðkÞρ0⊥ cðkÞρ3⊥ cðkÞπu cðkÞπd cðkÞρu⊥ cðkÞρd⊥

π̃ðk ¼ 1Þ 0.05 0.0037 0.9998 −0.0203 −0.0068 0.7096 −0.7043 −0.0192 −0.0095
0.5 0.1019 0.9910 −0.0822 −0.0285 0.7728 −0.6287 −0.0783 −0.038
1.0 0.1566 0.9841 −0.0797 −0.0274 0.8066 −0.5851 −0.0757 −0.037

η̃ðk ¼ 2Þ 0.05 0.9899 −0.0413 −0.0381 −0.1301 0.6708 0.7292 −0.1189 0.0651
0.5 0.8661 −0.3246 0.0582 −0.3757 0.3829 0.8420 −0.2245 0.3068
1.0 0.8353 −0.3445 0.1048 −0.4154 0.3470 0.8342 −0.2196 0.3678

ω̃ðk ¼ 3Þ 0.05 −0.1979 0.2693 0.7601 −0.5572 0.0505 −0.3304 0.1435 0.9315
ρ̃ðk ¼ 4Þ 0.05 0.4925 0.3312 0.4685 0.6544 0.5824 0.1141 0.7940 −0.1315
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have a larger component of the quark flavor that couples
strongly to the magnetic field (i.e., the u quark).
Concerning the vector meson components of the π̃ state,
it is seen that they are completely negligible at low values

of eB, reaching a contribution jcð1Þρu⊥ j2 þ jcð1Þρd⊥ j2 ≃ 0.01 (i.e.,
about 1%) at eB ¼ 1 GeV2.
Turning now to the composition of the η̃ state (k ¼ 2)

in Table I, we see that, as expected from the above
discussion, it is dominated by the π0 (I ¼ 0) component
for values of eB up to 1 GeV2. Regarding the
flavor composition, in this case the d-quark content is

the one that increases as eB does, with jcð2Þπd j2 þ jcð2Þρd⊥ j2 ¼
0.54ð0.70Þ for eB ¼ 0.05ð1.0Þ GeV2. Now the weight
of the vector components is larger than in the case of

the π̃ state, jcð1Þρu⊥ j2 þ jcð1Þρd⊥ j2 ranging from 0.02 at eB ¼
0.05 GeV2 to 0.17 at eB ¼ 1.0 GeV2. This is probably due
to the fact that for α ¼ 0.1 the η̃ mass is closer to vector
meson masses.
Finally, let us comment on the composition of the ω̃ and

ρ̃ states (k ¼ 3 and k ¼ 4, respectively). As mentioned
above, the masses of these states reach the threshold for qq̄
decay for rather low values of the magnetic field, hence our
predictions for these quantities should be taken as quali-
tative ones for a major part of the eB range considered here.
It is worth noticing that there is a multiple number of
thresholds, which get successively opened each time the
meson mass is sufficiently large so that the quark and
antiquark meson components can populate a new Landau
level. The first thresholds in the ūu and the d̄d sectors are
reached at meson masses equal to 2Mu and 2Md, respec-
tively. It is important to realize that they do not correspond
to a free quark together with a free antiquark, but
to the quark and antiquark in their lowest Landau levels.
Taking B > 0, if both the quark and the antiquark have
vanishing z component of the momentum, the correspond-
ing spin configurations are uðSz ¼ þ 1

2
ÞūðSz ¼ − 1

2
Þ and

dðSz ¼ − 1
2
Þd̄ðSz ¼ þ 1

2
Þ. In both cases, the magnetic dipole

moments of the quark and the antiquark are parallel to the
magnetic field; the difference between both configurations
arises from the opposite signs of the quark electric charges.
We only quote in Table I the ω̃ and ρ̃ compositions in
the presence of a low magnetic field eB ¼ 0.05 GeV2,
for which the masses of both states are below the 2Mf

threshold and the values of the coefficients cðkÞM should be
more reliable. Interestingly, we note that even at this low
value of the magnetic field the composition of the vector
meson mass states is clearly flavor-dominated: from Table I

one has jcð3Þπd j2 þ jcð3Þρd⊥ j2 ¼ 0.98, jcð4Þπu j2 þ jcð4Þρu⊥ j2 ¼ 0.97.
Thus, whereas for no external field one usually identifies
the (approximately degenerate) mass states as isospin
eigenstates ρ0 and ω, in the presence of the magnetic field
the states ρ̃ and ω̃ are closer to a ρu⊥ and a ρd⊥, rather than a
ρ3⊥ and a ρ0⊥. In fact, given the symmetry of the vectorlike

interactions in the Lagrangian in Eq. (1), the small
deviation of ρ̃ and ω̃ from pure flavor states can be
attributed to the mixing with the pseudoscalar sector, where
isospin states are dominant. Notice that although the vector
components are larger than the pseudoscalar ones, the
weight of the latter is not negligible, specially for the ρ̃ state
(which is the one with a larger mass, as shown in Fig. 3),

with jcð4Þπu j2 þ jcð4Þπd j2 ≃ 0.35. This can be understood from
an analysis similar to the one performed for the meson mass
thresholds in terms of the quark spins. A larger content of
the dðSz ¼ − 1

2
Þd̄ðSz ¼ þ 1

2
Þ component has to be expected

in the case of the ω̃, while there should be a larger content
of the uðSz ¼ þ 1

2
ÞūðSz ¼ − 1

2
Þ one in the case of

the ρ̃. From Table I it is seen that these combinations

correspond to ðcð3Þπd − cð3Þρd⊥Þ=
ffiffiffi
2

p ¼ −0.89 for the ω̃ and

ðcð4Þπu þ cð4Þρu⊥Þ=
ffiffiffi
2

p ¼ 0.97 for the ρ̃, under a magnetic field
as low as eB ¼ 0.05 GeV2—and this effect should be more
significant for larger values of eB.
We analyze in what follows the impact of both flavor

mixing and pseudoscalar-vector mixing on the masses of
the lightest states. In fact, this is one of the main issues of
this work. In Fig. 4 we show the B dependence of light
meson masses with (dashed lines) and without (dotted
lines) pseudoscalar-vector mixing, considering three
representative values of the flavor-mixing constant α.
The results without pseudoscalar-vector mixing are
obtained just by setting to zero the off-diagonal polari-
zation functions Ĵmag

πaρbμ and Ĵmag
ρaμπb in Eq. (28). Let us focus

on mπ̃ , considering first the effect of varying α; as can be
seen from Fig. 4, this effect is rather independent of
whether pseudoscalar states mix with vectors or not. We
observe that for α ¼ 0 (no flavor mixing) there are two
light mesons having similar masses; as stated above,
these are pure flavor states and can be identified as
approximate Goldstone bosons. For α ≠ 0, the mass of the
π̃ state is still protected owing to its pseudo-Goldstone
boson character, whereas the η̃ state becomes heavier
when α gets increased, and disappears from the spectrum
in the limit α ¼ 0.5.
From Fig. 4 it is also seen that, for all values of α, the

mixing between pseudoscalar and vector meson states
produces a significant decrease in the mass of the lightest
state. This might be surprising, since—as shown above—
the vector meson components of the π̃ state are found to be
very small even for large values of eB. The explanation of
this puzzle is discussed in detail in Appendix C, where it is
shown that these two facts are indeed consistent. Moreover,
for α ¼ 0.5 it is shown that if the pseudoscalar-vector
meson mixing is treated perturbatively, one can derive a
simple formula for the B dependence of the π̃ mass, viz.

mπ̃ ¼
m̄π̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κðm̄π̃eBÞ2=Mf

q ; ð41Þ
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where κ ¼ 5N2
cggv=ð18π4mcÞ, f is either u or d, and m̄π̃

stands for the π̃ mass when no mixing is considered. Taking
into account that m̄π̃ is very weakly dependent on B (see
dotted lines in Fig. 4), it follows that mπ̃ basically depends
on the magnetic field through the ratio ðeBÞ2=Mf. Notice
that the B dependence of Mf for α ¼ 0.5 is represented by
the solid line in Fig. 1. The numerical results for mπ̃ from
Eq. (41), within the approximation m̄π̃ ¼ mπðB ¼ 0Þ [see
Eq. (C9)] are indicated by the black dash-dotted line in the
right panel (corresponding to α ¼ 0.5) of Fig. 4. It can be
seen that they are in excellent agreement with those
obtained from the full calculation.
To conclude this subsection, in Fig. 5 we compare our

results for the mass of the π̃ state with those obtained in
LQCD calculations, reported in Ref. [54] (quenched
Wilson fermions), Ref. [55] (improved staggered quarks)
and Refs. [15,54,80] (dynamical staggered quarks). We first
note that in those calculations the authors neglect discon-
nected diagrams as well as the associated mixing, and work
with the individual flavor states instead. In our calculation
this can be achieved by setting α ¼ 0. In any case, as seen
from the above analysis, the mass of the lightest meson is
approximately independent of the value of α; therefore, it is
reasonable to compare the mentioned LQCD results with
those obtained using the reference value α ¼ 0.1 that leads
to an acceptable value for the η meson mass at vanishing
external field. We also note that LQCD results have been
obtained using different methods and values of the pion
mass at B ¼ 0. In particular, the most recent ones (i.e.,
those in Ref. [55]) are based on a highly improved

staggered quark action that uses mπðB ¼ 0Þ ¼ 220 MeV,
while the calculations in Refs. [15,54,80] take the physical
value of mπ within a staggered simulation setup. Anyway,
in our model we see that when the pseudoscalar-vector
meson mixing is included, the values for the π̃ meson mass
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lie in general below LQCD predictions. We have checked
that this general result is quite insensitive to a reasonable
variation of the model parameters. In addition, we have
verified that the situation does not change significantly if
the B ¼ 0 expressions are regularized using the Pauli-
Villars scheme, as proposed, e.g., in Ref. [60].

C. Sz = �1 vector meson sector

In this subsection we present the numerical results
associated with the coupled system composed by the
neutral vector mesons with jSzj ¼ 1. As discussed in
Sec. II B, for any value of α the mass eigenstates can be
identified according to their flavor content, jρuki and jρdki.
The corresponding masses can be obtained by solving the
equations Gfkð−m2

ρfk Þ ¼ 0, for f ¼ u, d, with Gfkð−m2Þ
given by Eq. (38).
The numerical results for the meson masses as functions

of the magnetic field for the case α ¼ 0.1 are shown in
Fig. 6, where it is seen that bothmρuk andmρdk get increased
with B. The enhancement is larger in the case of the ρuk
mass; this can be understood from the larger (absolute)
value of the u-quark charge, which measures the coupling
with the magnetic field. As in the case of Sz ¼ 0 mesons,
there are multiple mass thresholds for qq̄ pair production
[see Eqs. (B4) and (B7)]. The lowest one, reached at

mρfk ¼ m−
f ¼ Mf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ 2Bf

q
, corresponds now to the

situation in which both the spins of the quark and the
antiquark components of the ρfk are aligned (or antia-
ligned) with the magnetic field. Notice that in this case one
of the fermions lies in its lowest Landau level, while the
other one is in the first excited Landau level; whether both
particle spins are aligned or antialigned with the magnetic
field depends on the signs of Sz and B. It can be seen that

the values of m−
f for f ¼ u or d are not surpassed by the

corresponding meson masses mρfk in the studied region,
and consequently these masses are found to be smooth real
functions of eB, as shown in Fig. 6. We stress that the mass
values m ¼ 2Mu and m ¼ 2Md are not actual thresholds in
this case, since—as discussed above—they correspond
to lowest Landau level quark configurations that lead to
Sz ¼ 0 meson states. The absence of these thresholds can
be formally shown by looking at the expression in Eq. (38);
it can be seen that although the functions I2fð−m2Þ and
Imag
4f ð−m2Þ become complex for m > 2Mf, imaginary parts
cancel each other and one ends up with a vanishing
absorptive contribution.
It should be pointed out that even though there is no

direct flavor mixing in this sector, ρuk and ρdk meson
masses still depend on α. This is due to the fact that the
values ofMu andMd obtained at the MF level get modified
by flavor mixing. We recall that MuðeBÞ ¼ Mdð2eBÞ for
α ¼ 0, while for α ¼ 0.5 one has MuðeBÞ ¼ MdðeBÞ. The
effect of flavor mixing is illustrated in Fig. 7, where we
show the B dependence of ρuk and ρdk meson masses for
α ¼ 0, 0.1 and 0.5. As expected from the aforementioned
relations between Mu and Md, it is seen that the curves for
both masses tend to become more similar as α increases.
However, the overall effect is found to be relatively weak.
As a reference we also plot (full black line) the situation
in which the mixing between Sz ¼ �1 vector states is
neglected, and, therefore, the masses of both states
coincide. We see that even in the case α ¼ 0.5 there is a
certain non-negligible mass splitting between states when
the mixing term is turned on.
It is also interesting at this stage to analyze the impact

of the regularization procedure on the predictions of the
model. In Fig. 8 we show our results for the ρ3k mass
together with those obtained in Ref. [22] and Ref. [60]. To
carry out a proper comparison, in our model we have taken
α ¼ 0.5 and have set to zero the ρ0k − ρ3k mixing con-
tributions, as done in those works (in which the ρ0k state is
not included). Notice that this case corresponds to the
solid line in the right panel of Fig. 7. In Ref. [22], divergent
integrals are regularized through the introduction of
Lorenztian-like form factors, both for vacuum and B-
dependent contributions. On the other hand, in Ref. [60]
the regularization is carried out using the MFIR method, as
in the present work. However, to deal with vacuumlike
terms the authors of Ref. [60] choose a Pauli-Villars
regularization, instead of the 3D-cutoff scheme considered
here. From Fig. 8 it is seen that our results for mρ3k (black
solid line) are quite similar to those found in Ref. [60]
(red dotted line), indicating that they are not too much
sensitive to the prescription used for the regularization of
vacuumlike terms, once the MFIR method is implemented.
Meanwhile, the ρ3k mass obtained by means of a form
factor regularization (blue dashed line) shows a much
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stronger dependence on the magnetic field, specially for
large values of eB. These results are consistent with those
found in Ref. [68] for the regularization scheme depend-
ence of the condensates in the presence of the magnetic
field.
Finally, in Fig. 9 we compare our results for the case

α ¼ 0.1 (dashed and dotted lines in the central panel of
Fig. 7) with those quoted in Ref. [54] for the ρuk mass using
LQCD calculations. In fact, these lattice results are
obtained for a large vacuum pion mass of about 400 MeV;
the comparison still makes sense, however, since we have
checked that our results are rather robust under changes in

the current quark masses leading to such a large value of
mπ . Considering the large error bars, from the figure one
observes that LQCD results seem to indicate an enhance-
ment of mρuk when the magnetic field is increased, in
agreement with the predictions from the NJL model. This
qualitative behavior has been also found in previous LQCD
studies [47,51,52,61].

D. B-dependent four-fermion couplings

As mentioned in the Introduction, while local NJL-like
models are able to reproduce the magnetic catalysis (MC)
effect at vanishing temperature, they fail to describe the so-
called inverse magnetic catalysis (IMC) observed in lattice
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QCD. Among the possible ways to deal with this problem,
one of the simplest approaches is to allow the model
coupling constants to depend on the magnetic field. With
this motivation, we explore in this subsection the possibility
of considering a magnetic field dependent coupling gðeBÞ.
For definiteness, we adopt for this function the form
proposed in Ref. [28], namely

gðeBÞ ¼ gF ðeBÞ; ð42Þ

where

F ðeBÞ ¼ κ1 þ ð1 − κ1Þe−κ2ðeBÞ2 ; ð43Þ

with κ1 ¼ 0.321, κ2 ¼ 1.31 GeV−2. Assuming this form
for gðeBÞ, the effective quark masses are found to be less
affected by the presence of the magnetic field than in the
case of a constant g. In fact, they show a nonmonotonous
behavior for increasing B, resembling the results found in
Refs. [40,75]. It should be stressed that in spite of the rather
different behavior of the dynamical quark masses, a similar
zero-temperature magnetic catalysis effect is obtained both
for a constant g and for a variation with B of the form given
by Eq. (43).
Regarding the vector meson sector, one has to choose

some assumption for the B dependence of the vector
coupling constant. One possibility is to suppose that,
due to their common gluonic origin, the vector couplings
are affected by the magnetic field in the same way as the
scalar and pseudoscalar ones. That is to say, one could take
gvðeBÞ ¼ gvF vðeBÞ, with F vðeBÞ ¼ F ðeBÞ. Under these

assumptions, we have obtained numerical results for the
behavior of meson masses with the magnetic field. The
curves for the case α ¼ 0.1 are given in Fig. 10, where we
also show the qq̄ production thresholds (dotted lines).
By comparison with the results in Figs. 3 and 6, it can be

observed that the B dependence of the couplings has a
significant qualitative effect only in the case of the ω̃ state.
It is found that the mass of this state follows quite closely
the position of the lowest qq̄ production threshold, 2Md,
which—as stated—does get affected by the B dependence
of g. The behavior of the masses of the other mesons do not
change qualitatively with respect to the case g ¼ constant,
and something similar happens with their composition and
their dependence on α. In particular, the results for the ratio
rπ ¼ mπ̃ðeBÞ=mπð0Þ are almost identical to those obtained
in Sec. III B (solid line in Fig. 5).
Given the fact that gvðeBÞ is not so well constrained as

in the case of the scalar coupling, one can, in principle,
introduce a new function F vðeBÞ, different from F ðeBÞ.
The freedom in the election of this function can be used to
reproduce the results for the ratio rπ obtained through
LQCD calculations. It can be seen, however, that in this
case the masses of the Sz ¼ �1 vector mesons increase
even faster than in the case in which B-independent
couplings are used.

IV. CONCLUSIONS

In this work we have studied the mass spectrum of light
neutral pseudoscalar and vector mesons in the presence of
an external uniform magnetic field B⃗. For this purpose we
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have considered a two-flavor NJL-like model in the Landau
gauge. This model includes isoscalar and isovector cou-
plings in the scalar-pseudoscalar sector and in the vector
sector. A flavor mixing term in the scalar-pseudoscalar
sector, regulated by a constant α, has also been included.
For α ¼ 0 there is not flavor mixing, but flavor degeneracy
gets broken by the magnetic field and Mu ≠ Md, while for
α ¼ 0.5 one has maximum flavor mixing, as in the case of
the standard version of the NJL model, and in this case
Mu ¼ Md. To account for the usual divergences of the NJL
model, we have considered here the magnetic field inde-
pendent regularization (MFIR) method, which has been
shown to reduce the dependence of the results on the model
parameters. It should be stressed that for neutral mesons the
contributions to the polarization functions arising from
Schwinger phases in quark propagators get canceled; as a
consequence, the polarization functions turn out to be
diagonal in the usual momentum basis.
It is important to note that the presence of an electro-

magnetic field allows for isospin mixing. In addition, the
axial character of the magnetic field together with the loss
of rotational invariance lead to pseudoscalar-vector mixing.
These mixing contributions are usually forbidden by
isospin and angular momentum conservation. However,
they arise and may become important in the presence of the
external magnetic field. Although full rotational invariance
is broken, invariance under rotations around the magnetic
field direction survives. Therefore, the projection of the
vector meson spin in the field direction, Sz, is the
observable that organizes the obtained results. Our analysis
shows that for the determination of the masses (i.e., if
particles are taken at rest), the scalar mesons, which in our
case include the f0 (or σ) and a00 states, mix with each other
but decouple from other mesons. Thus, they can be
disregarded in the analysis of the pseudoscalar and vector
meson masses. The remaining meson space can be sepa-
rated into three subspaces: pseudoscalar and vector mesons
with Sz ¼ 0, including π0, η, ρ0 and ω, which mix with
each other; vector mesons with Sz ¼ þ1, including ρ0 and
ω mesons; same as before, with Sz ¼ −1.
Regarding the Sz ¼ 0 sector, we observe two different

behaviors for the meson masses. The masses of the two
lightest mesons, which we have called π̃ and η̃, are
determined by the underlying symmetries and their break-
ing pattern. In the presence of the magnetic field, with
α ¼ 0, one has a “residual” Uð1ÞT3 ⊗ Uð1ÞT3;A ⊗ Uð1ÞA
chiral symmetry, explicitly broken only by a (small)
current mass term, mc ≠ 0, which guarantees the
pseudo-Goldstone character of these two states. We have
shown that flavor degeneracy gets broken by the magnetic
field and mass eigenstates are separated into particles with
pure u or d quark content. For α ¼ 0.1, which leads to a
reasonable value for the η mass in the absence of the
magnetic field, the Uð1ÞA symmetry is broken and only one
pseudo-Goldstone boson, π̃, survives. From our results,

we can conclude that even for magnetic field values as large
as eB ¼ 1 GeV2, the π̃ state is mostly a pseudoscalar
isovector (third component) and η̃ is mostly a pseudoscalar
isoscalar. Increasing the magnetic field intensity from a low
value of eB ¼ 0.05 GeV2 to eB ¼ 1 GeV2 we observe that
the u content of the π̃ and the d content of the η̃ get
enhanced.
On the other hand, regarding the quark structure

of the two heaviest mesons, which we call ω̃ and ρ̃, it is
found that even for a low value of the magnetic field,
eB ¼ 0.05 GeV2, the mass eigenstates turn out to be
clearly dominated by the quark flavor content and spin
orientation. This is what we could expect, since the
magnetic field tends to separate quarks according to their
electric charges, and favors that their magnetic moments be
orientated parallel to the field direction.
The lack of confinement in the NJL model implies that

the polarization functions get absorptive contributions,
related with qq̄ pair production, beyond certain thresholds.
In the presence of the magnetic field, the position of each
threshold is flavor and spin dependent, in such a way that
for Sz ¼ 0 we have thresholds for meson mass values
mf ¼ 2Mf, while for Sz ¼ �1 the thresholds rise to higher

values mf ¼ Mf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ 2Bf

q
. As a consequence, we

find that ω̃ and ρ̃ states with Sz ¼ 0 enter into the
continuum for values of the magnetic field around
eB ∼ 0.1 GeV2, whereas Sz ¼ �1 meson masses always
lie under qq̄ production thresholds for the considered range
of values of eB. A common result for all these states is that
their masses show an appreciable growth when the mag-
netic field varies from zero to eB ¼ 1 GeV2. In the case of
Sz ¼ �1, the model reproduces reasonably well present
LQCD results for ρuk, taking into account the uncertainties

in LQCD simulations.
We have observed that the mass of the lightest state, π̃,

gets reduced as the magnetic field increases. This behavior
reproduces the trend of existing LQCD results. However,
our results overestimate the mass reduction as compared to
the one found in LQCD simulations. It is seen that this
reduction is significantly affected by the mixing between
pseudoscalar and vector components, a fact that turns out to
be independent of the value of the flavor mixing parameter
α. From an analytical perturbative analysis, we have care-
fully studied how a small value of the vector components in
the π̃ state can lead to a significant reduction of its mass. It
is seen that both the mixture of the π channel with theω and
ρ channels contribute to this mass shrinkage.
While local NJL-like models are able to reproduce the

magnetic catalysis effect at vanishing temperature, they fail
to lead to the so-called inverse magnetic catalysis. One of
the simplest ways to deal with this problem is to allow that
the model coupling constants depend on the magnetic field.
With this motivation, we have explored the possibility of
considering magnetic field dependent couplings gðeBÞ and
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gvðeBÞ. For definiteness we take the same dependence on B
for both couplings; in that case, our results show that, for
any value of α, the mass of the ω̃ state with Sz ¼ 0 is the
only one that becomes significantly modified with respect
to the case in which g and gv do not depend on the magnetic
field. In particular, the B-dependence of the ratio rπ ¼
mπ̃ðeBÞ=mπð0Þ is almost identical to that obtained when
the couplings g and gv are kept constant. If one allows for
different B dependences for g and gv it is possible to
improve on the agreement with LQCD results for this ratio.
However, this implies a rather strong enhancement in the
masses of Sz ¼ �1 vector meson states, leading to a rather
large discrepancy with LQCD results in Ref. [54].
For simplicity, in the present work we have not taken into

account the axial vector interactions. The influence of these
degrees of freedom in the magnetic field dependence of
light neutral meson masses, and, in particular, on the ratio
rπ , is certainly an issue that deserves further investigation.
It would be also interesting to study the effect of the
inclusion of quark anomalous magnetic moments. We
expect to report on these issues in future publications.
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APPENDIX A: REGULARIZED B= 0
POLARIZATION FUNCTIONS

In this appendix we give the expressions for the
regularized B ¼ 0 pieces of the polarization functions,

Ĵ0;regMM0 ðqÞ, defined within the MFIR scheme. As stated, it
can be easily seen that these are zero forM ≠ M0, while for
M ¼ M0 one has

Ĵ0;regπaπa ðqÞ ¼ −Nc

X
f

½I1f þ q2I2fðq2Þ�;

Ĵ0;regρaμρ
a
ν
ðqÞ ¼ 2Nc

3

X
f

½ð2M2
f − q2ÞI2fðq2Þ − 2M2

fI2fð0Þ�

×
�
δμν −

qμqν
q2

�
: ðA1Þ

Here, the integrals I1f and I2fðq2Þ are defined as

I1f ¼ 4

Z
p

1

M2
f þ p2

;

I2fðq2Þ ¼ −2
Z
p

1

ðM2
f þ p2þÞðM2

f þ p2
−Þ

; ðA2Þ

with p� ¼ p� q=2. Within the 3D-cutoff regularization
scheme used in this work, the first of these integrals is
given by

I1f ¼ 1

2π2

�
Λ2rΛf þM2

f ln

�
Mf

Λð1þ rΛfÞ
��

; ðA3Þ

where we have defined rΛf ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

f=Λ2
q

. In the case of

I2fðq2Þ, we note that in order to determine the meson
masses, the external momentum q has to be extended to
the region q2 < 0. Hence, we find it convenient to write
q2 ¼ −m2, where m is a positive real number. Then, within
the 3D-cutoff regularization scheme, the regularized real
part of I2fð−m2Þ can be written as

Re½I2fð−m2Þ� ¼ −
1

4π2

�
arcsinh

�
Λ
Mf

�
− Ff

�
; ðA4Þ

where

Ff ¼

8>>>>>>>><
>>>>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

f=m
2 − 1

q
arctan

�
1

rΛf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

f=m
2−1

p �
if m2 < 4M2

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

f=m
2

q
arccoth

�
1

rΛf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2

f=m
2

p �
if 4M2

f < m2 < 4ðM2
f þ Λ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

f=m
2

q
arctanh

�
1

rΛf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2

f=m
2

p �
if m2 > 4ðM2

f þ Λ2Þ

: ðA5Þ
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For the regularized imaginary part we get

Im½I2fð−m2Þ� ¼
(
− 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

f=m
2

q
if 4M2

f < m2 < 4ðM2
f þ Λ2Þ

0 otherwise
: ðA6Þ

APPENDIX B: INTEGRALS Imag
nf ð−m2Þ

FOR m > 2Mf

The expressions for the integrals Imag
nf ð−m2Þ for

n ¼ 2;…; 5 given in Eqs. (31) are only valid when
m < 2Mf. Form > 2Mf, it happens that the corresponding
integrands can become divergent at some points within the
integration domain, leading to divergent integrals.
However, we can get finite results by considering the
analytical extension of the functions in Eqs. (31). For this
purpose it is worth taking into account that the Feynman
quark propagators originally contain iϵ terms, which can be
easily recovered in the integrands of Eqs. (31) through the

replacement M2
f → M2

f − iϵ (note that this implies the
replacement x̄f → x̄f − iϵ). Once this is done, one can
proceed by using the digamma recurrence relation

ψðxÞ ¼ ψðxþ nþ 1Þ −
Xn
j¼0

1

xþ j
; ðB1Þ

and taking ϵ → 0þ through a generalized version of the
Sokhotski-Plemelj formula [see, e.g., Eq. (A8) of
Ref. [40]]. In this way, we find that for m > 2Mf the
integrals Imag

nf ð−m2Þ, n ¼ 2;…; 5, can be extended to

Imag
2f ð−m2Þ ¼ 1

8π2

�Z
1

0

dvψðx̄f þ N þ 1Þ − ln xf þ 2 − 2β0arctanh β0 þ
4Bf

m2

XN
n¼0

αn
βn

arctanhβn

�
þ i
8π

�
β0 −

2Bf

m2

XN
n¼0

αn
βn

�
;

ðB2Þ

Imag
3f ð−m2Þ ¼ −

QfMf

π2m

�
arctanhβ0

β0
− i

π

2β0

�
; ðB3Þ

Imag
4f ð−m2Þ ¼ −Imag

1f þ Tþ
f ð−m2Þ þ T−

f ð−m2Þ − m2

16π2

�
4β0

�
1 −

1

3
β20

�
arctanh β0 þ

�
7

3
− β20

�
ln xf þ

4

3
β20 −

38

9

�

þ im2

8π

�
β0

�
1 −

1

3
β20

�
− θðm −m−

f Þ
4Bf

m2

XN−

n¼0

ð2λ − 2n − 1Þ
rn

�
; ðB4Þ

Imag
5f ð−m2Þ ¼ 1

8π2

�Z
1

0

dvð1 − v2Þψðx̄f þ N þ 1Þ − 2

3

�
ln xf −

8

3
þ β20 þ β0ð3 − β20Þarctanh β0

�

þ 4Bf

m2

XN
n¼0

αn
βn

½βn þ ð1 − β2nÞarctanh βn�
�
þ i
8π

�
β0

�
1 −

1

3
β20

�
−
2Bf

m2

XN
n¼0

αn
βn

ð1 − β2nÞ
�
: ðB5Þ

Here, we have used the definition αn ¼ 2 − δ0n, together with

βn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðM2
f þ 2nBfÞ
m2

s
; rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λð2nþ 1Þ þ 4λ2β20

q
; N ¼ Floor½λβ20=2�;

where λ ¼ m2=ð4BfÞ. In the expression of Imag
4f ð−m2Þ the integral Imag

1f is that given by Eq. (17), and we have introduced the
functions T�

f ð−m2Þ given by

T�
f ð−m2Þ ¼ m2

32π2

Z
1

0

dvðv2 � v=λþ γÞψðx̄f þ ð1� vÞ=2þ θðm −m�
f Þð1þ N�ÞÞ

−
Bf

4π2
θðm −m�

f Þ
XN�

n¼0

�
1 −

ð2λ − 2n − 1Þ
rn

ln

� ð2λ − rn � 1Þjrn � 1j
ð2λþ rn � 1Þðrn ∓ 1Þ

��
; ðB6Þ
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with γ ¼ 2 − β20 ¼ 1þ 4M2
f=m

2, and

m−
f ¼Mfþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

fþ2Bf

q
; mþ

f ¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

fþBf

q
: ðB7Þ

The integers N� have been defined as

N−¼Floor½r20=ð8λÞ�; Nþ¼Floor½ðλβ20−1Þ=2�: ðB8Þ

APPENDIX C: A SIMPLIFIED MODEL FOR THE
LOWEST STATE OF THE Sz = 0 SECTOR

In this appendix we present a simplified model to
analyze the mass and composition of the lowest
state of the Sz ¼ 0 meson sector. As seen in Sec. III B
(see the discussion concerning Fig. 4), the mass of this
state, while almost independent of the value of α, is
significantly affected by the existence of a mixing between
pseudoscalar and vector meson states. Thus, to simplify the
analysis we consider the case α ¼ 0.5, in which the relevant
basis is only composed by the states π3, ρ3⊥ and ρ0⊥.
In addition, one has Mu ¼ Md ≡M for any value
of eB. Assuming as in the main text gv0 ¼ gv3 ¼ gv,
it is easy to see that the ratio between the off-diagonal
π3ρ3⊥ and π3ρ0⊥ mixing matrix elements is given by
G⊥π3ρ3=G⊥π3ρ0 ¼ ðBu − BdÞ=ðBu þ BdÞ ¼ 1=3. Hence, to
simplify the problem even further, in what follows we only

consider the π3—ρ0⊥ system (see, however, discussion at
the end of this appendix). To check whether we are
capturing the main effect of pseudoscalar-vector meson
mixing on the π̃ mass it is useful to consider the ratio
rπ ¼ mπ̃ðeBÞ=mπð0Þ. Assuming that g and gv do not
depend on the magnetic field, and taking α ¼ 0.1, for eB ¼
1 GeV2 we get rπ ¼ 0.32 for the full π0−π3−ρ0⊥−ρ3⊥
system, to be compared with the values rπ ¼ 0.38, obtained
when we consider only the π3−ρ0⊥ system, and rπ ¼ 0.92,
obtained for the case in which there is no mixing at all.
These values clearly support our approximation of the
full system by the much simpler π3ρ0⊥ one. It should be
stressed that even in this simplified situation the
lowest mass state is still found to be strongly dominated
by the π3 contribution. In fact, for eB ¼ 1 GeV2 we get

cð1Þρ0⊥ ¼ −0.083, close to the value −0.0797 obtained for the
full system (see Table I). Defining a mixing angle θ by

tan θ ¼ cð1Þρ0⊥=c
ð1Þ
π3 , this implies θ ≃ −50.

The strong dominance of the π3 contribution to the π̃
state suggests that one should be able to determine the
mixing effect on mπ̃ using first order perturbation theory.
On the other hand, this appears to be in contradiction with
the aforementioned significant reduction of the π̃ mass. To
get a better understanding of the situation, it is convenient
to carry out some further approximations. The relevant
mixing matrix elements to be considered are

G⊥π3π3 ¼
1

2g
− Nc

X
f

½ðI1f þ Imag
1f Þ −m2ðI2fð−m2Þ þ Imag

2f ð−m2ÞÞ�;

G⊥π3ρ0 ¼
iNcsBBe arctanð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2=m2 − 1

p
Þ

2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2=4M2

p ;

G⊥ρ0ρ0 ¼
1

2gv
þ Nc

X
f

�
2

3
½ð2M2 þm2ÞI2fð−m2Þ − 2M2I2fð0Þ� þm2Imag

5f ð−m2Þ
�
; ðC1Þ

where we have denoted Be ¼ jeBj and sB ¼ signðBÞ. For
the π̃ state, we have m2=ð4M2Þ ≪ 1 (for our parametriza-
tion we find m2=ð4M2Þ ≈ 0.03 at vanishing magnetic field,
and even a smaller value at eB ¼ 1 GeV2). Thus, we can
obtain a good approximation to these matrix elements by
expanding up to Oðm2=4M2Þ. In this way we get a mixing
matrix of the form

Gðπ3ρ0Þ⊥ ¼
�
a − bm2 icm

−icm d − b0m2

�
; ðC2Þ

where

a ¼ mc

2gM
; c ¼ NcsBBe

4π2M
; d ¼ 1

2gv
;

b0 ¼ 2b
3
þ Nc

18π2
Λ3

ðΛ2 þM2Þ3=2 ðC3Þ

and

b ¼ Nc

8π2

�
4 arcsinh

Λ
M

−
4Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þM2
p −

Be

M2
þ ln

9M4

8B2
e

− ψ

�
3M2

4Be

�
− ψ

�
3M2

2Be

��
: ðC4Þ

We note that here the gap equation has been used to get
the expression for a. Given the model parameters, these
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coefficients can be easily computed for a given value
of Be.
Keeping terms up to the leading order in m2, one gets in

this way

m2
π̃ ¼

ad
ab0 þ bdþ c2

: ðC5Þ

In addition, it can be seen that a=d ¼ ðgv0=gÞðmc=MÞ ≪ 1,
and consequently ab0 ≪ bd. Using this approximation
we obtain

mπ̃ ¼
m̄π̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2=ðbdÞ
p ; ðC6Þ

where m̄π̃ ¼
ffiffiffiffiffiffiffiffi
a=b

p
is the mass of the lightest state if there

is no mixing at all. Within the same approximation, the
coefficient of the ρ0⊥ piece of the lightest state is given by

cð1Þρ0⊥ ¼ −
mπ̃c
d

: ðC7Þ

The numerical values for the above quantities can be
calculated from Eqs. (C3) and (C4). For a large magnetic
field eB ¼ 1 GeV2, assuming that the coupling constants

are independent of B, we get rπ ¼ 0.39 and cð1Þρ0⊥ ¼ −0.084,
in excellent agreement with the results quoted above for the
π3ρ0⊥ system. This confirms the validity of the approx-
imations made so far.
It is also interesting to note that the expression for mπ̃

given in Eq. (C6) implies

bðm2
π̃ − m̄2

π̃Þ ¼ −
m2

π̃c
2

d
: ðC8Þ

This expression, together with the one for cð1Þρ0⊥ in
Eq. (C7), are the relations that one would obtain from
a first-order perturbation analysis of the system
described by the matrix in Eq. (C2) when
d ≫ aþ ðb0 − bÞm2, a condition that is always well
satisfied in our case. One can observe that the some-
what unexpectedly “large” value of the mass shift arises
from the small value of the coefficient b, which is
found to be about 0.034 for eB ¼ 1 GeV2 (assuming
B-independent couplings). In a conventional eigenvalue
problem, one would have b ¼ 1.
Finally, we note that the effect on this game of the ρ3⊥

meson, so far neglected, can be easily taken into account at
this stage. Since, as shown above, the G⊥π3ρ0 matrix
element can be treated perturbatively, and G⊥π3ρ3 is even
3 times smaller, one can account for the ρ3⊥ meson just
replacing the factor c2 in Eq. (C6) by 10=9c2. The resulting
expression for mπ̃ can be rewritten as

mπ̃ ¼
m̄π̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κm̄2
π̃B

2
e=M

p ; ðC9Þ

where κ ¼ 5N2
cggv=ð18π4mcÞ. To obtain this expression we

have made use of Eq. (C3) together with the rela-
tion b ¼ a=m̄2

π̃ ¼ mc=ð2gMm̄2
π̃Þ.

It should be emphasized that although the numerical
values quoted in this appendix correspond to the case in
which the couplings g and gv are kept fixed, Eq. (C9) can be
shown to be approximatively valid also when they depend
on B as considered in Sec. III D.
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Phys. Rev. D 104, 094040 (2021).
[41] A.Ayala,R. L. S. Farias, S.Hernández-Ortiz, L. A.Hernández,

D.M. Paret, and R. Zamora, Phys. Rev. D 98, 114008 (2018).
[42] K. Kamikado and T. Kanazawa, J. High Energy Phys. 03

(2014) 009.
[43] N. O. Agasian and I. A. Shushpanov, J. High Energy Phys.

10 (2001) 006.
[44] J. O. Andersen, J. High Energy Phys. 10 (2012) 005.
[45] G. Colucci, E. S. Fraga, and A. Sedrakian, Phys. Lett. B

728, 19 (2014).
[46] V. D. Orlovsky and Y. A. Simonov, J. High Energy Phys. 09

(2013) 136.
[47] M. A. Andreichikov, B. O. Kerbikov, E. V. Luschevskaya,

Y. A. Simonov, and O. E. Solovjeva, J. High Energy Phys.
05 (2017) 007.

[48] Y. A. Simonov, Phys. At. Nucl. 79, 455 (2016).
[49] M. A. Andreichikov and Y. A. Simonov, Eur. Phys. J. C 78,

902 (2018).
[50] C. A. Dominguez, M. Loewe, and C. Villavicencio,

Phys. Rev. D 98, 034015 (2018).

[51] E. V. Luschevskaya, O. E. Solovjeva, O. A. Kochetkov, and
O. V. Teryaev, Nucl. Phys. B898, 627 (2015).

[52] E. V. Luschevskaya, O. A. Kochetkov, O. V. Teryaev, and
O. E. Solovjeva, JETP Lett. 101, 674 (2015).

[53] B. B. Brandt, G. Bali, G. Endrödi, and B. Glässle, Proc. Sci.,
LATTICE2015 (2016) 265 [arXiv:1510.03899].

[54] G. S. Bali, B. B. Brandt, G. Endrődi, and B. Gläßle, Phys.
Rev. D 97, 034505 (2018).

[55] H. T. Ding, S. T. Li, A. Tomiya, X. D. Wang, and Y. Zhang,
Phys. Rev. D 104, 014505 (2021).

[56] H. T. Ding, S. T. Li, J. H. Liu, and X. D. Wang, Phys. Rev. D
105, 034514 (2022).

[57] M. Kawaguchi and S. Matsuzaki, Phys. Rev. D 93, 125027
(2016).

[58] S. Ghosh, A. Mukherjee, M. Mandal, S. Sarkar, and P. Roy,
Phys. Rev. D 94, 094043 (2016).

[59] S. Ghosh, A. Mukherjee, N. Chaudhuri, P. Roy, and S.
Sarkar, Phys. Rev. D 101, 056023 (2020).

[60] S. S. Avancini, R. L. S. Farias, W. R. Tavares, and V. S.
Timóteo, Nucl. Phys. B981, 115862 (2022).

[61] E. V. Luschevskaya and O. V. Larina, Nucl. Phys. B884, 1
(2014).

[62] E. V. Luschevskaya, O. E. Solovjeva, and O. V. Teryaev,
J. High Energy Phys. 09 (2017) 142.

[63] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195
(1991).

[64] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[65] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
[66] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[67] P. G. Allen, A. G. Grunfeld, and N. N. Scoccola, Phys. Rev.

D 92, 074041 (2015).
[68] S. S. Avancini, R. L. S. Farias, N. N. Scoccola, and W. R.

Tavares, Phys. Rev. D 99, 116002 (2019).
[69] D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Perez

Martinez, and C. Providencia, Phys. Rev. C 79, 035807
(2009).

[70] G. ’t Hooft, Phys. Rep. 142, 357 (1986).
[71] V. A. Miransky and I. A. Shovkovy, Phys. Rev. D 66,

045006 (2002).
[72] A. Ayala, M. Loewe, A. J. Mizher, and R. Zamora, Phys.

Rev. D 90, 036001 (2014).
[73] R. L. S. Farias, K. P. Gomes, G. I. Krein, and M. B. Pinto,

Phys. Rev. C 90, 025203 (2014).
[74] M. Ferreira, P. Costa, O. Lourenço, T. Frederico, and C.

Providência, Phys. Rev. D 89, 116011 (2014).
[75] G. Endrődi and G. Markó, J. High Energy Phys. 08 (2019)

036.
[76] T. Kunihiro, Phys. Lett. B 219, 363 (1989); 245, 687(E)

(1990).
[77] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562, 221

(2003).
[78] V. Bernard, A. H. Blin, B. Hiller, Y. P. Ivanov, A. A. Osipov,

and U. G. Meissner, Phys. Lett. B 409, 483 (1997).
[79] G. Cao, Phys. Rev. D 101, 094027 (2020).
[80] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz,

S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 11
(2010) 077.

J. P. CARLOMAGNO et al. PHYS. REV. D 106, 074002 (2022)

074002-20

https://doi.org/10.1016/j.physletb.2012.10.081
https://doi.org/10.1103/PhysRevD.87.094502
https://doi.org/10.1103/PhysRevD.87.094502
https://doi.org/10.1016/j.physletb.2013.02.050
https://doi.org/10.1103/PhysRevD.91.014017
https://doi.org/10.1103/PhysRevD.91.014017
https://doi.org/10.1103/PhysRevD.100.074024
https://doi.org/10.1140/epjc/s10052-021-08900-8
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.86.085042
https://doi.org/10.1103/PhysRevD.88.065030
https://doi.org/10.1103/PhysRevD.88.065030
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1016/j.physletb.2017.02.002
https://doi.org/10.1103/PhysRevD.96.034004
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.97.034026
https://doi.org/10.1016/j.physletb.2018.03.018
https://doi.org/10.1016/j.physletb.2018.03.018
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1103/PhysRevD.99.056005
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.100.054014
https://doi.org/10.1103/PhysRevD.105.034003
https://doi.org/10.1103/PhysRevD.105.034003
https://doi.org/10.1103/PhysRevD.104.094040
https://doi.org/10.1103/PhysRevD.98.114008
https://doi.org/10.1007/JHEP03(2014)009
https://doi.org/10.1007/JHEP03(2014)009
https://doi.org/10.1088/1126-6708/2001/10/006
https://doi.org/10.1088/1126-6708/2001/10/006
https://doi.org/10.1007/JHEP10(2012)005
https://doi.org/10.1016/j.physletb.2013.11.028
https://doi.org/10.1016/j.physletb.2013.11.028
https://doi.org/10.1007/JHEP09(2013)136
https://doi.org/10.1007/JHEP09(2013)136
https://doi.org/10.1007/JHEP05(2017)007
https://doi.org/10.1007/JHEP05(2017)007
https://doi.org/10.1134/S1063778816030170
https://doi.org/10.1140/epjc/s10052-018-6384-x
https://doi.org/10.1140/epjc/s10052-018-6384-x
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1016/j.nuclphysb.2015.07.023
https://doi.org/10.1134/S0021364015100094
https://arXiv.org/abs/1510.03899
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/PhysRevD.104.014505
https://doi.org/10.1103/PhysRevD.105.034514
https://doi.org/10.1103/PhysRevD.105.034514
https://doi.org/10.1103/PhysRevD.93.125027
https://doi.org/10.1103/PhysRevD.93.125027
https://doi.org/10.1103/PhysRevD.94.094043
https://doi.org/10.1103/PhysRevD.101.056023
https://doi.org/10.1016/j.nuclphysb.2022.115862
https://doi.org/10.1016/j.nuclphysb.2014.04.003
https://doi.org/10.1016/j.nuclphysb.2014.04.003
https://doi.org/10.1007/JHEP09(2017)142
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevD.92.074041
https://doi.org/10.1103/PhysRevD.92.074041
https://doi.org/10.1103/PhysRevD.99.116002
https://doi.org/10.1103/PhysRevC.79.035807
https://doi.org/10.1103/PhysRevC.79.035807
https://doi.org/10.1016/0370-1573(86)90117-1
https://doi.org/10.1103/PhysRevD.66.045006
https://doi.org/10.1103/PhysRevD.66.045006
https://doi.org/10.1103/PhysRevD.90.036001
https://doi.org/10.1103/PhysRevD.90.036001
https://doi.org/10.1103/PhysRevC.90.025203
https://doi.org/10.1103/PhysRevD.89.116011
https://doi.org/10.1007/JHEP08(2019)036
https://doi.org/10.1007/JHEP08(2019)036
https://doi.org/10.1016/0370-2693(89)90405-X
https://doi.org/10.1016/0370-2693(90)90712-F
https://doi.org/10.1016/0370-2693(90)90712-F
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/S0370-2693(03)00607-5
https://doi.org/10.1016/S0370-2693(97)00930-1
https://doi.org/10.1103/PhysRevD.101.094027
https://doi.org/10.1007/JHEP11(2010)077
https://doi.org/10.1007/JHEP11(2010)077

