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S1. OVERVIEW

This document contains additional information about the calculations performed to obtain the

results detailed in the main paper.

To begin with, we perform the calculation discussed in Section III of the main text. Specifically,

Section S2 of this document is dedicated to showing how one can compute the eigenvalue potential,

defined in Eq. (7) of the main text, and to deriving the annealed approximation for the network

given in Eq. (9). Given this annealed approximation, Section S3 then shows how the resolvent

can be deduced by performing a saddle point approximation (valid for large N) of the eigenvalue

potential Φ(ω, ω⋆).

We then move on to deriving the ‘general results’ in Section IV of the main text. Section S4

shows how each of the properties of the bulk of the eigenvalue spectrum (the boundary of the bulk

spectrum, the leading eigenvalue of the bulk region and the density of eigenvalues within the bulk

region) can be found. These results are valid for a general network degree distribution and are

given in Section IV A of the main text. Similarly, Section S5 then shows how one can derive the

density of eigenvalues in the case where the random matrix a is fully symmetric (an undirected

network) — i.e. the results in Section IV B of the main text. Then, Section S6 derives the general

expression for the outlier eigenvalue discussed in Section IV C of the main text

In Section S7, we then perform series expansions of the more general results given in Section IV

of the main text to obtain the small-s2 (small-network-heterogeneity) modifications to the elliptic,

circular and semi-circular laws, as well as the outlier eigenvalues, that were highlighted in Section

V of the main text.

Finally, in Section S8, we discuss a couple of example degree distributions that were used to

produce the figures in the main text, namely the dichotomous and uniform degree distributions.

We discuss how the general results in Section IV of the main text can be used to find the properties

of the eigenvalue spectrum in these special cases.

S2. EIGENVALUE POTENTIAL AND ANNEALED APPROXIMATION

In a similar fashion to Refs. [S1–S3], we evaluate the eigenvalue potential, defined in Eq. (7)

of the main text, using the replica method [S4]. The replica method exploits the fact that lnx =

limn→0(x
n − 1)/n to evaluate the average of the logarithm in Eq. (7) by instead calculating the

average of an n-fold replicated system.

It has been shown in other works [S2, S3] (see the Supplemental material in Ref. [S5] for a

more detailed discussion) that in fact the replicas ‘decouple’, meaning that the logarithm and the

ensemble average commute. That is

Φ(ω, ω⋆) = − 1

N

〈
ln det

[
(ω⋆11− aT )(ω11− a)

]〉
= − 1

N
ln

〈
det

[
(ω⋆11− aT )(ω11− a)

]〉
. (S1)

The determinant above can be written as a Gaussian integral (after having performed a Hubbard-

Stratonovich transformation [S6])
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det
[
(11ω⋆ − aT )(11ω − a)

]−1
=

∫ ∏
i

d2zid
2yi

2π2
exp

[
−
∑
i

y⋆i yi

]

× exp

i∑
ij

z⋆i (aji − ω⋆δij)yj

 exp

i∑
ij

y⋆i (aij − ωδij)zj

 . (S2)

Performing the ensemble average according to the distribution described in Eqs. (1) and (2) of the

main text, we obtain〈
exp

[
iaij(z

⋆
j yi + zjy

⋆
i ) + iaji(z

⋆
i yj + ziy

⋆
j )
]〉

= 1 + fij

[〈
exp

[
iaij(z

⋆
j yi + zjy

⋆
i ) + iaji(z

⋆
i yj + ziy

⋆
j )
]〉

π
− 1

]
≈ exp

[
kikj
pN

[〈
exp

[
iaij(z

⋆
j yi + zjy

⋆
i ) + iaji(z

⋆
i yj + ziy

⋆
j )
]〉

π
− 1

]]
(S3)

where we have used the approximation fij ≈ kikj
pN [see Eq. (3) in the main text], which is valid for

kikj
pN ≪ 1. Now, expanding the exponential and assuming that higher order moments of aij decay

faster then 1/p, we obtain〈
exp

[
iaij(z

⋆
j yi + zjy

⋆
i ) + iaji(z

⋆
i yj + ziy

⋆
j )
]〉

π

≈ 1 + i
µ

p

[
(z⋆j yi + zjy

⋆
i ) + (z⋆i yj + ziy

⋆
j )
]

− σ2

2p

[
(z⋆i yj + ziy

⋆
j )

2 + (z⋆j yi + zjy
⋆
i )

2 + 2Γ(z⋆i yj + ziy
⋆
j )(z

⋆
j yi + zjy

⋆
i )
]

≈ exp

[
i
µ

p

[
(z⋆j yi + zjy

⋆
i ) + (z⋆i yj + ziy

⋆
j )
]

− σ2

2p

[
(z⋆i yj + ziy

⋆
j )

2 + (z⋆j yi + zjy
⋆
i )

2 + 2Γ(z⋆i yj + ziy
⋆
j )(z

⋆
j yi + zjy

⋆
i )
] ]

. (S4)

Finally, we obtain the following approximation for the eigenvalue potential

exp [−NΦ(ω)] =

∫ ∏
i

(
d2zid

2yi
2π2

)
exp

[
−
∑
i

y⋆i yi

]

× exp

−i
∑
i

(z⋆i yiω
⋆ + ziy

⋆
i ω) + i

µ

p

∑
ij

kikj
pN

(z⋆i yj + ziy
⋆
j )


× exp

[
− σ2

2p

∑
ij

kikj
pN

[
(z⋆i yj + ziy

⋆
j )

2 + Γ(z⋆i yj + ziy
⋆
j )(z

⋆
j yi + zjy

⋆
i )
] ]

. (S5)

We note that this is exactly the same expression for Φ(ω, ω⋆) that we would have obtained if we

had used the distribution for aij in Eq. (9) in the main text from the start. We therefore conclude

that the annealed network approximation in Eq. (9) is valid when p ≫ 1 and
kikj
pN ≪ 1 for all i and

j.
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S3. FINDING THE RESOLVENT

We note from previous works [S5, S7–S9] that low-rank perturbations to a random matrix

produce outlier eigenvalues, but they do not affect the bulk of the eigenvalue distribution. Noting

that the introduction of a non-zero value of µ is equivalent to a rank-1 perturbation in the annealed

approximation, we can set µ = 0 in Eq. (S5) and continue the calculation to find the bulk eigenvalue

density. We return later to the outlier eigenvalue that emerges as a result of setting a non-zero

value of µ in Section S6.

A. Introduction of order parameters

We now imagine that we group each node with all other nodes that share the same degree kα

in a group labelled by the index α. In the annealed network approximation the problem therefore

reduces to that of finding the eigenvalue spectrum of a random matrix with block-structured

statistics (as discussed in the main text). This enables us to follow along the lines of previous

works that have studied the eigenvalue spectra of block-structured random matrices (see Ref. [S1]

in particular).

We begin by rewriting Eq. (S5) as

exp [−NΦ(ω)] =

∫ ∏
αi

(
d2zαi d

2yαi
2π2

)
exp

[
−
∑
αi

yα⋆i yαi

]

× exp

−i
∑
αi

(zα⋆i yαi ω
⋆ + zαi y

α⋆
i ω) + i

µ

p

∑
αβij

kαkβ
pN

(zα⋆i yβj + zαi y
β⋆
j )


× exp

[
− σ2

2p

∑
αβij

kαkβ
pN

[
(zα⋆i yβj + zαi y

β⋆
j )2 + Γ(zα⋆i yβj + zαi y

β⋆
j )(zβ⋆j yαi + zβj y

α⋆
i )

] ]
,

(S6)

where the indices i and j now only run over the nodes in the groups α and β respectively. We

introduce the following ‘order parameters’, defining xα = kα/p

u =
1

N

∑
αi

xαz
α⋆
i zαi , vα =

1

Nα

∑
i

yα⋆i yαi ,

wα =
1

Nα

∑
i

zα⋆i yαi , w⋆
α =

1

Nα

∑
i

yα⋆i zαi , (S7)

where Nα is the number of nodes with degree kα. We impose these definitions in the integral

Eq. (S6) using Dirac delta functions in their complex exponential representation. We can thus

rewrite Eq. (S6) as

exp [−NΦ(ω)] =

∫
D [· · · ] exp [N(Ψ + Θ+ Ω)] , (S8)

where D [· · · ] denotes integration over all of the order parameters and their conjugate (‘hatted’)

variables, and where

Ψ = iûu+ i
∑
α

γα(v̂αvα + ŵαw
⋆
α + ŵ⋆

αwα),
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Θ = −
∑
α

vα − σ2u
∑
α

γαxαvα − i
∑
α

γα(wαω
⋆ + w⋆

αω)−
Γσ2

2

∑
αβ

γαγβxαxβ(wαwβ + w⋆
αw

⋆
β),

Ω =
∑
α

γα ln

[∫ (
d2zαd2yα

2π2

)
exp

{
− i[ûxαz

α⋆zα + v̂αy
α⋆yα

+ ŵαy
α⋆zα + ŵ⋆

αz
α⋆yα]

}]
. (S9)

Here, we have defined γα = Nα/N . In the limit N → ∞, this quantity will be given by the degree

distribution of the network, i.e. γα → γ(kα).

We note that the integrals over yi and zi in Eq. (S9) are uncoupled for different values of i

as a result of introducing the order parameters in Eq. (S7). We note also that we have neglected

terms involving N−1
∑

i(y
α
i )

2, N−1
∑

i(z
α
i )

2, N−1
∑

i z
α
i y

α
i and similar terms involving the complex

conjugates of zαi and yαi , which do not contribute in the thermodynamic limit (see Refs. [S2, S3,

S5, S10] for further discussion).

Carrying out the integrals over the variables yi and zi in the expression for Ω in Eq. (S9) one

obtains

Ω = −
∑
α

γα ln [ŵαŵ
⋆
α − xαûv̂α] . (S10)

B. Saddle point integration and evaluation of the order parameters

We now suppose that N ≫ 1, and carry out the integral in Eq. (S8) in the saddle-point

approximation. To do this, we extremise the expression Ψ + Θ + Ω. Extremising with respect to

the conjugate variables û, v̂, ŵα and ŵ⋆
α, we find

iu = −
∑
α

γαxα
v̂α
fα

, ivα = −xα
û

fα
, iwα =

ŵα

fα
, iw⋆

α =
ŵ⋆
α

fα
,

fα = ŵαŵ
⋆
α − xαûv̂α. (S11)

We now instead extremise Ψ + Θ+ Ω in Eq. (S8) with respect to u, v, wα and w⋆
α. We find

iû = σ2v, iγαv̂α = 1 + σ2γαxαu,

iŵα = iω + Γσ2
∑
β

γβxαxβw
⋆
β, iŵ⋆

α = iω⋆ + Γσ2
∑
β

γβxαxβwβ, (S12)

where we introduce v =
∑

α γαxαvα.

C. Expression for the resolvent

In a similar fashion to Ref. [S1], we observe that the quantities wα and w⋆
α, when evaluated at

the saddle point, are related to the resolvent [see Eq. (8) of the main text]:

G(ω) =
∂Φ(ω, ω⋆)

∂ω
= i

∑
α

γαw
⋆
α,
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G⋆(ω) =
∂Φ(ω, ω⋆)

∂ω⋆
= i

∑
α

γαwα. (S13)

So, if we can solve Eqs. (S11) and (S12) for i
∑

α γαw
⋆
α as a function of only ω and ω⋆, we can

obtain the eigenvalue density of the bulk region using Eq. (6) of the main text.

First, eliminating û, one sees that

v = σ2v
∑
α

γα
x2α
fα

. (S14)

This equation has two solutions.

First solution:

One solution is v = 0, implying û = 0 [see Eq. (S12)], and hence fα = ŵαŵ
⋆
α = −1/(wαw

⋆
α). We

therefore obtain from Eqs. (S11) and (S12)

1 = iωw⋆
α + Γσ2

∑
β

γβxαxβw
⋆
αw

⋆
β,

1 = iω⋆wα + Γσ2
∑
β

γβxαxβwαwβ. (S15)

From this, one can solve for the resolvent G(ω) = 1
N

∑
α γαw

⋆
α, which we see is an analytic function

of ω. This means that the eigenvalue density vanishes in regions of the complex plane for which

v = 0 is the only valid solution [as a result of Eq. (6) of the main text].

Second solution:

The other solution to the first of Eq. (S14) is

∑
α

γα
x2α
fα

=
1

σ2
. (S16)

Now, we see from the expression for iu and iv̂α in Eqs. (S11) and (S12) that when the second

Eq. (S16) is satisfied, u → ∞. This means that iv̂α → σ2xαu and hence

v̂αû → x2αg(ω, ω
⋆), (S17)

where g(ω, ω⋆) is an arbitrary function to be found that is independent of α. Hence, we obtain the

following simultaneous equations, which enable us to find the resolvent G(ω, ω⋆) =
∑

α γα(iw
⋆
α)

1

σ2
=

∑
α

γα
x2α
fα

,

−wαw
⋆
α = 1/fα + x2α

g(ω, ω⋆)

f2
α

,

iwα =
ω

fα
− Γσ2xα

fα

∑
β

iw⋆
βγβxβ,

iw⋆
α =

ω⋆

fα
− Γσ2xα

fα

∑
β

iwβγβxβ. (S18)
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In principle, one can solve these along with Eq. (S16) to find g(ω, ω⋆), iwα and iw⋆
α as functions of

ω and ω⋆. In this case, the resolvent is no longer necessarily an analytic function of ω. Therefore,

in the region of the complex plane where Eq. (S16) is satisfied, the eigenvalue density is non-zero.

Noting Eq. (S13) and Eq. (6) from the main text, one then obtains the eigenvalue density via

ρ(ω) =
1

π
Re

[∑
α

γα
∂iw⋆

α

∂ω⋆

]
. (S19)

S4. GENERAL RESULTS FOR THE BULK REGION

We have discussed two solutions to Eq. (S14): one that corresponds to the region of the complex

plane in which the bulk of the eigenvalue spectrum of a resides and one that corresponds to the

region of the complex plane where there are no eigenvalues. Noting these two solutions [given in

Eqs. (S15) and (S18)] along with Eq. (S19), we are now in a position to derive the results given in

Section IV A of the main text.

A. Replacing the index α with k

So as to make clear the effective block structure of the random matrix that we were considering,

we introduced the index α, which indexed nodes with the same degree kα. We now use the fact

that γα = γ(kα) in the large N limit and drop the index α to obtain the expressions in Section IV

A of the main text. For example, the expressions in Eqs. (S18) become

1

σ2
=

∑
k

γ(k)
(k/p)2

fk
,

−wkw
⋆
k = 1/fk + (k/p)2

g(ω, ω⋆)

f2
k

,

iwk =
ω

fk
− Γσ2 (k/p)

fk

∑
k′

γ(k′)(k′/p)(iw⋆
k′),

iw⋆
k =

ω⋆

fk
− Γσ2 (k/p)

fk

∑
k′

γ(k′)(k′/p)(iwk′). (S20)

B. Boundary of the bulk region

We first derive the results in Section IV A 1 of the main text for the boundary of the bulk

region. Because the two solutions to Eq. (S14) correspond to the region inside the bulk of the

eigenvalue spectrum and the outside, the boundary of the bulk region is given by the set of points

ω = ωx + iωy that simultaneously satisfy both Eqs. (S15) and (S18). The simultaneous solution of

these equations yields

1

σ2
=

∑
k

γ(k)(k/p)2|iw⋆
k|2,
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iw⋆
k =

1

iω + Γσ2(k/p)
∑

k′ γ(k
′)(k′/p)[iw⋆

k′ ]
. (S21)

Let
∑

k γ(k)(k/p)(iw
⋆
k) = Ax + iAy, where both Ax and Ay are real. Then we obtain

1

σ2
=

∑
k

γ(k)
(k/p)2

[ωx − Γσ2(k/p)Ax]2 + [ωy − Γσ2(k/p)Ay]2
,

Ax =
∑
k

γ(k)
(k/p)ωx − Γσ2(k/p)2Ax

[ωx − Γσ2(k/p)Ax]2 + [ωy − Γσ2(k/p)Ay]2
,

Ay =
∑
k

γ(k)
−(k/p)ωy + Γσ2(k/p)2Ay

[ωx − Γσ2(k/p)Ax]2 + [ωy − Γσ2(k/p)Ay]2
. (S22)

Now defining

h =
∑
k

γ(k)
k/p

[ωx − Γσ2(k/p)Ax]2 + [ωy − Γσ2(k/p)Ay]2
, (S23)

and noting that Ax = ωxh/(1 + Γ) and Ay = −ωyh/(1 − Γ), one arrives at the expressions in

Eq. (10) of the main text.

C. Leading eigenvalue of the bulk region

The leading eigenvalue of the bulk region can be obtained by finding the point on the boundary

of the bulk region with ωy = 0. Making this substitution in Eqs. (S22), one readily obtains Eqs. (13)

in the main text.

D. Eigenvalue density in the bulk region

We now derive the results in Section IV A 3 of the main text for the eigenvalue value density

inside the bulk region. Defining m =
∑

k γ(k)
(k/p)
fk

, one finds after some rearrangement of the last

two of Eqs. (S18) that

iw⋆
k =

ω⋆

fk
− Γσ2 (k/p)

fk

(ω − Γω⋆)

1− Γ2
m. (S24)

Thus, substituting this into the second of Eqs. (S18), one obtains

fk =

∣∣∣∣ω⋆ − Γσ2(k/p)
(ω − Γω⋆)

1− Γ2
m

∣∣∣∣2 − (k/p)2g(ω, ω⋆). (S25)

Using Eq. (S24) in combination with Eq. (S25) and Eq. (S19), one obtains Eq. (14) in the main

text. Also substituting Eqs. (S24) and (S25) the first of Eqs. (S18) and the definition of m above,

one obtains Eqs. (15) in the main text.
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S5. GENERAL RESULTS FOR SYMMETRIC MATRICES

In the case of a symmetric matrix, all the eigenvalues lie on the real axis. For this reason,

it is no longer useful to consider the eigenvalue density, as defined in Eq. (4) of the main text.

This definition has the normalisation
∫
d2ωρ(ω) = 1, where the integral is taken over the whole

complex plane. Instead, we now define the real eigenvalue density to be normalised such that∫
dωxρx(ωx) = 1, where we still have

ρx(ωx) =

〈
1

N

∑
i

δ(ω − λi)

〉
, (S26)

but now the delta functions are taken to have only a real argument. In this case, one instead

obtains the eigenvalue density from the trace of the resolvent matrix via [S10, S11]

ρx(ωx) = − 1

π
lim
ϵ→0

Im [G(ωx + iϵ)] . (S27)

The definition of G remains the same as in Eq. (5) of the main text. However, because we only

consider real values of ω = ωx, the resolvent must be the analytic [S12]. When this is the case,

iw⋆
k satisfies Eqs. (S15). Solving Eqs. (S15) for iw⋆

k and substituting this into Eq. (S13), one thus

obtains Eqs. (16) and (17) in the main text.

S6. GENERAL RESULTS FOR THE OUTLIER EIGENVALUES

So far, we have discussed how one can deduce the properties of the bulk region of the eigenvalue

spectrum of a, to which most of the eigenvalues of confined. We did this by setting µ = 0, which

only has the effect of removing the outlier eigenvalue [S1, S5, S7] without affecting the bulk region.

We now reintroduce a non-zero value of µ and deduce the location of the outlier eigenvalue in the

complex plane.

We begin with Eq. (19) of the main text, which is simply the definition of an eigenvalue of the

matrix a,

det
[
λoutlier11− z − p−1µ

]
= 0, (S28)

where we define z = a− p−1µ, with µ = p
〈
a
〉
.

The elements of the matrix µ, as was shown in Section S2 [see also Eq. (9) of the main text],

can be replaced by µ
kikj
N . This is a rank-1, block-structured matrix. Let us group nodes with the

same degree and introduce a block index (superscript) so that µkl
ij = kl

N is the element in ith row,

the jth column of the block in the kth row of blocks and the lth row of blocks.

As was mentioned in the main text, we see that we can rewrite Eq. (S28) as

det
[
11− p−1G0µ

]
= 0, (S29)

where we write G0 =
[
λoutlier11− z

]−1
.

We follow the reasoning in Ref. [S1], which also deals with block structured matrices (see

Section S3 of the Supplemental Material of this reference in particular). There, it is demonstrated
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for general block-structured matrices that the resolvent matrix G0 is diagonal and has elements

Gkl
ij = δijδklGk, where Gk = iw⋆

k is the contribution to the resolvent corresponding to the kth block.

The resolvent is evaluated outside the bulk region, since we are dealing with an outlier eigenvalue,

so iw⋆
k is given by the expression in Eq. (S15).

Now, we use Sylvester’s determinant identity

det
[
11m +AB

]
= det

[
11k +BA

]
, (S30)

which is valid for combinations of m × k matrices A and k × m matrices B. Noting that µ can

be written as a product of two vectors of dimension N × 1 and 1×N , i.e. µ = µ(pN)−1vvT with

vki = k, one finds from Eq. (S29)

det
[
11
N
− p−1G0µ

]
= det

[
11
1
− µ(p2N)−1vTG0v

]
= 0,

⇒ 1− µ
∑
k

γ(k)(k/p)2(iw⋆
k) = 0, (S31)

where we have used Nk/N → γ(k) when N → ∞, where Nk is the number of nodes with degree k.

Using Eqs. (S15), one thus obtains Eqs. (21) of the main text.

S7. CORRECTIONS TO KNOWN RESULTS FOR NON-ZERO NETWORK

HETEROGENEITY

In Sections S4, S5 and S6, we derived general expressions for the bulk region and the outlier

eigenvalue, which are valid for an arbitrary network degree distribution γ(k). These expressions,

while useful, are not always easy to evaluate and they do not offer us an intuitive understanding

of the effects of a non-trivial complex network structure on the eigenvalue spectrum.

In this section, we derive the approximations to the eigenvalue spectrum discussed in Section

V of the main text. These approximations are valid for small values of the network heterogeneity

s2, which is defined as

s2 =
∑
k

γ(k)(k − p)2/p2. (S32)

A. Bulk region

1. Γ = 0: Universal circular law and bulk density

In this section, we derive Eqs. (26)–(29) in the main text, which gives the eigenvalue density in

the case Γ = 0. Inside the bulk region of the eigenvalue spectrum, the boundary of which is given

by Eq. (24) of the main text, the resolvent is given by Eqs. (14) and (15) in the main text. In the

special case Γ = 0, one obtains

G(ω, ω⋆) =
∑
k

γ(k)
ω⋆

|ω|2 − (k/p)2g(|ω|)
, (S33)
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where the function g(|ω|) is obtained by solving

1

σ2
=

∑
k

γ(k)
(k/p)2

|ω|2 − (k/p)2g(|ω|)
. (S34)

Noting that ρ(|ω|) = 1
πRe

{
∂

∂ω⋆G(ω, ω⋆)
}
[see Eq. (6) of the main text], we obtain for the eigenvalue

density

ρ(|ω|) = 1

π
Re

{∑
k

γ(k)
1

|ω|2 − (k/p)2g(|ω|)
−
∑
k

γ(k)

[
ω − (k/p)2

∂g

∂ω⋆

]
ω⋆

[|ω|2 − (k/p)2g(|ω|)]2

}
.

(S35)

Differentiating Eq. (S34), we also obtain

∂g

∂ω⋆

∑
k

γ(k)
(k/p)4

[|ω|2 − (k/p)2g]2
= ω

∑
k

γ(k)
(k/p)2

[|ω|2 − (k/p)2g]2
. (S36)

Eliminating ∂g/∂ω⋆ from Eq. (S35) using Eq. (S36), we then arrive Eq. (26) in the main text.

Now we turn our attention to the small-s2 expansion in Eq. (29) of the main text. Noting that

g(|ω|) fully determines the eigenvalue density, we merely need to find an approximation for g(|ω|)
up to first order in s2 and insert this into Eq. (S33) to obtain the eigenvalue density.

We suppose that we can approximate g ≈ g0+s2g1. We also make the substitution k = p(1+∆k),

so that
∑

k γ(k)(k − p)2/p2 =
∑

k γ(k)∆
2
k = s2. Expanding the summand of Eq. (S34) as a series

in ∆k, carrying out the sums over k and equating terms of the same order in s2 on either side, we

then have

1

|ω|2 − g0
=

1

σ2
,

|ω|4 + 3g0|ω|2 + g1|ω|2 − g0g1 = 0. (S37)

One can solve these equations simultaneously to obtain

g0 = |ω|2 − σ2,

g1 =
|ω|2

σ2
(3σ2 − 4|ω|2). (S38)

Now, expanding the right-hand side of Eq. (S33) in a similar way, we obtain

G(ω, ω⋆) ≈ ω⋆

|ω|2 − g0
+ s2ω⋆ g0|ω|2 + 3g20 + g1|ω|2 − g0g1

(|ω|2 − g0)3
. (S39)

Substituting the expressions for g0 and g1 in Eq. (S38) into Eq. (S39), we finally obtain

G(ω, ω⋆) =
ω⋆

σ2

[
1 + s2

(
3− 4

|ω|2

σ2

)]
, (S40)

from which one recovers Eq. (29) of the main text using Eq. (6), after dividing through by an

appropriate normalising factor [which doesn’t affect the approximation to order O(s2)].
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2. Γ ̸= 0 and Γ ̸= 1: Modified elliptic law for small s2

Now, we demonstrate how Eq. (30) of the main text [the small-s2 approximation for the bound-

ary of the bulk of the eigenvalue spectrum for arbitrary Γ] can be derived from Eqs. (10). Our aim

is to find ωy as a function of ωx to first order in s2 in such a way that the leading eigenvalue of

the bulk region is also correctly predicted to first order in s2 [this is given in Eq. (31) of the main

text]. To this end, we perform a similar expansion as in the previous subsection. We do this by

expanding the quantities h(ωx) and ωy(ωx) to first order in s2.

Expanding Eqs. (10) of the main text, we have up to first order in s2

1

σ2
≈ 1

ω2
x

[
1− Γσ2

(1+Γ)(h0 + s2h1)
]2

+
[
ω
(0)
y + s2

2 ω
(1)
y

]2 [
1 + Γσ2

(1−Γ)(h0 + s2h1)
]2 + s2

fσ
σ2

,

h ≈ 1

ω2
x

[
1− Γσ2

(1+Γ)(h0 + s2h1)
]2

+
[
ω
(0)
y + s2

2 ω
(1)
y

]2 [
1 + Γσ2

(1−Γ)(h0 + s2h1)
]2 + s2

fh
σ2

. (S41)

We note that we have included contributions of the order s2 to the denominator of the leading

order terms so as to correctly preserve the critical value of ω2
y at which ω2

y = 0, in a similar way

to the procedure in Refs. [S13, S14]. Eliminating h in Eqs. (S41), we then find (writing simply[
ω
(0)
y + s2

2 ω
(1)
y

]2
≈ ω2

y , understanding that ω2
y is approximate to first order in s2)

ω2
x

[
1

(1 + Γ)
− s2

Γ

(1 + Γ)
(fh − fσ)

]2
+ ω2

y

[
1

(1− Γ)
+ s2

Γ

(1− Γ)
(fh − fσ)

]2
≈ σ2(1 + s2fσ). (S42)

This hints at the form of the solution. Clearly, we will end up with some sort of modified ellipse.

Now, by performing the expansion of Eqs. (10) in the main text, as in the previous section, and

comparing coefficients of s2 with Eqs. (S41), one obtains

fh = fσ +
2Γ

σ2

[
ω2
y

(1− Γ)2
− ω2

x

(1 + Γ)2

]
− 1,

fσ = 1− 4Γ

σ2

[
ω2
y

(1− Γ)2
− ω2

x

(1 + Γ)2

]
− Γ2

σ2

[
ω2
y

(1− Γ)2
+

ω2
x

(1 + Γ)2

]

+
4Γ2

σ4

[
ω2
y

(1− Γ)2
− ω2

x

(1 + Γ)2

]2

, (S43)

where we have used

1

σ2
≈ h0 ≈

1

ω2
x

[
1− Γσ2

(1+Γ)h
]2

+ ω2
y

[
1 + Γσ2

(1−Γ)h
]2 (S44)

in the coefficient of s2 (this does affect our approximation to first-order in s2).

Expanding Eq. (S42) to first order in s2 using Eqs. (S43), quartic terms in ωx and ωy cancel

and one obtains

ω2
x

(1 + Γ)2
[
1− s2(1 + 2Γ− Γ2)

]
+

ω2
y

(1− Γ)2
[
1− s2(1− 2Γ− Γ2)

]
= σ2. (S45)
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Finally, noting that 1/(1 + x)2 ≈ 1 + 2x for small x, we arrive at Eq. (30) in the main text.

We note that if we set ωy = 0 in Eq. (S45), we obtain ωx =
√

(1 + Γ) + s2(1 + 3Γ + Γ2 − Γ3) ≈
(1 + Γ) + s2(1 + 3Γ + Γ2 − Γ3)/2. We can compare this result with the expansion of Eq. (13) of

the main text. Letting λedge ≈ λ0 + s2λ1 and A = A0 + s2A1, we obtain by comparing coefficients

of s2 in this expansion

1

σ2
=

1

(λ0 −A0Γσ2)2
,

0 = λ2
0 +A0Γσ

2λ0 − 2λ0λ1 + 2A1Γσ
2λ0 + 2A0Γσ

2λ1 − 2A0A1Γ
2σ4,

A0 =
1

λ0 −A0Γσ2
,

A1 =
A0Γσ

2λ0 − λ0λ1 +A1Γσ
2λ0 +A0Γσ

2λ1 −A0A1Γ
2σ4

(λ0 −A0Γσ2)3
. (S46)

Solving these simultaneously, we obtain

A0 =
1

σ
,

λ0 = (1 + Γ)σ,

A1 = −(1 + Γ)2

2σ
,

λ1 =
σ

2
(1 + 3Γ + Γ2 − Γ3), (S47)

which agrees with the expression in Eq. (31) of the main text. This means that the expansion we

performed to obtain the modified elliptic law in Eq. (30) of the main text correctly preserved the

point at which ωy → 0 to first order in s2, as desired.

3. Γ = 1: Modified semi-circular law

We now derive the modified semi-circular law in Eq. (33) of the main text. This is a first-order

(in s2) approximation to the eigenvalue density along the real axis in the case where Γ = 1, where

we also preserve the point ωx = ωc at which the eigenvalue density goes to zero to first order in s2.

We begin with Eqs. (17) in the main text and expand in a similar way to the previous subsection

to obtain

A ≈ 1

ωx − σ2A
+ s2

Aσ2ωx

(ωx − σ2A)3
,

G ≈ 1

ωx − σ2A
+ s2

A2σ4

(ωx − σ2A)3
. (S48)

Now the aim is to obtain an expression for A that is accurate to first order in s2 and that preserves

the square root singularity of the eigenvalue density at the edge of the bulk of the eigenvalue

spectrum. The procedure we use is similar to Ref. [S13].

We begin by noting that the zeroth-order approximation for A satisfies

σ2A2
0 − ωxA0 + 1 = 0. (S49)



S14

Using this, we can rewrite the coefficient of s2 in the first of Eqs. (S48) to obtain

σ2A2 − ωxA+ 1− s2ωx(1− ωxA)A ≈ 0. (S50)

We can thus solve this quadratic expression for A and find

A =
1

2(σ2 + s2ω2
x)

[
ωx(1 + s2)−

√
ω2
x(1− 2s2 + s4)− 4σ2

]
. (S51)

Similarly, we find for the trace of the resolvent

G ≈ A− s2σ2A3. (S52)

Noting Eq. (16) in the main text , we see that one only obtains a non-zero eigenvalue density when

the argument of the radical in Eq. (S51) is negative. We thus see that the critical value of ω2 at

which the eigenvalue density switches from non-zero to zero is (to first order in s2)

ω2
c ≈ 4σ2(1 + 2s2). (S53)

Since we only wish to preserve this critical value to leading order in s2, we can ignore the term

proportional to s4 in Eq. (S51). We can thus rewrite A to leading order in s2 as

A =
2

ω2
c

[
1− 2s2

(
2ω2

ω2
c

− 1

)] [
ω(1 + s2)− (1− s2)

√
ω2 − ω2

c

]
. (S54)

We use this expression to find an approximation for A3 that is valid to first order in s2 and that

preserves the singularity at ω2
c . We find

s2σ2A3 ≈ s2
2

ω4
c

[
ω3 + 3ω(ω2 − ω2

c )− (4ω2 − ω2
c )
√

ω2 − ω2
c

]
. (S55)

Finally, substituting this expression into Eq. (S52) and using Eq. (16) in the main text, we arrive

at the modified semi-circular law in Eq. (33).

B. Outlier eigenvalues: approximate expression for small s2 and general Γ

In this subsection, we begin with Eqs. (21) in the main text and derive the approximate ex-

pression for the outlier eigenvalue in Eq. (32) of the main text, which is accurate to first order in

s2. In a similar spirit to the previous section, we imagine that we can write A ≈ A0 + s2A1 and

λoutlier ≈ λ0 + s2λ1. We then expand Eqs. (21) and equate terms with the same power of s2 to

obtain

A0 =
1

λ0 −A0Γσ2
,

A1 =
A0Γλ0σ

2 − λ0λ1 +A1Γλ0σ
2 +A0Γλ1σ

2 −A0A1Γ
2σ4

[λ0 −A0Γσ2]3
,

1

µ
=

1

λ0 −A0Γσ2
,

0 =
λ2
0 − λ0λ1 +A1Γλ0σ

2 +A0Γλ1σ
2 −A0A1Γ

2σ4

[λ0 −A0Γσ2]3
. (S56)
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From the first and third of these equations, one thus finds A0 = 1/µ and λ0 = µ + Γσ2/µ.

Substituting these expressions into the second and fourth of Eqs. (S56), one finds

A1 =
1

µ
+ s2

Γσ2

µ3
,

λ1 = µ+
Γσ2

µ
. (S57)

Combining the expressions for λ0 and λ1 above, we arrive at Eq. (32) of the main text.

S8. SOME EXAMPLES THAT ARE VALID FOR ANY VALUE OF s2

A. Dichotomous degree distribution

To produce the solid lines in Figs. 1 and 2a, a dichotomous degree distribution was used with

γ(k) =
1

2
(δk,k1 + δk,k2) . (S58)

In the case of Fig. 2a, all that one is required to calculate from this distribution is the mean degree

and heterogeneity, which are given by respectively

p =
1

2
(k1 + k2),

s2 =
1

2p2
[
(k1 − p)2 + (k2 − p)2

]
. (S59)

In the case of Fig. 1, one must solve Eqs. (10) of the main text. That is, for each value of ωx, one

must first solve the following simultaneous equations (this is best done numerically) for h and ωy

h =
1

2p

[
k1

ω2
x[1− Γσ2k1

(1+Γ)ph]
2 + ω2

y [1 +
Γσ2k1
(1−Γ)ph]

2
+

k2

ω2
x[1− Γσ2k2

(1+Γ)ph]
2 + ω2

y [1 +
Γσ2k2
(1−Γ)ph]

2

]
,

1

σ2
=

1

2p2

[
k21

ω2
x[1− Γσ2k1

(1+Γ)ph]
2 + ω2

y [1 +
Γσ2k1
(1−Γ)ph]

2
+

k22

ω2
x[1− Γσ2k2

(1+Γ)ph]
2 + ω2

y [1 +
Γσ2k2
(1−Γ)ph]

2

]
. (S60)

B. Uniform degree distribution

The dichotomous distribution discussed above is fairly straightforward to implement. The

uniform distribution used in Figs. 2b, 3, 4, 5 and 6 requires some additional manipulation.

The degree distribution is given by

γ(k) =
1

2[
√
3sp]

p+[
√
3sp]∑

l=p−[
√
3sp]

δk,l. (S61)

We take for example the calculation of the edge of the bulk of the eigenvalue spectrum for Fig. 4.

The solid lines in any of the aforementioned figures can be calculated in a similar way.
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We begin with Eqs. (13) of the main text, from which we obtain

1

σ2
=

1

2[
√
3sp]

p+[
√
3sp]∑

k=p−[
√
3sp]

(k/p)2

(λedge − Γσ2kA/p)2
,

A =
1

2[
√
3sp]

p+[
√
3sp]∑

k=p−[
√
3sp]

k/p

(λedge − Γσ2kA/p)
. (S62)

For large p, these sums can be approximated by integrals such that we can write (using the

substitution x = k/p)

1

σ2
=

1

2
√
3s

∫ 1+
√
3s

1−
√
3s

dx
x2

(λedge − Γσ2xA)2
,

A =
1

2
√
3s

∫ 1+
√
3s

1−
√
3s

dx
x

(λedge − Γσ2xA)
. (S63)

These are standard integrals that can be evaluated. One thus has to solve the following simul-

taneous equations numerically to find A and λedge (letting x1 = 1 −
√
3s and x2 = 1 +

√
3s for

shorthand)

1

σ2
=

1

(x2 − x1)(Γσ2A)3

{
λ2
edge

λedge − Γσ2Ax2
−

λ2
edge

λedge − Γσ2Ax1
+ Γσ2A(x2 − x1)

+ 2λedge ln

[
λedge − Γσ2Ax2
λedge − Γσ2Ax1

]}
,

A =− 1

(x2 − x1)(Γσ2A)2

{
λedge ln

[
λedge − Γσ2Ax2
λedge − Γσ2Ax1

]
+AΓσ2(x2 − x1)

}
. (S64)

These simultaneous equations can be solved numerically to yield λedge as a function of (for example)

Γ, as is plotted in Figs. 4 of the main text.
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[S4] M. Mézard, G. Parisi, and M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica

Method and Its Applications, Vol. 9 (World Scientific Publishing Company, London, 1987).

[S5] J. W. Baron, T. J. Jewell, C. Ryder, and T. Galla, Eigenvalues of random matrices with generalized

correlations: A path integral approach, Phys. Rev. Lett. 128, 120601 (2022).

[S6] J. Hubbard, Calculation of partition functions, Physical Review Letters 3, 77 (1959).

[S7] T. Tao, Outliers in the spectrum of iid matrices with bounded rank perturbations, Probability Theory

and Related Fields 155, 231 (2013).

[S8] F. Benaych-Georges and R. R. Nadakuditi, The eigenvalues and eigenvectors of finite, low rank per-

turbations of large random matrices, Advances in Mathematics 227, 494 (2011).

https://doi.org/10.1103/PhysRevLett.128.120601


S17

[S9] S. O’Rourke, D. Renfrew, et al., Low rank perturbations of large elliptic random matrices, Electronic

Journal of Probability 19 (2014).

[S10] S. F. Edwards and R. C. Jones, The eigenvalue spectrum of a large symmetric random matrix, Journal

of Physics A: Mathematical and General 9, 1595 (1976).

[S11] T. Tao, Topics in Random Matrix Theory (American Mathematical Society, Providence, Rhode Island,

US, 2012).

[S12] R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Non-hermitian random matrix models, Nuclear

Physics B 501, 603 (1997).

[S13] Y. Kim and A. B. Harris, Density of states of the random-hopping model on a cayley tree, Phys. Rev.

B 31, 7393 (1985).

[S14] G. J. Rodgers and A. J. Bray, Density of states of a sparse random matrix, Physical Review B 37,

3557 (1988).

https://doi.org/https://doi.org/10.1016/S0550-3213(97)00418-5
https://doi.org/https://doi.org/10.1016/S0550-3213(97)00418-5
https://doi.org/10.1103/PhysRevB.31.7393
https://doi.org/10.1103/PhysRevB.31.7393

	Eigenvalue spectra and stability of directed complex networks — Supplemental Material —
	Overview
	Eigenvalue potential and annealed approximation
	Finding the resolvent
	Introduction of order parameters
	Saddle point integration and evaluation of the order parameters
	Expression for the resolvent

	General results for the bulk region
	Replacing the index  with k
	Boundary of the bulk region
	Leading eigenvalue of the bulk region
	Eigenvalue density in the bulk region

	General results for symmetric matrices
	General results for the outlier eigenvalues
	Corrections to known results for non-zero network heterogeneity
	Bulk region
	= 0: Universal circular law and bulk density 
	=0 and =1: Modified elliptic law for small s2
	= 1: Modified semi-circular law

	Outlier eigenvalues: approximate expression for small s2 and general 

	Some examples that are valid for any value of s2
	Dichotomous degree distribution
	Uniform degree distribution

	References


