Standards Recommendations for the Earth BioGenome Project

Supplementary Tables and Legends

Table S1 EBP assembly quality standards. We recommend the "6.7.Q40" standard as a minimum for EBP to ensure a solid basis for future biological research. Table from (10) with permission.

			UU	٧.	v	
Quality Category	Quality Metric	Finished	7.C.Q50	6.7.Q40	4.5.Q30	VGP
Continuity	Contig (NG50)	= Chr. NG50	>10 Mbp	>1 Mbp	>10 kbp	1-25 Mbp
	Scaffolds (NG50)	= Chr. NG50	= Chr. NG50	>10 Mbp	>100 kbp	23-480 Mbp
	Gaps / Gbp	No gaps	<200	<1,000	<10,000	75-1500
	False duplications	0%	<1%	<5%	<10%	0.2-5.0%
Structural accuracy	Reliable blocks	= Chr. NG50	>90% of Scaffold NG50	>75% of Scaffold NG50	>50% of Scaffold NG50	2-75%
	Curation improvements	All conflicts resolved	Automated + Manual	Automated	No requirement	Automated + Manual
Base	Base pair QV	>60	>50	>40	>30	39-43
accuracy	k-mer completeness	100% complete	>95%	>90%	>80%	87-98%
Haplotype phasing	Phased block (NG50)	= Chr. NG50	>1 Mbp	>100 kbp	No requirement	1.6 Mbp*
Functional	Genes	>98% complete	>95% complete	>90%	>80%	82-98%
completeness	Transcript mappability	98%	>90%	>80%	>70%	96%
Chromosome status	Assigned %	98%	>90%	>80%	No requirement	94.4-99.9%
	Sex chromosomes	Right order, no gaps	Localized homo pairs	At least 1 shared (e.g. X or Z)	Fragmented	At least 1 shared
	Organelles (e.g. MT)	1 Complete allele	1 Complete allele	Fragmented	No requirement	1 Complete allele

Table S2. Annotation features.

Features to be annotated in all genomes	Features that may be annotated in some genomes		
 Simple repeats and transposable elements Functional sequence features such as CpG islands Protein-coding genes Non-protein coding genes including small RNA (sRNA) and IncRNA genes 	 Pseudogenes Regulatory regions including promoters, enhancers, regions of open chromatin and locations of DNA binding proteins. Chromosomal features such as banding patterns Homology relationships between genes or other features Horizontal and lateral gene transfer 		

Table S3: Gene annotation evidence categories.

Ab initio	Predictions based on the sequence features of a single genome (only).	
De novo	Predictions based on sequence models within one of multiple species or comparative simultaneous annotation of multiple genomes. No expressed sequence is used.	
Projection	Transfer of annotation from one species to another via a scaffold/chromosome level assembly to assembly alignment.	
Protein sequence alignment	Identification of coding regions by alignment of observed or inferred protein sequence from another species.	
cDNA sequence alignment	Identification of coding regions and untranslated regions by alignment of predicted or confirmed transcript sequences from another species.	
Short read transcriptomics	Gene structure annotation based on alignment of short read RNA-seq or assembled transcripts from the same or closely related species.	
Long read transcriptomics	Extended (possibly full length) transcript annotation from alignment of long read transcriptomic data from the same or closely related species.	
Other molecular data	Other data providing insight into genome annotation including, but not limited to, EST sequences, proteomics data, RiboSeq and other expressed or functional data.	
Expert manual curation	Annotation evaluated via a systematic expert process by human annotators.	

Table S4 Genome reference analyses: Approaches methods and resources.

Analysis category	Areas addressed	Example methods
Assembly and	Long read assembly, haplotypic	HiFiAsm, HiCanu (PacBio HiFi)
scaffolding	duplicate removal, scaffolding, polishing, quality assessment	Flye, Shasta (ONT)
	ponorming, quanty accessment	Purge_dups
		SALSA2, JuiceBox, PreText (HiC), Solve (BioNano)
		Winnowmap/FreeBayes/Merfin
		Merqury, yak
Alignments of	Alignments form the basis for	LastZ, MultiZ, Mashmap
genomes and synteny analysis	comparative genomics. Alignments can be generated using TBLASTN or blast reciprocal best	CACTUS
<u>,</u>		Ragout
	matches at both the nucleotide level for evolutionarily close	<u>SynMap</u>
	species, and the protein level for wider divergence. CACTUS generates large reference-free multispecies alignments.	<u>HalSynteny</u>
		Circos
		Genomicus
		Evolution Highway
Repeat content and evolution	Catalogs of simple sequence repeats and transposable elements will be generated as part of the genome annotation. Repeats can change genome size, gene content and gene regulation of a genome.	Repeatmasker and Repeat Modeler REPET MITE-hunter and LTRharvest (de novo discovery)
Partial or whole-	Genome size is also a function of	Read depth coverage
genome duplication	loss and addition based on gene	Alignments and curation
	and genome duplication. Partial or whole-genome duplications allow divergent evolution of duplicated	Element lengths, homology and copy number
	genes. Synteny analysis of internal similarity of genome sections	Ks Plots
	enables analysis of gene gain and loss.	Synteny Analysis (e.g. via CoGe)
Species trees	Species trees are required for analyses such as calling	TreeBASE_
	evolutionary constraint, detecting	Open Tree of Life
	positive selection, delineating species boundaries/hybridization	FigShare (data repository)
	events, correlating phenotypic	Fast Tree

change with genetic change and inferring evolutionary relationships. Evolutionary constraint and accelerated evolution and accelerated evolution Depending on power of the sample set, evolutionary constraint can be detected as low at single-base resolution, or at less power with fewer species. Constraint scores help identify coding regions, ultra-conserved elements, and enhancers, promoters, and insulators. Analysis of gene content dange and underlying sequence splection in a phylogenetic phenotypic context is critical to understand species evolution. Analysis of non-coding transcripts have a key role in genome regulation and function. These include both incRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Genome reference and population and adaptation Intraspecific variation, conservation, biodiversity and adaptation Genome reference and populations and geographic regions most in need of protection. Genome reference and populations and geographic regions most in need of protection. Estimation of population histories Reconstruction of multi-generational pedicarees SEQUOIA Genetic structure and admixtures TRUCTURE. Marker generation			
Evolutionary constraint and accelerated evolution Evolution Evolutionary constraint and accelerated evolution are set, evolutionary constraint can be detected as low at single-base resolution, or at less power with fewer species. Constraint scores help identify coding regions, ultraconserved elements, and enhancers, promoters, and insulators. Analysis of gene content, gene family expansion and selection on protein-coding genes Understanding gene content change and underlying sequence selection in a phylogenetic phenotypic context is critical to understand species evolution. Analysis of non-coding transcripts have a key role in genome regulation and function. These include both IngRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts lypically evolve more rapidly than protein-coding genes, usually requiring species specific variation, conservation, biodiversity and adaptation Intraspecific variation, conservation, and geographic regions most in need of protection. Extra conservation and function forms, listorical population sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of population pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation			RAxML
Depending on power of the sample set, evolutionary constraint can be detected as low at single-base resolution, or at less power with fewer species. Constraint scores help identify coding regions, ultra-conserved elements, and enhancers, promoters, and insulators. Analysis of gene content_qene family expansion and selection on protein-coding genes Understanding gene content change and underlying sequence selection in a phylogenetic phenotypic context is critical to understand species evolution. Analysis of non-coding transcripts have a key role in genome regulation and function. These include both IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes usually requiring species specific transcript data for identification. Intraspecific variation, biodiversity and adaptation Genome reference and population and adaptation Sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Est			<u>IQ-Tree</u>
set, evolution ary constraint can be detected as low at single-base resolution, or at less power with fewer species. Constraint scores help identify coding regions, ultraconserved elements, and enhancers, promoters, and insulators. Analysis of gene content, gene family expansion and selection in a phylogenetic selection on protein-coding genes Analysis of non-coding transcripts have a key role in genome regulation and function. These include both IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding genes, usually requiring species specific transcript typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Buttaspecific variation, biodiversity and adaptation and each population sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Senior to the single pass and peoplation and geographic regions most in need of protection. Senior to the single pass and peoplation and geographic regions most in need of protection. Senior to the single pass and peoplation histories are construction of multi-generational pedigrees SEOUOIA Genetic structure and admixture STRUCTURE, Marker generation			PhyloBayes, HyPhy,
content, gene family expansion and selection in a phylogenetic phenotypic context is critical to understand species evolution. Analysis of non-coding transcripts have a key role in genome regulation and function. These include both lncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript adaptation Intraspecific variation, conservation, biodiversity and adaptation Intraspecific variation, conservation, biodiversity and adaptation and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Change and underlying sequence selection in a phylogenetic phenotypic context is critical to understand species evolution. CodeML Conserved motif identification by the local multiple Em (expectation Maximization) by the local multiple Em (expectation Maximization) for motif elicitation (MEME) FEELnc Rfam Covariance Models (v13.0) transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Intraspecific variation, conservation, biodiversity and adaptation sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Fest Estimation of population histories Reconstruction of multi-generational pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation	and accelerated	set, evolutionary constraint can be detected as low at single-base resolution, or at less power with fewer species. Constraint scores help identify coding regions, ultraconserved elements, and enhancers, promoters, and	Phastcons PhyloP
Analysis of non-coding transcripts have a key role in genome regulation and function. These include both lncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcript ypically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Intraspecific variation, conservation, biodiversity and adaptation Adaptatio	content, gene family expansion and	change and underlying sequence	
Analysis of non-coding transcripts have a key role in genome regulation and function. These include both IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Intraspecific variation, conservation, biodiversity and adaptation Individual adaptation Intraspecific variation, conservation adaptation Senome reference and population data are required to guide conservation efforts. Historical population sizes can be estimated and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Conserved motif identification (MEME) FEELDC Rfam Covariance Models (v13.0) tRNAscan-SE (v1.3.1) Runs of homozygosity Heterozygosity GENHET tests for HWE ARLEQUIN Fst Estimation of population histories Reconstruction of multi-generational pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation			<u>CodeML</u>
role in genome regulation and function. These include both IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Intraspecific variation, conservation, biodiversity and adaptation	oding genes	understand species evolution.	local multiple Em (expectation Maximization) for motif elicitation
function. These include both IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Intraspecific variation, conservation, biodiversity and adaptation Conservation efforts. Historical population sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Runs of homozygosity Heterozygosity GENHET tests for HWE ARLEQUIN Fst			FEELnc
IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific transcript data for identification. Intraspecific variation, conservation, biodiversity and adaptation Genome reference and population data are required to guide conservation efforts. Historical population sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Runs of homozygosity Heterozygosity GENHET tests for HWE ARLEQUIN Fst Estimation of population histories Reconstruction of multi-generational pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation	<u>transcripts</u>	•	Rfam Covariance Models (v13.0)
variation, conservation, biodiversity and adaptationdata are required to guide conservation efforts. Historical 		IncRNAs and miRNAs and will be identified as part of the genome annotation process. Non-coding transcripts typically evolve more rapidly than protein-coding genes, usually requiring species specific	tRNAscan-SE (v1.3.1)
conservation efforts. Historical population sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Heterozygosity GENHET tests for HWE ARLEQUIN Fst Estimation of population histories Reconstruction of multi-generational pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation		· ·	Runs of homozygosity
and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. State	biodiversity and	conservation efforts. Historical population sizes can be estimated, and together with additional sequence data, can facilitate the accurate definition of populations and geographic regions most in	
sequence data, can facilitate the accurate definition of populations and geographic regions most in need of protection. Stimation of population histories Estimation of population histories	<u>adaptation</u>		tests for HWE ARLEQUIN
and geographic regions most in need of protection. Reconstruction of multi-generational pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation			
need of protection. Reconstruction of multi-generational pedigrees SEQUOIA Genetic structure and admixture STRUCTURE Marker generation			
STRUCTURE Marker generation			
eDNA metabarcoding			Marker generation
			eDNA metabarcoding

Supporting environmental DNA and/or ecological samples eDNA analysis allows the characterization and analysis of threatened and non-threatened species within ecosystems. The EBP accelerates this by generating a high-quality digital reference library enabling identification of eDNA sequences.

Shotgun sequencing

UPARSE

DADA2

Blast