Introduction

- Rare species are characterised by low densities, wide ranges and short availability times at the surface.
- **Issue:** Low sighting rates
 - Separately, surveys cannot provide sufficient data to model habitats preferences and distribution of rare species
- **Suggested solution:** Merging large scale visual survey data from various sources to increase the number of input data in the models

How to merge large-scale datasets into a single one and determine where geographical extrapolation can be made while still within environmental interpolation?

Methods

Data collection: 15 organisations – visual survey data – 1998 to 2015 – North Atlantic Ocean and Mediterranean Sea

Data processing: Data standardisation

Environmental data extraction: Static and dynamic variables – 30 days and 0.25° resolutions

Gap analysis: To identify areas outside survey areas where variables are within the range sampled in the surveys

- **Univariate gap analysis**
 - Determines the range of the variables sampled and overlays the projection maps
- **Multivariate gap analysis**
 - Determines if the combination of various variables was sampled using the Gower’s distance

Ranges of sampled variables

- **Univariate gap analysis**
 - Intersection of the 4 variable projection maps
 - 40% Interpolation
 - 60% Extrapolation

- **Multivariate gap analysis**
 - Map showing where combination of 4 variables are within surveyed conditions
 - 29.7% Interpolation
 - 70.3% Extrapolation

Conclusion

Gap analysis methodology highlights interpolation zones where model predictions would be reliable

The univariate approach overestimated the interpolation areas compared to the multivariate approach

The multivariate approach would reveal the true interpolation area to be considered in the models

Affiliations