(12) SOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACIÓN EN MATERIA DE PATENTES (PCT)

(19) Organización Mundial de la Propiedad Intelectual

Oficina internacional

(43) Fecha de publicación internacional 23 de septiembre de 2010 (23.09.2010)

(10) Número de Publicación Internacional WO 2010/106215 A1

(51) Clasificación Internacional de Patentes: C07C 233/36 (2006.01) C07H 5/04 (2006.01)

(21) Número de la solicitud internacional:

PCT/ES2010/070164

(22) Fecha de presentación internacional:

18 de marzo de 2010 (18.03.2010)

(25) Idioma de presentación:

español

(26) Idioma de publicación:

español

(30) Datos relativos a la prioridad: P 200900755 20 de marzo de 2009 (20.03.2009) ES

- (71) Solicitantes (para todos los Estados designados salvo US): CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC) [ES/ES]; C/ Serrano 117, E-28006 Madrid (ES). UNIVERSIDAD AUTONÓMA DE BARCELONA [ES/ES]; Campus de Bellaterra, E-08193 Bellaterra (ES). UNIVERSIDAD DE BARCELONA [ES/ES]; Gran Via de les Corts Catalanes, 585, E-08007 Barcelona (ES).
- (72) Inventores; e
- (75) Inventores/Solicitantes (para US solamente): SOLDEVILLA, LLEBARIA Amadeo [ES/ES]; Instituto de Quimica Avanzada de Cataluña (IQAC), Jorge Girona Salgado, 18-26, E-08034 Barcelona (ES). BEDIA GIRBÉS, Carmen [ES/ES]; Instituto de Quimica Avanzada de Cataluña (IQAC), Jorge Girona Salgado, 18-26, E-08034 Barcelona (ES). HARRAK SERIFI, Youssef [MA/ES]; Instituto de Quimica Avanzada de Cataluña (IQAC), Jorge Girona Salgado, 18-26, E-08034 Barcelona (ES). CASTAÑO GARCÍA, Angel Raul [ES/ES]; Universidad Autonóma de Barcelona, Campus de Bellaterra, E-08193 Bellaterra

(Barcelona) (ES). BARRA QUAGLIA, Carolina Mercedes [AR/ES]; Universidad Autonóma de Barcelona, Campus de Bellaterra, E-08193 Bellaterra (Barcelona) (ES). DELGADO CIRILO, Antonio [ES/ES]; Universidad de Barcelona, Gran Via de les Corts Catalanes, 585, E-08007 Barcelona (ES).

- (74) Mandatario: PONS ARIÑO, Angel; Glorieta Ruben Dario 4, E-28010 Madrid (ES).
- (81) Estados designados (a menos que se indique otra cosa, para toda clase de protección nacional admisible): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Estados designados (a menos que se indique otra cosa, para toda clase de protección regional admisible):
 ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), euroasiática (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europea (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publicada:

— con informe de búsqueda internacional (Art. 21(3))

(54) Title: AMINOCYCLITOL COMPOUNDS, PROCEDURE FOR THE OBTAINMENT AND USES THEREOF

(54) Título: COMPUESTOS AMINOCICLITOLES, PROCEDIMIENTO DE OBTENCIÓN Y USOS

- (57) Abstract: Aminocyclitol compounds, procedure for the obtainment and uses thereof. Aminocyclitol compounds and uses thereof as pharmaceutical compositions for the treatment of diseases associated with alterations in iNKT cells, more specifically autoimmune diseases, cancer, infections caused by pathogenic microorganisms or inflammatory diseases. Furthermore the invention relates to the procedure for the obtainment of said compounds.
- (57) Resumen: Compuestos aminociclitoles y sus usos como composiciones farmacéuticas para el tratamiento de enfermedades asociadas con alteraciones en las células iNKT, más concretamente a enfermedades autoinmunes, cáncer, infecciones causadas por microorganismos patógenos o enfermedades inflamatorias. Además, la invención se refiere al procedimiento de obtención de dichos compuestos.

1

COMPUESTOS AMINOCICLITOLES, PROCEDIMIENTO DE OBTENCIÓN Y USOS

La presente invención se refiere a los compuestos de fórmula general (I) y a sus usos como composiciones farmacéuticas para el tratamiento de enfermedades asociadas con alteraciones en las células iNKT. Además, la invención se refiere al procedimiento de obtención de dichos compuestos. Por tanto, la invención se puede englobar en el campo químico y/o farmacéutico.

10

15

20

25

30

5

ESTADO DE LA TECNICA ANTERIOR

Las células T asesinas naturales NKT (del inglés natural killer T cells) son una clase de linfocitos que regula una amplia gama de respuestas inmunes. Una subclase de células NKT, las células NKT invariantes (iNKT), reconocen antígenos de tipo glicolipídico presentados por proteínas MHC CD1d y que participan en diversas respuestas inmunes mediante la promoción de la secreción de citoquinas. El papel de estas células ha sido descrito en la regulación de la autoinmunidad, la respuesta a los tumores, las infecciones microbianas y la patogenia de procesos inflamatorios como el asma.

El glicolípido sintético α -galactosilceramida (α -GalCer) fue el primer antígeno conocido presentado por CD1d que estimula el receptor de células T invariante (TCR), expresadas por las células iNKT. α -GalCer es un análogo estructural optimizado de compuestos antitumorales aislados a partir de esponjas marinas que contiene una galactosa unida al hidroxilo primario de fitoceramida en configuración alfa, y que se encuentra acilada en el nitrógeno con ácidos grasos de cadena larga. Desde su descubrimiento, α -GalCer ha sido el prototipo de antígeno para la estimulación de células iNKT, aunque otros glicolípidos que actúan como

2

antígenos presentados por proteínas CD1 han sido también identificados. La excepcional potencia de α -GalCer en la estimulación de células NKT origina una serie de respuestas biológicas, derivadas de la liberación simultánea de citoquinas de tipo Th1 y Th2, que ejercen efectos celulares opuestos y determinan una fase de anergia antes de recuperar el equilibrio homeostático, limitando la eficacia de α -GalCer como inmunomodulador.

5

10

15

20

Por otra parte, los determinantes estructurales de la interacción del glicolípido con la proteína presentadora CD1d son conocidos, y también la estructura cristalina del complejo de la α-GalCer unida a las proteínas CD1d y TCR. Estos estudios estructurales muestran que la ceramida se une a CD1d en dos bolsillos hidrófobos donde se insertan las cadenas de los lípidos, mientras que una red de enlaces de hidrógeno bloquea la posición de la galactosa, que sobresale del sitio de unión y se presenta al TCR para su reconocimiento, donde los grupos hidroxilo del glicolípido desempeñan un papel fundamental.

La extraordinaria potencia de la estimulación de las células NKT por α -GalCer no está exenta de problemas, hecho que ha impulsado el diseño y síntesis de compuestos similares con el fin de mejorar sus propiedades biológicas, incluso a expensas de la obtención de compuestos menos potentes, y dirigido principalmente a la modulación de la proporción Th1/Th2 en la producción de citoquinas inducidas.

Se han descrito varios enfoques para el diseño de compuestos análogos de α-GalCer, principalmente en relación con las variaciones en la longitud y naturaleza de los lípidos (cfr. C. McCarthy, et al., <u>J Exp Med</u> 2007, 204, 1131; M. Trappeniers, et al., <u>ChemMedChem</u> 2008, 3, 1061; K. Fuhshuku, et al., <u>Bioorg Med Chem</u> 2008, 16, 950; T. Tashiro, et al., <u>Bioorg Med</u> 30 <u>Chem</u> 2008, 16, 8896) o la sustitución de la galactosa por otros mono o polisacáridos (cfr. T. Kawano et al., <u>Science</u> 1997, 278, 1626) y otras

3

diversas sustituciones relacionadas (cfr. US2007238871A1). Algunos análogos de α -GalCer con grupos lineales no glicosídicos son capaces de activar células iNKT e inducen respuestas inmunológicas, lo que demuestra que es posible la modulación de los efectos del glicolípido después de la introducción de modificaciones estructurales en el anillo de galactosa de α -GalCer (cfr. J. D. Silk et al., <u>J Immunol</u> 2008, 180, 6452; R. W. Franck, <u>Acc Chem Res</u> 2006, 39, 692).

A la vista de lo anteriormente expuesto, sería conveniente el descubrimiento de compuestos nuevos de tipo glicolípido o bien análogos de glicolípidos conocidos, tales como la α-GalCer, que permitan la modulación de la respuesta inmune mediada por células y que sean de utilidad para el desarrollo de medicamentos, adyuvantes, vacunas y para cualquier inmunoterapia diseñada para estimular las células NKT.

15

10

5

DESCRIPCION DE LA INVENCION

20 La presente invención proporciona compuestos análogos de glicolípidos capaces de estimular y activar células NKT con producción preferente de citoquinas de tipo Th2. La estructura de estos compuestos consiste en la presencia de una ciclohexilamina polihidroxilada unida al hidroxilo primario de un lípido de tipo ceramida por un enlace amina secundaria.

25

Un primer aspecto de la presente invención se refiere a los compuestos de fórmula general (I) o sus isómeros, sus sales y/o solvatos de los mismos (a partir de ahora compuestos de la invención):

4

$$R^4$$
 R^5
 R^2
 R^6
 R^6
 R^1
 R^1

donde: R^1 es un grupo alquilo (C_5 - C_{35}), sustituido o no sustituido.

5

10

15

20

25

 R^2 , R^3 , R^4 y R^5 son iguales o diferentes entre sí y se seleccionan de la lista que comprende hidrógeno (H), hidroxilo (OH), alcoxilo (OR_a) o alquilo (C₁-C₆), sustituido o no sustituido;

 R^6 se selecciona de la lista que comprende los siguientes grupos, sustituidos o no sustituidos, alquilo (C_5 - C_{35}), arilo, cicloalquilo o heterociclo; y

---- representa la existencia o no de un doble enlace.

El término "alquilo" se refiere en la presente invención en el caso de R¹ y/o R⁶, a cadenas alifáticas, lineales o ramificadas, que tienen de 6 a 35 átomos de carbono. En el caso de R², R³, R⁴ y/o R⁵, el término alquilo se refiere a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 6 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, i-propilo, n-butilo, terc-butilo, sec-butilo, n-pentilo, n-hexilo, aunque preferiblemente tienen de 1 a 3 átomos de carbono. Los grupos alquilo pueden estar opcionalmente sustituidos por uno o más sustituyentes tales como halógeno, hidroxilo, azida, ácido carboxílico o por un grupo, sustituido o no sustituido, seleccionado entre: arilo, hidroxilo, amino, amido, éster, ácido carboxílico, éter, tiol, acilamino o carboxamido. Cuando el grupo alquilo esta sustituido por un arilo se describe como "arilalquilo", como por ejemplo, y no limitativamente, en el caso de un grupo bencilo.

WO 2010/106215

5

10

15

20

25

30

5

PCT/ES2010/070164

El término "alcoxilo" se refiere en la presente invención a un grupo de fórmula $-OR_a$ en la que R_a es un alquilo (C_1-C_8) , como por ejemplo, y no limitativamente, metoxilo, etoxilo o propoxilo. Preferiblemente el alcoxilo es un metoxilo.

El término "arilo" se refiere en la presente invención a una cadena carbocíclica aromática, que tiene de 6 a 18 átomos de carbono, pudiendo ser de anillo único ó múltiple, en este último caso con anillos separados y/o condensados. Se pueden dar como ejemplos de grupo arilo, pero no limitativamente, los grupos: fenilo, naftilo, indenilo, etc. Preferiblemente el grupo arilo es un fenilo.

"Cicloalquilo" se refiere a un radical estable monocíclico o bicíclico de 3 a 10 miembros, que está saturado o parcialmente saturado, y que sólo consiste en átomos de carbono e hidrógeno, tal como ciclopentilo, ciclohexilo o adamantilo.

El término "heterociclo" se refiere, en la presente invención, a un radical estable monocíclico o bicíclico de 3 a 10 miembros, que está insaturado, saturado o parcialmente saturado, y que consiste en átomos de carbono y de al menos un heteroátomo seleccionado del grupo que consiste en nitrógeno, oxígeno o azufre. Preferiblemente el heteroátomo es nitrógeno, y más preferiblemente el ciclo es un anillo de 5 ó 6 miembros. Ejemplos de heterocicloalquilos pueden ser, no limitativamente: piperidina, piperazina, purina, pirazolina o pirrolidina.

En una realización preferida de los compuestos de la invención, R¹ es un grupo alquilo (C₇-C₂₅).

En otra realización preferida de los compuestos de la invención, R², R³, R⁴

PCT/ES2010/070164

y/o R⁵ son hidroxilo. Más preferiblemente R⁴ es hidroxilo y/o R⁵ es hidrógeno y/o R³ es hidroxilo o hidroxialquilo, más preferiblemente dicho hidroxialquilo (R³) es un hidroximetilo y/o R² es hidrógeno, un grupo hidroxilo o alcoxilo, en cuyo caso dicho alcoxilo es más preferiblemente

6

5 metoxilo.

WO 2010/106215

En otra realización preferida de los compuestos de la invención, R^6 es un grupo alquilo (C_{10} - C_{20}).

- 10 En una realización más preferida los compuestos de la invención se seleccionan de la lista que comprende:
 - (2S,3S,4R)-2-octanamido-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2',3',4',5',6'-pentahidroxiciclohexilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-Hexacosanamido-1-(1'rs,2'RS,3'SR,4'sr,5'RS,6'SR)-
- 15 2',3',4',5',6'-pentahidroxiciclohexilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-octanamido-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5', 6'-
 - pentahidroxiciclohexilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-Hexacosanamido-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2,3,4,5,6-
 - pentahidroxiciclohexilaminooctadecano-3,4-diol;
- 20 (2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S)-2,3,4,5,
 - tetrahidroxiciclohexilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-hexacosanamido-1-(1'R,2'S,3'R,4'R,5'S)-2,3,4,5,-
 - tetrahidroxiciclohexilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S, 6'S)-2,3,4,5,-
- 25 tetrahidroxi-6-metoxiciclohexilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-Hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'-
 - trihidroxiciclohexenilaminooctadecano-3,4-diol;
 - (2S,3S,4R)-2-Hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'-
 - trihidroxiciclohexilaminooctadecano-3,4-diol;
- 30 (2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'S,6'R)-5-hidroximetil-2,3,4,6,-tetrahidroxiciclohexilamino)octadecano-3,4-diol;

7

(2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'R)-5-hidroximetil-

2,3,4,-trihidroxiciclohexilamino)octadecano-3,4-diol;

(2S,3S,4R)-2-hexacosanamido-1-((1'R,2'S,3'S,4'S,5'R)-5-hidroximetil-

2,3,4,-trihidroxiciclohexilamino)octadecano-3,4-diol; o

5 cualquiera de sus sales, preferiblemente clorhidratos.

10

15

20

25

Otro aspecto de la presente invención se refiere a los compuestos de la fórmula general (I) para su uso en la elaboración de un medicamento o composición farmacéutica, preferiblemente para el tratamiento y/o prevención de enfermedades autoinmunes, cáncer, infecciones causadas por microorganismos patógenos, enfermedades inflamatorias, y, en general, de cualquier enfermedad cuyo tratamiento y/o prevención es susceptible de beneficiarse de las actividades biológicas mostradas por los productos descritos en la presente invención a través de la estimulación de células iNTK, o bien a una sal, derivado o solvato de los mismos, o bien a un profármaco farmacéuticamente aceptable de los mismos.

Los compuestos de la fórmula general (I), también se pueden utilizar para la elaboración de vacunas o adyuvantes de vacunación u otros métodos de activación de la respuesta del sistema inmunitario conocidos por un experto en la materia.

Las enfermedades infecciosas causadas por microorganismos patógenos pueden ser infecciones víricas como por ejemplo gripe, SIDA o hepatitis; infecciones bacterianas como por ejemplo clamidiosis, tuberculosis, estreptococosis, o pseudomoniasis; o infecciones parasitarias como por ejemplo leishmaniosis, malaria o tripanosomiasis.

Las enfermedades autoinmunes y/o inflamatorias se pueden seleccionar de 30 la lista que comprende, no limitativamente, lupus eritematoso sistémico, diabetes mellitus de tipo 1, esclerosis múltiple, síndrome de Sjögren, artritis

8

reumatoide, asma, enfermedad pulmonar obstructiva crónica (EPOC, o bien COPD en sus siglas en inglés), colitis crónica o diversas alergias.

El término "cáncer" o "canceroso" tal y como se utiliza en la presente descripción, se refiere a una alteración de las células tumorales que tienen capacidad de invadir tejidos o de producir metástasis en lugares distantes del tumor primario. Son ejemplos de cáncer, no limitativamente: cáncer de mama, cánceres ginecológicos, cáncer de colon, cáncer de próstata, cáncer de piel, cáncer hepatocelular, cáncer de pulmón, cáncer de esófago, cáncer gástrico, cáncer de páncreas, cáncer de vejiga, cáncer de hígado, cáncer del tracto urinario, cáncer tiroideo, cáncer renal, melanoma, cáncer de cerebro, sarcoma, linfoma o leucemia.

Los compuestos de la presente invención representados por la fórmula (I) pueden incluir isómeros, dependiendo de la presencia de enlaces múltiples (por ejemplo, Z, E), incluyendo isómeros ópticos o enantiómeros, dependiendo de la presencia de centros quirales. Los isómeros, enantiómeros o diastereoisómeros individuales y las mezclas de los mismos caen dentro del alcance de la presente invención, es decir, el término isómero también se refiere a cualquier mezcla de isómeros, como diastereómeros, racémicos, etc., incluso a sus isómeros ópticamente activos o las mezclas en distintas proporciones de los mismos. Los enantiómeros o diastereoisómeros individuales, así como sus mezclas, pueden separarse mediante técnicas convencionales.

25

30

5

10

15

20

Tal como aquí se utiliza, el término "derivado" incluye tanto a compuestos farmacéuticamente aceptables, es decir, derivados del compuesto de fórmula (I) que pueden ser utilizados en la elaboración de un medicamento, como derivados farmacéuticamente no aceptables ya que éstos pueden ser útiles en la preparación de derivados farmacéuticamente aceptables. La naturaleza del derivado farmacéuticamente aceptable no es crítica, siempre

9

y cuando sea farmacéuticamente aceptable.

Asimismo, dentro del alcance de esta invención se encuentran los profármacos de los compuestos de fórmula (I). El término "profármaco" tal como aquí se utiliza incluye a cualquier compuesto derivado de un compuesto de fórmula (I) -por ejemplo y no limitativamente: ésteres (incluyendo ésteres de ácidos carboxílicos, ésteres de aminoácidos, ésteres de fosfato, ésteres de sulfonato de sales metálicas, etc.), carbamatos, amidas, etc.- que al ser administrado a un individuo puede ser transformado directa o indirectamente en dicho compuesto de fórmula (I) en el mencionado individuo. Ventajosamente, dicho derivado es un compuesto que aumenta la biodisponibilidad del compuesto de fórmula (I) cuando se administra a un individuo o que potencia la liberación del compuesto de fórmula (I) en un compartimento biológico. La naturaleza de dicho derivado no es crítica siempre y cuando pueda ser administrado a un individuo y proporcione el compuesto de fórmula (I) en un compartimento biológico de un individuo. La preparación de dicho profármaco puede llevarse a cabo mediante métodos convencionales conocidos por los expertos en la materia.

20

25

30

5

10

15

Los compuestos de la invención pueden estar en forma cristalina como compuestos libres o como solvatos. En este sentido, el término "solvato", tal como aquí se utiliza, incluye tanto solvatos farmacéuticamente aceptables, es decir, solvatos del compuesto de fórmula (I) que pueden ser utilizados en la elaboración de un medicamento, como solvatos farmacéuticamente no aceptables, los cuales pueden ser útiles en la preparación de solvatos o sales farmacéuticamente aceptables. La naturaleza del solvato farmacéuticamente aceptable no es crítica siempre y cuando sea farmacéuticamente aceptable. En una realización particular, el solvato es un hidrato. Los solvatos pueden obtenerse por métodos convencionales de solvatación conocidos por los expertos en la materia.

Para su aplicación en terapia, los compuestos de fórmula (I), sus derivados isómeros, sales, profármacos o solvatos, se encontrarán, preferentemente, en una forma farmacéuticamente aceptable o sustancialmente pura, es decir, que tiene un nivel de pureza farmacéuticamente aceptable excluyendo los aditivos farmacéuticos normales tales como diluyentes y portadores, y no incluyendo material considerado tóxico a niveles de dosificación normales. Los niveles de pureza para el principio activo son preferiblemente superiores al 50%, más preferiblemente superiores al 70%, y todavía más preferiblemente superiores al 90%. En una realización preferida, son superiores al 95% de compuesto de fórmula (I), o de sus sales, solvatos o profármacos.

5

10

15

20

25

30

Los compuestos de la presente invención de formula (I) pueden ser obtenidos o producidos mediante una vía sintética química u obtenidos a partir de una materia natural de distinto origen.

Otro aspecto de la presente invención se refiere a un procedimiento de obtención de los compuestos de la invención de fórmula (I) o un isómero, sus sales y/o solvato del mismo, que comprende los siguientes pasos que se resumen en el esquema 1:

- A) preparación de aminociclitoles de fórmula general (II), por:
- A1) reducción de ciclohexil o ciclohexenil azidas (fórmula general (III)) en los que los sustituyentes hidroxilo se han bloqueado con un grupo protector (PG), preferentemente bencilo, o
 - A2) por sustitución de haluros o sulfonatos de ciclohexilo o ciclohexenilo (fórmula general (IV)) con amoniaco u otras aminas en los que los sustituyentes hidroxilo se han bloqueado con un grupo protector (PG), preferentemente bencilo;

- B) activación de fitoesfingosina o moléculas análogas mediante la preparación de:
- B1) aldehídos (VI), en los que los sustituyentes hidroxilo se han bloqueado con un grupo protector, preferentemente bencilo, o
- B2) mediante la formación de aziridinas (V), en las que los sustituyentes hidroxilo del diol se han bloqueado con un grupo protector, preferentemente bencilo o isopropilideno.
- 10 C) acoplamiento de los aminociclitoles obtenidos según el paso (A) con:
 - C1) los aldehídos obtenidos en el paso (B1) mediante aminación reductiva; ó
 - C2) ataque nucleofílico sobre las aziridinas derivadas de fitoesfingosina, obtenidas en el paso (B2); y

15

5

D) acilación de la amina presente en la fitoesfingosina con ácidos carboxílicos o sus derivados seguida de la eliminación de los grupos protectores.

10

Esquema 1

5 Donde: R¹, R², R³, R⁴, R⁵ y R⁶ están descritos anteriormente; X es un haluro o sulfonato; y PG es un grupo protector.

Otro aspecto más de la presente invención se refiere a una composición farmacéutica útil para el tratamiento y/o prevención de enfermedades a través de la estimulación de las células iNKT, en adelante composición

13

farmacéutica de la invención, que comprende un compuesto o mezcla de compuestos de fórmula (I), en cantidad terapéuticamente efectiva, o una sal, profármaco, solvato, derivado o estereoisómero de los mismos farmacéuticamente aceptable, junto con un portador, adyuvante o vehículo farmacéuticamente aceptable, para la administración a un paciente.

5

Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los adyuvantes y vehículos conocidos por los técnicos en la materia y utilizados habitualmente en la elaboración de composiciones terapéuticas.

En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad del agente o compuesto capaz de desarrollar la acción terapéutica determinada por sus propiedades farmacológicas, calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de los compuestos, incluyendo la edad, estado del paciente, la severidad de la alteración o trastorno, y de la ruta y frecuencia de administración.

20

25

10

15

Los compuestos descritos en la presente invención, sus derivados, sales, profármacos y/o solvatos así como las composiciones farmacéuticas que los contienen pueden ser utilizados junto con otros fármacos, o principios activos, adicionales para proporcionar una terapia de combinación. Dichos fármacos adicionales pueden formar parte de la misma composición farmacéutica o, alternativamente, pueden ser proporcionados en forma de una composición separada para su administración simultánea o no a la de la composición farmacéutica que comprende un compuesto de fórmula (I), o un profármaco, solvato, derivado o sus sales.

30

En otra realización particular, dicha composición terapéutica se prepara en

forma de una forma sólida o suspensión acuosa, en un diluyente farmacéuticamente aceptable. La composición terapéutica proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada, para lo cual dicha composición se formulará en la forma farmacéutica adecuada a la vía de administración elegida. En una realización particular, la administración de la composición terapéutica proporcionada por esta invención se efectúa por vía oral, tópica, rectal o parenteral (incluyendo subcutánea, intraperitoneal, intradérmica, intramuscular, intravenosa, etc.).

10

15

20

30

5

El uso de los compuestos de la invención es compatible con su uso en protocolos en que los compuestos de la fórmula (I), o sus mezclas se usan por sí mismos o en combinaciones con otros tratamientos o cualquier procedimiento médico.

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.

25 **DESCRIPCION DE LAS FIGURAS**

Fig. 1.- Muestra los análisis por citometria de flujo de esplenocitos de ratón incubados con diferentes compuestos durante 5,5 días. Los compuestos fueron ensayados a una concentración final de 1 μg/mL en medio completo con 1% de metanol (MeOH), mientras que la GalCer (GC) se usó a 0.2 μg/mL. Los cultivos celulares fueron marcados con anticuerpos específicos

anti-NK1-PE y anti-TCR-FITC. Los porcntajes de células NKT (células doblemente positivas) fueron calculados entre la población de células T seleccionadas electrónicamente.

- Fig. 2.- Muestra la capacidad de compuestos de tipo aminociclitol para inducir citoquinas por estimulación de células NKT. Esplenocitos derivados de 3 ratones B6 fueron combinados y cultivados por tetraplicado con 1 μg/mL de aminociclitoles o 0,1μg/mL de α-GalCer (aGC) y se determinaron las citoquinas IFN□ (Fig. 2A) e IL-4 (Fig. 2B) presentes en los sobrenadantes de los cultivos a los cuatro días mediante ELISA (2 determinaciones). Los datos representan la media ± SD de un experimento representativo. * Indica resultados estadisticamente significativos frente a cultivos control sin compuesto a ensayar.
- Fig. 3.- Muestra como el compuesto 4b induce citoquinas de tipo Th1 y Th2 producidas por células NKT. Cuantificación de la producción de IFNγ (Fig. 3A) e IL-4 (Fig. 3B) tras la estimulación *in vitro* de cultivos de celulas de bazo de ratón conteniendo agonistas lipídicos de células iNKT en un ensayos dosis-respuesta. Los datos muestran la media ± SD de un experimento representativo con 2 ratones, cultivos duplicados de cada ratón a las concentraciones indicadas de agonista y 3 determinaciones ELISA para cada sobrenadante de cultivo.

EJEMPLOS

25

A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que desarrollan el proceso de selección de los compuestos de la invención.

30 Preparación de amidas derivadas de fitoesfingosina

16

Ejemplo 1:

N-((2S,3S,4R)-3,4-bis(benciloxi)-1-hidroxioctadecan-2-il)octanamida

A una disolución de 249 mg (0.5 mmol) de 3,4 di-*O*-bencilfitoesfingosina (C. Xia et al. Bioorganic & Medicinal Chemistry Letters 2006, 16, 2195-2199) en THF (tetrahidrofurano) (10 mL) se añade ácido octanoico (143 mg, 1.1 mmol) y el hidrocloruro de *N*-(3-Dimetilaminopropil)-*N*'-etilcarbodiimida (EDC, 1.1 mmol) y la mezcla de reacción se agita a reflujo durante 3 h. La mezcla se enfría a temperatura ambiente y se añade disolución saturada de NH₄Cl. Se extrae con Et₂O (éter etílico) y se seca con Na₂SO₄ anhidro. Se filtra el sólido y se evaporan los disolventes para dar un crudo que se purifica cromatografía en sílica gel utilizando una mezcla (acetato de etilo/hexano 1:10 a 1:5 v:v). Se obtiene el producto (249 mg) en forma de aceite con un rendimiento del 81 %.

15

20

25

10

5

[α]_D = - 32.3 (CDCl₃, c, 1.0); IR (neat, cm⁻¹): 3305, 2929, 1654,1540, 1070; ¹H-NMR (CDCl₃, 500 MHz); δ 7.35 (m, 10H); 6.06 (d, J = 8.5, 1H); 4.73 (d, J = 12, 1H); 4.67 (d, J = 12, 1H); 4.62 (d, J = 12, 1H); 4.46 (d, J = 12, 1H); 4.15 (m, 1H); 4.00 (dd, J = 11.5, 3, 1H); 3.70 (m, 2H); 3.62 (dd, J =, 11.5, 4.5 1H); 3.05 (br, 1H); 2.00 (m, 2H),1.77-1.41 (m, 6H); 1.26 (m, 30 H); 0.88 (t, J = 7, 6H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.8, 138.1, 137.7, 128.6-127.7 (10 C), 82.1, 79.0, 73.0, 72.8, 62.9, 50.5, 36.6, 31.8, 31.6, 30.7, 29.6-29.0 (11 C), 25.9, 25.6, 22.6 (2C), 14.0 (2C). HRMS (Espectro de masas de alta resolución). Calculado para C₄₀H₆₅NO₄ (M+H⁺): 624.4992. Encontrado: 624.5015.

Ejemplo 2:

N-((2S,3S,4R)-3,4-bis(benciloxi)-1-hidroxioctadecan-2-il)hexacosanamida

De manera análoga a la descrita en el ejemplo 1 se obtiene la amida a 30 partir de 302 mg de ácido hexacosanoico, 251 mg de 3,4 di-Obencilfitoesfingosina y 215 mg de EDC para dar un sólido incoloro (83 %).

WO 2010/106215

5

10

20

25

30

Pf :102-103; [α]_D = - 27.2 (CDCl₃, c, 1.0); IR (neat, cm⁻¹): 3310, 2945, 1659,1533, 1063; ¹H-NMR (CDCl₃, 100 MHz); δ 7.34 (m, 10 H); 6.03 (d, J = 8, 1H); 4.72 (d, J = 11.5, 1H); 4.66 (d, J = 11.5, 1H); 4.61 (d, J = 11.5, 1H); 4.45 (d, J = 11.5, 1H); 4.13 (m, 1H); 3.99 (dd, J =11.5, 3 1H); 3.70 (m, 2H); 3.61 (dd, J = 11.5, 4.4, 1H); 3.05 (br, 1H); 2.00 (m, 2H),1.76-1.40 (m, 6H); 1.27 (m, 66H); 0.87 (t, J = 7, 6H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.8, 138.1, 137.8, 128.7-127.8 (10C), 82.3, 79.0, 73.0, 72.9, 63.0, 50.5, 36.7, 31.9 (2C), 30.8, 29.7-29.3 (29C), 26.0, 25.6, 22.7 (2C),14.1 (2C). HRMS. Calculado para $C_{58}H_{101}NO_4$ (M+H⁺): 876.7609. Encontrado: 876.7828.

Preparación de aldehídos

Ejemplo 3:

15 N-((2S,3S,4R)-3,4-bis(benciloxi)-1-oxooctadecan-2-il)octanamida

De acuerdo con un método descrito [M. Ocejo, et al Synlett 2005, 13, 2110-2112] se disuelven 123 mg (0.2 mmol) de *N*-((2S,3S,4R)-3,4-bis(benciloxi)-1-hidroxioctadecan-2-il)octanamida preparada en el ejemplo 1 en acetato de etilo (AcOEt) (40 mL) y se añaden 224 mg (0.8 mmol) de ácido o-iodoxibenzoico (IBX) a temperatura ambiente. Se calienta a reflujo durante 3 h y se lleva seguidamente la mezcla a temperatura ambiente, se diluye con hexano (40 mL) y se filtra el sólido. El filtrado se evapora para dar 120 mg del aldehído de gran pureza con rendimiento cercano al 100%. Este material se utiliza de manera inmediata en las reacciones siguientes.

IR (film, cm⁻¹): 3383, 2903, 1708, 1497, 1041, 738. ¹H-NMR (CDCI₃, 500 MHz); δ : 9.67 (s, 1H), 7.30-7.28 (m, 10H); 6.06 (d, J = 7.5, 1H); 4.96 (dd, 7.5, J = 2.5, 1H); 4.61 (m, 2H); 4.54 (m, 2H); 3.94 (m,1H); 3.62 (q, J = 5.5, 1H); 2.04 (m, 2H); 1.71 (m, 2H); 1.53 (m, 2H); 1.28 (m, 32H); 0.90 (t, J = 7, 6H); ¹³C-NMR (CDCI₃, 100 MHz): δ 198.0, 172.1, 137.3, 137.1, 128.5-127.8

18

(10C), 81.3, 76.6, 72.0, 71.5, 58.6, 36.8, 31.9, 30.3, 29.6-28.9 (13C), 25.5, 24.6, 22.8, 14.1(2C).

Ejemplo 4:

5 *N*-((2S,3S,4R)-3,4-bis(benciloxi)-1-oxooctadecan-2-il) hexacosanamida.

De acuerdo con el procedimiento del ejemplo 3 se obtiene el aldehído por oxidación con IBX de *N*-((2S,3S,4R)-3,4-bis(benciloxi)-1-hidroxioctadecan-2-il)hexacosanamida obtenida según el ejemplo 2.

IR (film, cm⁻¹): 3381, 2900, 1711, 1502, 1045, 740. ¹H-NMR (CDCl₃, 500 MHz); δ: 9.68 (s, 1H), 7.39-7.28 (m, 10H); 6.06 (d, J = 8, 1H); 4.96 (dd, J = 7.5, 2.5, 1H); 4.62 (d, J =11, 1H) 4.61 (d, J = 11, 1H); 4.54 (d, J =11, 1H) 4.53 (d, J = 11, 1H); 3.94 (dd, J = 5.5, 2.5, 1H); 3.63 (q, J = 5.5, 1H); 2.04 (m, 2H), 1.72 (m, 2H); 1.53 (m, 2H); 1.28 (m, 68H); 0.90 (t, J = 7, 6H); ¹³C-NMR (CDCl₃, 100 MHz): δ 198.1, 173.5, 137.5, 137.4, 128.6-127.8 (10C), 81.5, 76.9, 72.1, 71.7, 58.7, 36.4, 31.9, 30.1, 29.7-29.2 (31C), 25.5, 24.7, 22.7, 14.1(2C).

20 Aminación reductora

Ejemplo 5:

25

30

(2S,3S,4R)-(3,4-dibenciloxi-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2',3',4',5',6'-pentabenciloxiciclohexilaminooctadecan-2-il)octanamida

Una disolución de 158 mg (0.25 mmol) de (1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2,3,4,5,6-pentakis(benciloxi)ciclohexanamina [Serrano et al. J Org Chem 2005, 70, 7829] en metanol / CH_2Cl_2 (1:3, v/v) (4 mL) bajo atmósfera de argon se trata sucesivamente y por este orden con cianoborohidruro de sodio (3 equiv.) ácido acético (20 μ L) y N-((2S,3S,4R)-3,4-bis(benciloxi)-1-

oxooctadecan-2-il)octanamida obtenida según el procedimiento del ejemplo 3. Se agita durante 18 h a temperatura ambiente, la mezcla se trata con agua (3 mL) y se extrae con acetato de etilo (3 X 20 mL). Los extractos orgánicos se combinan, se lavan con agua y se secan con sulfato de sodio anhidro. Se filtra el sólido y se evaporan los volatiles para dar un crudo que se purifica por cromatografia en gel de sílice eluyendo con mezclas de hexano/ acetato de etilo (3:1 a 1:1, v/v), para dar 89 mg, 0.07 mmoles (29%) del producto en forma de aceite claro.

10 [α]_D = - 6.0 (CDCl₃, c, 1.0); IR (neat, cm⁻¹): 3336, 2915, 2847, 1642,1451, 1048;1H-NMR (CDCl₃, 500 MHz); δ 7.35-7.20 (m, 35 H); 6.39 (d, J = 8.5, 1H); 4.96-4.83 (m, 7 H); 4.78 (d, J = 11.5, 1H); 4.74 (d, J = 11.5, 1H); 4.65 (d, J = , 11.5, 1H); 4.58 (d, J = 11.5, 1H); 4.54 (d, J = 11.5, 1H); 4.50 (d, J = 11.5, 1H); 4.40 (d, J = 11.5, 1H); 4.08 (m, 1H); 3.71 (dd, J = 5, 4, 1H); 3.57 (m, 3H); 3.45 (m, 1H); 3.24 (m, 3H); 2.95 (dd, J = 13, 4.5, 1H); 2.58 (t, J = 10, 1H); 1.75 (m, 2H), 1.58 (m, 2H); 1.40 (m, 4H); 1.28 (m, 30H); 0.90 (t, J = 7, 3H); 0.88 (t, J = 7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.6, 138.6, 138.5, 138.3, 138.2 (2C), 138.1 (2C), 128.4-127.1 (35C), 84.1, 83.9, 83.0, 82.4, 82.1, 80.1, 75.7 (2C), 75.6, 75.4, 74.5, 73.4, 71.3, 62.4, 49.9, 48.7, 36.3, 31.8, 30.0; 29.8-29.3 (12C), 25.7, 25.6, 22.6 (2C), 14.1, 14.0. HRMS. Calculado para $C_{81}H_{106}N_2O_8$ (M+H⁺): 1235.8027. Encontrado: 1235.8049.

Ejemplo 6:

25

30

5

(2S,3S,4R)-(3,4-dibenciloxi-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2',3',4',5',6'-pentabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida

Por un procedimiento análogo al descrito en el ejemplo 5 se obtiene la amida a partir de (1s,2R,3S,4r,5R,6S)-2,3,4,5,6-pentakis(benciloxi)ciclohexanamina (cfr. Serrano et al. <u>J Org Chem</u> 2005, 70, 7829) y *N*-((2S,3S,4R)-3,4-bis(benciloxi)-1-oxooctadecan-2-il)hexacosanamida por aminación reductora com un 28 % de rendimiento.

Aceite, $[\alpha]_D$ = -6.3 (CDCl₃, c, 1.0); IR (film, cm⁻¹): 3513, 2933, 2855, 1719,1450, 1074; ¹H-NMR (CDCl₃, 500 MHz); δ 7.39-7.22 (m, 35 H); 6.42 (d, J = 8.8, 1H); 4.95-4.82 (m, 7H); 4.79 (d, J = 11.5, 1H); 4.73 (d, J =, 11.5, 1H); 4.63 (d, J =, 11.5, 1H); 4.59 (d, J =, 11.5, 1H); 4.53 (d, J =, 11.5, 1H); 4.49 (d, J =, 11.5, 1H); 4.40 (d, J = 11.5, 1H); 4.08 (m, 1H); 3.71 (dd, J = 5, 4, 1H); 3.57 (m, 3H); 3.46 (m, 1H); 3.25 (m, 3H); 2.96 (dd, J = 13, 4.5, 1H); 2.58 (t, J = 10, 1H); 1.74 (m, 2H), 1.58 (m, 2H); 1.40 (m, 4H); 1.28 (m, 66H); 0.90 (t, J = 7, 6H); 13C-NMR (CDCl₃, 100 MHz): δ 172.8, 138.5 (2C), 138.3, 138.2 (4C), 128.4-127.1 (35C), 84.1, 83.9, 83.0, 82.3, 82.0, 80.0, 75.8 (2C), 75.6, 75.4, 74.5, 73.4, 71.3, 62.3, 49.4, 48.7, 48.5, 36.3, 31.9, 31.7; 29.9-29.0 (30C), 25.7, 25.6, 22.6, 22.5 14.1, 14.0. HRMS. Calculado para $C_{99}H_{142}N_2O_8$ (M+H⁺): 1488.0844. Encontrado: 1488.0773.

15

Ejemplo 7:

(2S,3S,4R)-(3,4-dibenciloxi-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5',6'-pentabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida

Según un procedimiento descrito en serie racémica (Serrano et al. J Org Chem 2005, 70, 7829) se prepara a partir de (+)-tetra-*O*-bencilconduritol B epóxido (cfr. González-Bulnes et al., <u>Carbohydr Res</u> 2007, 342, 1947-52) el compuesto (1*R*,2*S*,3*R*,4*S*,5*S*,6*S*)-2,3,4,5,6-pentahidroxiciclohexilamina, que se hace reaccionar de acuerdo con el procedimiento de aminación reductora descrito en el ejemplo 5 con el aldehido intermedio *N*-((2S,3S,4R)-3,4-bis(benciloxi)-1-oxooctadecan-2-il)hexacosanamida para dar el compuesto requerido con un 40% de rendimiento.

Aceite, $[\alpha]_D$ = + 1.6 (CDCl₃, c, 1.0); IR (film, cm⁻¹): 3431, 2916, 2847, 1653,14940, 1061; H-NMR (CDCl₃, 500 MHz); δ 7.38-7.28 (m, 30 H); 6.16 (d, J = 8, 1H); 4.89-4.56 (m, 11 H); 4.44 (d, J = 12, 1H); 4.24 (m, 1H); 4.01

21

(m, 1H); 3.98 (dd, J = 9, 4, 1H); 3.81 (m, 3H); 3.73 (t, J = 4, 1H); 3.56 (dd, J = 11, 5, 1H); 3.16 (t, J = 4, 1H); 2.94 (dd, J = 11, 4, 1H); 2.61 (dd, J = 11, 5, 1H); 2.00 (m, 2H), 1.64 (m, 2H); 1.57 (m, 2H); 1.28 (m, 68H); 0.91 (t, J = 7, 3H); 0.90 (t, J = 7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.3, 138.8, 138.7, 138.3(2C), 138.2, 137.9, 128.4-127.3 (30C), 82.4, 81.9, 81.5, 80.4, 79.1, 79.0, 75.9, 75.6, 73.8, 73.1, 72.3, 71.4, 67.3, 58.2, 48.5, 48.4, 36.7, 31.8, 30.2, 29.7-29.3 (31C), 25.6, 25.4, 22.6, 14.0 (2C). HRMS. Calculado para for $C_{92}H_{13}6N_2O_8$ (M+H⁺): 1398.0375. Encontrado: 1398.0386

10 Ejemplo 8:

5

(2S,3S,4R)-(3,4-dibenciloxi-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5',6'-pentabenciloxiciclohexilamino)octadecan-2-il)octanamida

Se prepara por aminación reductora según el ejemplo 7 a partir de (1R,2S,3R,4S,5S,6S)-2,3,4,5,6-pentahidroxiciclohexilamina y del aldehído intermedio N-((2S,3S,4R)-3,4-bis(benciloxi)-1-oxooctadecan-2-il)hexacosanamida con un 38 %de rendimiento.

Aceite. [α]_D = +2.0 (CDCl₃, c, 1.0); IR (film, cm⁻¹): 3414, 2918, 2854, 1649,1451, 1096; ¹H-NMR (CDCl₃, 500 MHz); δ 7.36-7.25 (m, 30H); 6.16 (d, J = 8, 1H); 4.86-4.56 (m, 11H); 4.43 (d, J = 12, 1H); 4.23 (m, 1H); 4.01 (m, 1H); 3.98 (dd, J = 9, 4, 1H); 3.82 (m, 3H); 3.73 (t, J = 4, 1H); 3.57 (dd, J = 11, 5, 1H); 3.17 (t, J = 4, 1H); 2.95 (dd, J = 11, 4, 1H); 2.62 (dd, J = 11, 5, 1H); 1.98 (m, 2H), 1.66 (m, 2H); 1.54 (m, 2H); 1.28 (m, 32H); 0.91 (t, J = 7, 3H); 0.85 (t, J = 7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.3, 138.8, 138.7, 138.3(2C), 138.2, 137.9, 128.4-127.4 (30C), 82.4, 81.8, 81.5, 80.4, 79.1, 79.0, 75.9, 75.6, 73.8, 73.1, 72.4, 71.4, 67.3, 58.2, 48.6, 48.5, 36.7, 31.8, 30.2, 29.7-29.3 (13C), 25.6, 25.4, 22.6, 14.1, 14.0. HRMS. Calculado para C₇₄H₁₀₀N₂O₈ (M+H⁺): 1145.7558. Encontrado: 1145.7560.

WO 2010/106215

Reacciones de desbencilación de productos procedentes de aminación reductiva

Ejemplo 9:

10

15

20

5 (2S,3S,4R)-2-octanamido-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2',3',4',5',6'-pentahidroxiciclohexilamino)octadecano-3,4-diol (Compuesto 1a).

HO,,,OH OH OH
$$C_{14}H_{29}$$
OH NH OH $C_{7}H_{15}$

Una disolución en diclorometano (2 mL) de 53 mg (0.05 mmol) de (2S,3S,4R)-(3,4-dibenciloxi-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2',3',4',5',6'-pentabenciloxiciclohexilamino)octadecan-2-il)octanamida se enfría a -78 °C mediante un baño externo y se mantiene bajo argón. Se añade una disolución de BCl₃ (1M) en heptano (2 equiv. por cada grupo OBn). La mezcla de reracción se deja que llegue a temperatura ambiente y se agita durante 16 h. pasado este tiempo, se vuelve a enfriar a -78 °C, y se añaden 2 mL de metanol gota a gota. Se retira el baño y se deja llegar a temperaura ambiente, tras lo cual se concentra a vacío. Seguidamente, se añade AcOEt (3 mL) al residuo resultante y se introduce en un baño de ultrasonidos durante 5-7 minutos. El sólido resultante se recoge por filtración. Se lava con AcOEt (3x1 mL) y se seca a vacío, para dar el compuesto 27 mg (0.042 mmol, 85 %) en forma de hidrocloruro.

Pf =241-243. [α]_D = + 9.6 (MeOH, c, 0.8); IR (film): 3358, 2931, 2852, 1657, 1458, 1111. ¹H-NMR (CD₃OD, 500 MHz); δ 4.37(q, J = 5.5, 1H); 3.68 (t, J = 5.5, 1H); 3.63 (dd, J = 12, 5.5, 1H); 3.55 (m, 3H); 3.39 (dd, J = 13, 6, 1H); 3.33-3.2 (m, 4H); 3.05 (t, J = 11, 1H), 2.29 (t, J = 7, 2H); 1.64 (m, 2H), 1.29

(m, 34H); 0.90 (t, J = 7, 6H); ¹³C-NMR (CD₃OD, 100 MHz): δ 177.6, 77.9, 77.4 (2C), 76.0, 74.1, 71.2, 71.1, 64.5, 49.6, 49.4, 37.9, 33.9, 33.6; 31.7-31.3 (10 C), 31.3, 31.2, 31.0, 27.8, 27.6, 24.6 15.3 (2C). HRMS. Calculado para $C_{32}H_{64}N_2O_8$ (M+H+): 605.4741. Encontrado: 605.4739.

5

Ejemplo 10:

(2S,3S,4R)-2-Hexacosanamido-1-(1'rs,2'RS,3'SR,4'sr,5'RS,6'SR)-2',3',4',5',6'-pentahidroxiciclohexilamino)octadecano-3,4-diol (Compuesto 1b).

10

15

Se prepara por desbencilación con BCl₃ según el procedimiento del ejemplo 9 del producto (2S,3S,4R)-(3,4-dibenciloxi-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-2',3',4',5',6'-

pentabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida. Rendimiento 83%.

Pf =242-244. [α]_D = +8.1 (MeOH, c, 0.8). IR (film): 3363 (br), 2922, 2845, 1649, 1455, 1069. ¹H-NMR (CD₃OD, 400 MHz); δ 4.36 (m, 1H); 3.65 (dd, J = 6, 4.8, 1H); 3.56 (m, 2H); 3.48 (m, 2H); 3.36-3.13 (m, 5H); 3.01 (t, J = 10, 1H), 2.26 (t, J = 7, 2H); 1.61 (m, 2H), 1.29 (m, 70H); 0.90 (t, J = 7, 6H); ¹³C-NMR (DMSO, 60 °C, 100 MHz): δ 173.9, 76.1, 75.6 (2C), 74.5, 71.6, 69.7, 69.6, 63.3, 48.3, 48.1,36.2, 32.7, 31.9; 29.7-29.3 (31 C), 26.0, 25.7, 22.7 14.4 (2C). HRMS. Calculado para $C_{50}H_{100}N_2O_8$ (M+H⁺): 857.7558. Encontrado: 857.7563.

25

20

Ejemplo 11:

(2S,3S,4R)-2-octanamido-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5', 6'-pentahidroxiciclohexilamino)octadecano-3,4-diol (Compuesto 3b)

OH OH OH OH OH OH OH OH OH
$$C_{25}H_{51}$$

Se prepara por desbencilación con BCl₃ según el procedimiento del ejemplo 9 del producto (2S,3S,4R)-(3,4-dibenciloxi-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5',6'-pentabenciloxiciclohexilamino)octadecan-2-il)octanamida. Rendimiento 84%

Pf =214-216. [α]_D = -6.8 (MeOH, c, 0.75); IR (film): 3417, 2931, 2850, 1650, 1443, 1034. 1 H-NMR (CD₃OD, 400 MHz); δ 4.36 (q, J = 5.2, 1H); 4.15 (m, 2H), 3.90 (m, 2H); 3.86 (m, 1H); 3.65 (t, J = 5, 1H); 3.57 (m, 2H), 3.40 (dd, J = 12.5, 6, 1H); 3.20 (dd, J = 12.5, 6, 1H), 2.23 (t, J = 7, 2H); 1.60 (m, 2H), 1.29 (m, 34H); 0.88 (t, J = 7, 6H). 13 C-NMR (CD₃OD, 100 MHz): δ 176.7, 77.0, 74.7, 73.6, 72.9. 72.8, 69.9, 66.3, 59.9, 48.4, 47.8, 36.9, 33.5, 33.0, 32.8, 30.7 (8C), 30.4, 30.3, 30.1, 26.9, 26.7, 23.7 (2C), 14.4 (2C). HRMS. Calculado paraC₃₂H₆₄N₂O₈ (M+H⁺): 605.4741. Encontrado: 605.4738.

Ejemplo 12:

20 (2S,3S,4R)-2-hexacosanamido-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5', 6'-pentahidroxiciclohexilamino)octadecano-3,4-diol (Compuesto 3a).

HO,,, OH OH OH OH
$$C_{14}H_{29}$$

$$O = C_{7}H_{15}$$

Se prepara por desbencilación con BCl_3 según el procedimiento del ejemplo 9 del producto (2S,3S,4R)-(3,4-dibenciloxi-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5',6'-

5 pentabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida. Rendimiento 89%

Pf =235-237; $[\alpha]_D$ = -9.3 (MeOH, c, 0.75). IR (film): 3368, 2923, 2847, 1645, 1461, 1042. ¹H-NMR (CD₃OD, 45 °C, 400 MHz); δ 4.37(q, J = 5, 1H); 4.16 (m, 2H), 3.98 (m, 2H); 3.88 (m, 1H); 3.67 (t, J = 5, 1H); 3.57 (m, 2H), 3.40 (dd, J = 10, 5.2,1H); 3.21 (dd, J = 10, 5.2, 1H), 2.23 (t, J = 7, 2H); 1.60 (m, 2H), 1.29 (m, 70H); 0.88 (t, J = 7, 6H). ¹³C-NMR (CD₃OD, 45 °C, 100 MHz): δ 176.7, 77.0, 74.7, 73.6, 72.9. 72.8, 69.9, 66.3, 59.9, 48.4, 47.8, 36.9, 33.5, 33.0, 30.7-30.4 (31C), 26.9, 26.8, 23.7, 14.4 (2C). HRMS. Calculado paraC₅₀H₁₀₁N₂O₈ (M+H⁺): 857.7558. Encontrado: 857.7580.

Preparación de tetrahidroxiciclohexilaminas

Ejemplo 13:

10

15

25

20 (1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexanol

Una disolución de *O*-tetrabencilconduritol B [González-Bulnes et al Carbohydr Res 2007, 342, 1947-52] (1 g, 1.97 mmol) en THF (50 mL) se agita a 0 °C mientras se añade BH₃·THF (1 M in THF, 6 mL, 6 mmol) gota a gota durante unos 5 min. La mezcla de reacción se lleva a temperatura

ambiente y se continúa la agitación durante 16 h. Se añade NaOH (1 M aq., 8 mL), y peróxido de hidrógeno (30% w/v aq., 4 mL) y se agita vigorosamente durante 1 h a temperatura ambiente. Se extrae con éter y las fases orgánicas combinadas se lavan con agua y disolución saturada de NaCl, se secan (Na₂SO₄) y se concentran a vacío para dar un sólido que se purifica por cromatografía flash (Hexano: AcOEt, 7:3), para dar un sólido blanco (723 mg, 70%).

[α]_D = +8 (CHCl₃, C, 1); ¹H-NMR (CDCl₃, 500 MHz); δ 7.34 (m, 20H); 5.03-4.95 (m, 3H); 4.87 (t, J = 10, 2H); 4.89 (m, 3H); 3.61 (t, J = 9, 1H); 3.53 (m, 3H); 3.36 (t, J = 9, 1H); 2.37 (dt, J = 13, 4, 1H); 2.33 (br, 1H); 1.48 (q, J = 13, 1H). ¹³C-NMR (CDCl₃, 75 MHz): δ 138.6, 138.4 (2C), 138.2, 128.6-127.6 (20C), 85.8 (2C), 83.3, 77.4, 75.8 (2C), 75.4, 72.3, 68.3, 33.9. HRMS. Calculado para $C_{34}H_{36}O_5$ (M+H⁺): 525.2641. Encontrado: 525.2644.

15

20

25

30

10

5

Ejemplo 14:

(1S,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexanol

Una disolución de (1*R*,2*S*,3*R*,4*R*,5*S*)-2,3,4,5-tetrakis(benciloxi)ciclohexanol (540 mg, 1.02 mmol) preparado de acuerdo con el ejemplo 9 y trietilamina (0.44 mL, 3 mmol) en THF (15 mL) se trata con MsCl (cloruro de metansulfonilo) (232 mg, 2.04 mmol). Se agita a temperatura ambiente durante 3 h, se diluye con H₂O (20 mL), y se extrae con AcOEt (3x15 mL). los extractos se secan con Na₂SO₄, se filtra y se evapora para dar el mesilato intermedio, que se disuelve en DMF(dimetilformamida)/H₂O (98 / 2) (10 mL) y se agita a 140 °C en tubo cerrado durante 96 h. Se elimina el disolvente a presión reducida y el residuo resultante se trata con Et₂O (10 mL), se lava con H₂O (3X10 mL), se seca y se evapora para dar una aceite que se purifica mediante cromatografía flash (hexano/AcOEt 7:3) para dar el alcohol (60 mg, 30%).

Pf = 65-67; $[\alpha]_D$ = -4 (CHCl₃, C, 1); IR (neat, cm⁻¹): 3361, 2943, 1427, 1118, 986. ¹H-NMR (CDCl₃, 400 MHz); δ 7.33 (m, 20H); 4.95-4.65 (m, 8H); 4.12 (m, 1H); 3.95 (m, 1H); 3.84 (t, J = 9.2, 1H); 3.49 (m, 2H); 2.84 (dt, J = 14, 4, 1H); 1.40 (ddd, J = 14, 12, 2.4, 1H), ¹³C-NMR (CDCl₃, 75 MHz): δ 138.8, 138.7, 138.6, 137.9, 128.5-127.4 (20 C), 85.7, 82.8, 81.5, 77.0, 76.0, 75.7, 72.9, 72.8, 65.9, 32.4. HRMS. Calculado para $C_{34}H_{36}O_5$ (M+H⁺): 525.2641. Encontrado: 525.2644.

Ejemplo 15:

5

15

20

25

30

10 (1S,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexanamina

Una disolución de (1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexanol (mg, 0.28 mmol) preparado de acuerdo con el ejemplo 9 y trietilamina (0.12 mL, 0.84 mmol) en diclorometano (10 mL) se trata con MsCl (43 µL, 0.56 mmol) a 0°C. La mezcla se agita y se lleva a temperatura ambiente durante dos horas. Se añade diclorometano (10 mL) y se lava tres veces con NaOH 1N (10 mL). La fase orgánica se lava con agua y se seca Na_2SO_4 anhidro, se filtra y bse concentra a vacío para dar un aceite que se disuelve en DMF (5 mL). Se añade NaN_3 (182 mg, 2.8 mmol) y se calienta la mezcla a 90 °C durante 12 horas. La mezcla se enfría a temperatura ambiente, se añade éter dietílico (20 mL), y se extrae con disolución acuosa saturada de NaCl (3x20 mL). La fase orgánica se seca sobre Na_2SO_4 , se filtra y se concentra a vacío para dar la azida intermedia que se purifica por cromatografía flash en silica gel (hexano/AcOEt 9:1). (109 mg, 71%), sólido blanco: Pf = 87-89, $[\alpha]_D = -8.5$ (CHCl₃, C, 1).

La azida se reduce a la amina mediante LiAlH $_4$ (13 mg, 0.36 mmol) que se añade en una porción a una disolución de la misma en THF (10 mL) a 0 °C y se agita a esta temperatura 1 h y durante 1 h a temperatura ambiente. Tras enfriar a 0 °C la mezcla de reacción se añaden gota a gota 0.3 mL de disolución acuosa saturada de Na $_2$ SO $_4$. Las sales se filtran sobre Celite®

28

que se lava con Et₂O y los filtrados se evaporan a vacío para dar la amina pura en forma de sólido blanco (96 mg, 93%).

Pf = 74-76. [α]_D = +2 (CHCl₃, C, 1); IR (film , cm⁻¹): 3351, 2957, 2362, 1433, 1112. ¹H-NMR (CDCl₃, 400 MHz); δ 7.30 (m, 20H); 4.87 (m, 4H); 4.69 (m, 4H); 3.96 (m, 2H); 3.46 (m, 3H); 2.80 (dt, J = 14, 3.2, 1H); 1.43 (m, 1H). ¹³C-NMR (CDCl₃, 100 MHz); δ : 139.0, 138.9, 138.7, 138.5, 128.4-127.4 (20C), 86.2, 83.1, 81,4, 77.1, 75.9, 75.6, 72.8, 72.4, 46.8, 33.5. HRMS. Calculado para C₃₄H₃₇NO₄ (M+H+): 524.2801. Encontrado: 524.2821.

10

5

Ejemplo 16:

(1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexanamina

Se prepara a partir de (1*S*,2*S*,3*R*,4*R*,5*S*)-2,3,4,5-15 tetrakis(benciloxi)ciclohexanol de acuerdo com el procedimiento descrito en el ejemplo 11 para dar un sólido blanco (45 mg, 55%).

Pf = 102-103. [α]_D = -11.5 (CDCl₃, C, 1.0). IR (neat, cm⁻¹): 3355, 2923, 2366, 1454, 1069. ¹H-NMR (CDCl₃, 400 MHz); δ 7.31 (m, 20H); 4.98 (m, 3H); 4.84 (m, 2H); 4.67 (m, 3H), 3.54 (m, 3H); 3.18 (t, J = 9.2, 1H); 2.71 (m, 1H); 2.20 (dt, J = 13.2, 4, 1H); 1.57 (br, 2H, NH2), 1.31 (m, 1H). 13C-NMR (CDCl₃, 100 MHz): δ 138.6, 138.4 (2C), 138.3, 128.5-127.5 (20C), 86.8, 86.0, 84.4, 78.4, 75.7 (2C), 75.5, 72.3, 49.8, 35.1. HRMS. Calculado para $C_{34}H_{37}NO_4$ (M+H⁺): 524.2801. Encontrado: 524.2819.

25

20

Reacciones de sustitución de aziridinas derivadas de fitoesfingosina

Ejemplo 17:

Preparación de N-((1S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-30 il)-2-((1S,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexilamino)etil)-2nitrobencenosulfonamida

A una disolución de 70 mg (0.13 mmol) de (1*S*,2*S*,3*R*,4*R*,5*S*)-2,3,4,5-tetrakis(benciloxi)ciclohexanamina en MeCN seco (5 mL) se añaden 68 mg (0.13 mmol) de (*S*)-2-((4*S*,5*R*)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-1-(2-nitrofenilsulfonil)aziridina (cfr. Y. Harrak et al. <u>Eur J Org Chem</u> 2008, 4647-4654). La mezcla se agita a reflujo durante 3h, se enfría a temperatura ambiente y se concentra a vacío. Se purifica el residuo por cromatografía en columna (hexano/AcOEt 4:1) para dar un aceite incoloro (118 mg, 87%),

10

5

[α]_D = +5.1 (CDCl₃, C, 1.0). IR (film, cm⁻¹): 3316, 2924, 2853, 1541, 1306, 1070, 697. ¹H-NMR (CDCl₃, 500 MHz); δ 8.12 (d, J = 7.5, 1H); 7.65 (t, J = 7, 1H); 7.56 (m, 2H); 7.31 (m, 20H); 4.84 (m, 4H); 4.60 (m, 4H); 4.13 (m, 2H); 3.85 (m, 3H); 3.53 (dd, J = 9.5, 4, 1H); 3.49 (t, J = 9, 1H); 3.01 (d, J = 2.5, 1H); 2.87 (dd, J = 12, 4, 1H); 2.72 (dd, J = 12, 3.5, 1H); 2.17 (dt, J = 14, 3.5, 1H); 1.51 (m, 3H); 1.40 (s, 3H); 1.27 (m, 27 H); 0.91 (t, J = 7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ 147.7, 139.1, 139.0, 138.9, 138.5, 135.3, 133.3, 132.7, 129.7, 128.3-127.3 (20C), 125.3, 107.9, 85.7, 82.6, 81.6, 78.2, 77.5, 77.4, 75.8, 75.4, 72.7, 72.5, 54.1, 53.4, 49.1, 31.9, 29.8-29.3 (11C), 27.4, 26.7, 25.2, 22.7, 14.1. HRMS. Calculado para C₆₁H₈₁N₃O₁₀S (M+H⁺): 1048.5721. Encontrado: 1048.5742.

Ejemplo 18:

25

30

N-((1S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-2-((1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexilamino)etil)-2nitrobencenosulfonamida

De acuerdo con el procedimiento del ejemplo 17 se hacen reaccionar (1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexanamina y (S)-2-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-1-(2-

nitrofenilsulfonil)aziridina (cfr. Y. Harrak et al., <u>Eur J Org. Chem</u> 2008, 4647-4654) para dar un aceite incoloro (71 mg, 87%).

[α]_D = +30 (CDCl₃, C, 1.0); IR (film): 3340, 2924, 2853, 1593, 1365, 1072.
¹H-NMR (CDCl₃, 400 MHz); δ 8.03 (d, J = 7.6, 1H); 7.61 (t, J = 7.6, 1H); 7.52 (t, J = 7.6, 1H); 7.44 (d, J = 8, 1H), 7.28 (m, 21H); 4.96-4.54 (m, 8H); 4.08 (m, 2H); 3.66 (m, 1H), 3.44 (m, 3H); 3.16 (t, J = 9.2, 1H); 2.80 (d, J = 10, 1H); 2.55 (d, J = 10, 1H); 2.42 (t, J = 10, 1H); 2.23 (m, 1H); 1.51 (m, 3H); 1.33 (s, 3H); 130 (s, 3H), 1.27 (m, 24H); 0.87 (t, J = 7, 3H); ¹³C-NMR (CDCl₃, 100 MHz): δ 147.7, 138.6, 138.4 (2C), 138.3, 135.3, 133.3, 132.6, 130.0, 128.4-127.4 (20 C), 125.1, 107.8, 85.8, 84.8, 82.9, 78.3, 77.5, 76.6, 75.7 (2C), 74.8, 72.3, 55.4, 54.3, 45.7, 32.0, 31.8, 29.6-29.2 (10 C), 27.8, 26.3, 25.5, 22.6, 14.1. HRMS. Calculado para C₆₁H₈₁N₃O₁₀S (M+H+): 1048.5721. Encontrado: 1048.5739.

15

25

30

10

5

Desprotección de 2-nitrobencenosulfonamidas

Ejemplo 19:

(S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)- N^2 -

20 ((1S,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexil)etano-1,2-diamina

A una disolución de *N*-((1*S*)-1-((4*S*,5*R*)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-2-((1*S*,2*S*,3*R*,4*R*,5*S*)-2,3,4,5-tetrakis(benciloxi)ciclohexilamino)etil)-2-nitrobencenosulfonamida (105 mg, 0.1 mmol) en CH₃CN seco (2 mL), se añaden tiofenol (44 mg, 0.4 mmol) y Cs₂CO₃ (98 mg, 0.3 mmol). Se agita a temperatura ambiente duranter 24 horas y se añade disolución acuosa saturada de NaHCO₃ (20 mL), extrayéndose la fase acuosa con CH₂Cl₂. Los extractos orgánicos combinados se secan sobre MgSO₄, se filtran y se concentran a presión reducida para dar un aceite que se purifica por cromatografía en columna (CH₂Cl₂ /MeOH 99:1) para dar un liquido claro (73 mg, 85 %).

31

[α]_D = +10.0 (CDCl₃, C, 1.0); IR (film): 3350, 2920, 2832, 1449, 1367, 1081. ¹H-NMR (CDCl₃, 500 MHz); δ 7.31 (m, 20H); 4.87 (m, 4H); 4.67 (m, 4H); 4.12 (m, 1H); 3.91 (m, 1H); 3.75 (dd, J = 9.5, 5.5, 1H); 3.55 (dd, J = 9.5, 4, 1H); 3.48 (m, 2H); 3.11 (m, 1H); 2.88 (m, 1H); 2.69 (dd, J = 12, 3, 1H), 2.56 (dd, J = 12, 6.5, 1H); 2.23 (dt, J = 13.5, 4.5, 1H); 1.54 (m, 3H); 1.42 (s, 3H); 1.30 (s, 3H); 1.27 (m, 24H); 0.90 (t, J = 7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ 138.9 (2C), 138.7, 138.4, 128.3-127.4 (20C), 107.7, 86.2, 83.1, 82.1, 80.0, 77.9, 76.7, 75.9, 75.7, 72.7, 72.2, 53.6, 51.8, 50.2, 31.9, 30.2-29.3 (11C), 28.3, 26.2, 25.9, 22.6, 14.1. HRMS. Calculado paraC₅₅H₇₈N₂O₆ (M+H⁺): 863.5938. Encontrado: 863.5942.

Ejemplo 20:

(S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)- N^2 - ((1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexil)etano-1,2-diamina

15

20

10

5

De acuerdo con el procedimiento descrito en el ejemplo 19 se hace reaccionar (S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)- N^2 -((1R,2S,3R,4R,5S)-2,3,4,5-tetrakis(benciloxi)ciclohexil)etano-1,2-diamina con tiofenol y carbonato de cesio para dar el producto en forma de aceite con un 82% de rendimiento.

[α]_D = -7 (CDCl₃, C, 1.0); R (film): 3402, 2924, 2853, 1454, 1367, 1069. ¹H-NMR (CDCl₃, 400 MHz); δ 7.33 (m, 20H); 5.02-4.68 (m, 8H); 4.13 (m, 1H); 3.77 (dd, J = 8.4, 5.6, 1H); 3.56 (m, 3H); 3.38 (t, J = 8.8, 1H); 2.84 (dd, J = 11.2, 3.2, 1H); 2.77 (dt, J = 8.4, 2.8, 1H), 2.52 (m, 1H); 2.35 (dt, J = 12.8, 4, 1H); 1.50 (m, 3H); 1.39 (s, 3H); 1.31 (s, 3H); 1.28 (m, 24H); 0.90 (t, J = 7.2, 3H). ¹³C-NMR (CDCl₃, 100 MHz): δ 138.7, 138.5, 138.4, 138.3, 128.4-127.5 (20C), 107.8, 85.8, 84.7, 84.2, 80.6, 78.5, 77.8, 75.8, 75.7, 75.4, 72.4, 55.6, 50.8, 50.1, 32.4, 31.9, 30.2-29.3 (10C), 28.3, 26.0, 25.9, 22.6, 14.1. HRMS. Calculado para C₅₅H₇₈N₂O₆ (M+H⁺⁾: 863.5938. Encontrado: 863.5943.

Reacciones de acilación de aminas

Ejemplo 21:

5 (2S,3S,4R)-(3,4-isopropilidendioxi-1-(1'S,2'S,3'R,4'S,5'S)-2',3',4',5'-tetrabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida

A una disolución de (*S*)-1-((4*S*,5*R*)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-*N*²-((1*S*,2*S*,3*R*,4*R*,5*S*)-2,3,4,5-tetrakis(benciloxi)ciclohexil)etano-1,2-diamina (70 mg, 0.08 mmol) y ácido cerótico (32 mg, 0.08 mmol) en THF seco (10 mL) se añade EDC (23 mg, 0.12 mmol). La reacción se calienta a refuljo durante 12 h, se enfría a temperatura ambiente y se añade agua (10 mL). Se extrae con AcOEt, se lava con agua, NaCl sat y se seca la fase orgánica con MgSO₄. Se filtra y se concentra a vacío para dar un aceite que se purifica por cromatografía en columna en sílica gel (hexano/ AcOEt 7/3) para dar un sólido blanco (67mg, 68%).

Pf = 72-74. [α]_D = +16.2 (CDCl₃, C, 1.0); IR (film, cm⁻¹): 3325, 2918, 2850, 1650, 1470, 1095. ¹H-NMR (CDCl₃, 500 MHz); δ 7.32 (m, 20H); 5.98 (d, J = 9.5, 1H); 4.93 (d, J = 11, 1H); 4.87 (m, 2H); 4.83 (d, J = 11, 1H); 4.65 (m, 3H); 4.58 (d, J = 11, 1H); 4.19 (m, 1H); 4.13 (m, 1H); 4.00 (t, J = 6.5, 1H); 3.93 (t, J = 9.5, 1H); 3.87 (m, 1H); 3.09 (d, J = 3, 1H); 2.80 (dd, J = 12, 3.5, 1H); 2.20 (dt, J = 15.5, 4, 1H); 2.10 (m, 2H); 1.56 (m, 3H), 1.40 (s, 3H); 1.27 (m, 73H); 0.89 (t, J = 7, 6H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.3, 138.8 (2C), 138.4, 138.3, 128.4-127.5 20C), 107.7, 85.8, 82.8, 82.0, 77.9, 77.8, 77.7, 75.9, 75.8, 72.9, 72.4, 53.2, 48.5, 47.7, 37.0, 31.9, 29.7-29.3 (33C), 27.7, 26.6, 25.8, 25.3, 22.7, 14.1(2C). HRMS. Calculado para C₈₁H₁₂₈N₂O₇ (M+H⁺): 1241.9800. Encontrado: 1241.9766.

30 <u>Ejemplo 22:</u>

33

(2S,3S,4R)-(3,4-isopropilidendioxi-1-(1'R,2'S,3'R,4'S,5'S)-2',3',4',5'-tetrabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida

Por reacción de (*S*)-1-((4*S*,5*R*)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-*N*²- ((1*R*,2*S*,3*R*,4*R*,5*S*)-2,3,4,5-tetrakis(benciloxi)ciclohexil)etano-1,2-diamina con ácido cerótico y EDC, de acuerdo com el procedimeinto del ejemplo 21, se obtiene un sólido blanco com un rendimiento del 63%.

Pf = 85-87 °C. [α]_D = -8 (CHCl₃, C, 1.0); IR (neat, cm-1): 3331, 2925, 2849, 1664, 1444, 1111. ¹H-NMR (CDCl₃, 500 MHz); δ 7.34 (m, 20H); 5.97 (br, 1 H); 5.04-4.68 (m, 8H); 4.02 (m, 2H); 3.95 (m, 1H); 3.52 (m, 3H); 3.31 (m, 1H); 3.02 (d, J = 12.5, 1H); 2.64 (d, J = 13, 1H); 2.46 (m, 1H); 2.29 (m, 1H); 1.96 (m, 2H), 1.62 (br, 1H), 1.55 (m, 3H), 1.40 (s, 3H); 1.32 (s, 3H), 1.26 (m, 70H); 0.89 (t, J = 7, 6H). ¹³C-NMR (CDCl₃, 100 MHz): δ 172.5, 138.6, 138.4 (2C), 138.3, 128.5-127.6 (20C), 107.7, 85.8, 84.7, 84.6, 78.5, 77.7, 77.0, 75.9, 75.8, 75.7, 72.6, 57.1, 48.3, 46.9, 36.7, 33.4, 31.9, 29.7-29.3 (31 C), 29.0, 27.9, 26.5, 25.7, 25.3, 22.7, 14.1 (2C). HRMS. Calculado paraC₈₁H₁₂₈N₂O₇ (M+H⁺⁾: 1241.9800. Encontrado: 1241.9773.

20 Reacciones de desbencilación de productos procedentes de aperturas de aziridinas

Ejemplo 23:

(2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S)-2,3,4,5,-

25 tetrahidroxiciclohexilaminooctadecano-3,4-diol (Compuesto 4b).

De acuerdo con el procedimiento descrito en el ejemplo 9 se tratan 30 mg (0,024 mmol) de (2*S*,3*S*,4*R*)-(3,4-isopropilidendioxi-1-(1'*S*,2'*S*,3'*R*,4'*S*,5'*S*)-2',3',4',5'-tetrabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida con BCl₃ (1M en heptano, 0.24 mL, 0.24 mmol). Para dar 15 mg (0,015 mmol, 73%) del hidrocloruro de (2*S*,3*S*,4*R*)-2-hexacosanamido-1-(1'*S*,2'*S*,3'*R*,4'*R*,5'*S*)-2,3,4,5,-tetrahidroxiciclohexilaminooctadecano-3,4-diol en forma de sólido blanco.

10

15

5

Pf = 213-215. [α]_D = -25 (MeOH, C, 0.2); IR (neat, cm⁻¹): 3351 (br), 2942, 2833, 1642, 1433, 1021; ¹H-NMR (MeOH, 500 MHz, 50 °C); δ 4.33 (c, J = 5, 1H); 3.90 (dd, J = 7, 4, 1H); 3.84 (m, 1H); 3.65 (m, 4H); 3.53 (m, 2H); 3.13 (dd, J = 13, 6.5, 1H); 2.27 (m, 2H); 1.78 (m, 1H); 1.64 (m, 3H); 1.32 (m, 70H); 0.92 (t, J = 7, 6H). ¹³C-NMR (DMSO, 100 MHz): δ 174.0, 75.9, 75.5, 72.8, 71.8, 70.5, 68.2, 56.6, 48.2, 46.5, 36.1, 33.1, 31.9, 29.7-29.3 (31C), 28.8, 25.9, 25.8, 22.7, 14.5 (2C). HRMS. Calculado para C₅₀H₁₂₇N₂O₇ (M+H⁺): 841.7609. Encontrado: 841.7628.

20 Ejemplo 24:

(2S,3S,4R)-2-hexacosanamido-1-(1'R,2'S,3'R,4'R,5'S)-2,3,4,5,-tetrahidroxiciclohexilaminooctadecano-3,4-diol (Compuesto 2b).

De acuerdo con el procedimiento descrito en el ejemplo 9 se tratan 30 mg (0.024 mmol) de (2*S*,3*S*,4*R*)-(3,4-isopropilidendioxi-1-(1'*S*,2'*S*,3'*R*,4'*S*,5'*S*)-2',3',4',5'-tetrabenciloxiciclohexilaminooctadecan-2-il)hexacosanamidacon BCl₃ (1M en heptano, 0.24 mL, 0.24 mmol). Se obtienen 10 mg (0,011 mmol, 46%) del hidrocloruro de (2*S*,3*S*,4*R*)-2-hexacosanamido-1-(1'*R*,2'*S*,3'*R*,4'*R*,5'*S*)-2,3,4,5,-tetrahidroxiciclohexilaminooctadecano-3,4-diol en forma sólido blanco.

10

15

Pf = 227-229. $[\alpha]_D$ = +12 (MeOH, C, 0.2); IR (neat, cm⁻¹): 3343 (br), 29512, 2812, 1668, 1427, 1007; ¹H-NMR (DMSO, 500 MHz, 60 °C); 4.22 (m, 1H); 3.81 (m, 1H); 3.48-2.98 (m, 8H); 2.13 (m, 3H); 1.46 (m, 5H); 1.26 (m, 68H); 0.87 (m, 6H). HRMS. Calculado para $C_{50}H_{127}N_2O_7$ (M+H⁺⁾: 841.7609. Encontrado: 841.7628.

<u>Preparación de compuestos de fórmula (I) a partir de otros aminociclitoles</u>

20 <u>Ejemplo 25:</u>

(2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S, 6'S)-2,3,4,5,-tetrahidroxi-6-metoxiciclohexilaminooctadecano-3,4-diol

Este compuesto fue preparado en cuatro etapas: 1) siguiendo el método descrito en el ejemplo 17 por reacción de (1S,2S,3R,4R,5S,6S)-2,3,4,5-tetrakis(benciloxi)-6-metoxiciclohexanamina con (S)-2-((4S,5R)-2,2-dimetil-

WO 2010/106215

5-tetradecil-1,3-dioxolan-4-il)-1-(2-nitrofenilsulfonil)aziridina [Y. Harrak et al. Eur J Org. Chem 2008, 4647-4654] para dar la correspondiente amina (79% rendimiento) 2) desprotección del grupo nitrobencenosulfonilo de acuerdo con el procedimiento descrito en el ejemplo 19 para dar el compuesto $(S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-N^2-$ ((1'S,2'S,3'R,4'R,5'S,6'S)-2,3,4,5-tetrakis(benciloxi)-6-metoxiciclohexil) etano-1,2-diamina (78% rendimiento) 3) Acilación con ácido cerótico de la amina primaria siguiendo el procedimiento descrito en el ejemplo 21 para dar la amida con un rendimiento del 76%; y 4) desprotección de los sustituyentes hidroxilados mediante reacción con BCl₃ siguiendo el procedimiento detallado en el ejemplo 9 para dar con un 91% de rendimiento el hidrocloruro de (2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S,6'S)-2,3,4,5,-tetrahidroxi-6-metoxiciclohexilamino) octadecano-3,4-diol en forma de aceite denso.

15

20

25

30

10

5

[α]_D = - 9 (MeOH, 0.5); IR (film, cm⁻¹): 3364 (br), 2948, 2828, 1671, 1436, 1063. 1H-NMR (CD3OD, 500 MHz, 50°C); δ 4.34 (m, 1H); 4.26 (m, 1H), 4.20 (m, 1H); 4.04 (m, 1H); 3.91 (m, 1H); 3.86 (m, 1H); 3.70 (m, 2H); 3.47 (s, 3H); 3.25 (m, 1H); 2.25 (m, 2H); 1.60 (m, 4H); 1.28 (m, 68H); 0.90 (m, 6H). 13C-NMR (CD3OD, 100 MHz, 55 °C): δ 177.5, 77.8, 76.8, 74.6, 73.8, 73.6, 71.0, 59.5, 58.0, 50.1, 49.6, 48.8, 37.9, 34.5, 33.8 (2C), 31.6-31.2 (29C), 27.8, 27.6, 24.5 (2C), 14.2(2C). HRMS. Calculado para $C_{51}H_{103}N_2O_8$ (M+H⁺): 871.7714. Encontrado: 871.7755.

Ejemplo 26:

(2S,3S,4R)-2-Hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'-trihidroxiciclohexenilaminooctadecano-3,4-diol

Este compuesto fue preparado en cuatro etapas: 1) siguiendo el método descrito en el ejemplo 17 por reacción de (1S,4S,5S,6S)-4,5-isopropilidendioxi-3-hidroxiciclohexenilamina con (S)-2-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-1-(2-nitrofenilsulfonil)aziridina [Y. Harrak et al.

5

Eur J Org. Chem 2008, 4647-4654] para dar la correspondiente amina (97 % de rendimiento) 2) desprotección del grupo 2-nitrobencenosulfonilo de acuerdo com el procedimiento descrito en el ejemplo 19 para dar el compuesto (S)-1-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-N²-((1'S,4'S,5'S,6'S)-4',5'-isopropilidendioxi-3'-hidroxiciclohexenil)etano-1,2-diamina (78% rendimiento) 3) Acilación con ácido cerótico de la amina primaria siguiendo el procedimiento descrito en el ejemplo 21 para dar (2S,3S,4R)-(3,4-isopropilidendioxi)-1-(1'S,4'S,5'S,6'S)-4',5'-

isopropilidendioxi-3'-hidroxiciclohexenilaminooctadecan-2-

il)hexacosanamida con un rendimiento del 75%; y 4) desprotección de los sustituyentes hidroxilados mediante reacción con metanol y ácido clorhídrico siguiendo el siguiente procedimiento.

A una disolución de la amida obtenida en el paso 3 (18 mg, 0.02 mmol) en 10 mL de CH₃OH se añade una gota de HCl (36% en agua) y se agita durante 24 h. Se evaporan los disolventes para dar un aceite que solidifica lentamente (30 mg, 92 %).

[α]_D = +4 (MeOH, C, 0.5); IR (film, cm⁻¹): 3427 (br), 2973, 1659, 994. 1H-20 NMR (DMSO, 500 MHz, 70°C, mezcla de rotámeros y confórmeros); δ, 5.80 (d, J = 10.5, 1H), 5.70 (d, J = 10.5, 1H); 4.85 (m, 1H); 4.23 (m, 2H), 3.95 (m, 2H); 3.82 (m, 2H), 3.40 (m 2H); 2.37 (m, 2H); 1.55 (m, 4H), 1.24 (m, 68H); 0.85 (m, 6H). 13C-NMR (DMSO, 100 MHz, 60°C, mezcla de rotámeros y confórmeros): δ 172.0, 134.6, 119.4, 74.9, 70.5, 69.9, 65.8, 64.2, 55.3, 47.4, 43.3, 35.3, 33.7, 30.9, 28.6 (30 C), 24.7, 24.0, 21.7 (2C), 13.3 (2C). HRMS. Calculado para $C_{50}H_{99}N_2O_6$ (M+H⁺): 823.7503. Encontrado: 823.7546.

Ejemplo 27

(2S,3S,4R)-2-Hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'-

30 trihidroxiciclohexilamino)octadecano-3,4-diol.

PCT/ES2010/070164

Se prepara por hidrogenación catalítica con Pd/C al 5% (5mg) que se añaden a a una disolución de 5 mg de (2S,3S,4R)-2-hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'-trihidroxiciclohexenilamino)octadecano-3,4-diol en 5 mL de metanol. La mezcla se agita bajo 1 atm de hidrógeno durante 24 horas a temperatura ambiente. Se filtra el catalizador y se concentra para dar el compuesto con rendimiento cuantitativo.

[α]_D = -5 (MeOH, C, 0.5); IR (film, cm⁻¹): 3429 (br), 2859, 1670, 978. 1H-NMR (DMSO, 500 MHz, 60°C, mezcla de rotámeros y confórmeros); δ 8.90 (br, 3H), 8.17 (br, 1H), 4.20-3.08 (m, 8H), 2.32 (m, 2H); 214 (m, 1H), 1.80-1.22 (m, 75H); 0.84 (m, 6H). 13C-NMR (DMSO, 100 MHz, 60 °C, mezcla de rotámeros y confórmeros): δ 173.0, 75.8, 72.5, 71.6, 68.3, 66.8, 57.2, 50.5, 44.5, 36.2, 34.7, 32.9, 32.0, 30.9, 29.7 (30C), 26.6, 25.0, 22.7 (2C), 14.3 (2C). HRMS. Calculado para $C_{50}H_{100}N_2O_6$ (M+H⁺): 825.7660. Encontrado: 823.7624.

Ejemplo 28:

(2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'S,6'R)-5'-hidroximetil-2',3',4',6',-tetrahidroxiciclohexilamino)octadecano-3,4-diol;

20

25

30

15

5

10

Este compuesto fue preparado en cuatro etapas:

- 1) formación de la amina siguiendo el método descrito en el ejemplo 17 por reacción de (1*S*,2*S*,3*S*,4*S*,5*S*,6*R*)-5-hidroximetil-2,3,4,5-tetrakis(benciloxi)ciclohexilamina con (*S*)-2-((4*S*,5*R*)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-1-(2-nitrofenilsulfonil)aziridina [Y. Harrak et al. Eur J Org. Chem 2008, 4647-4654] para dar la correspondiente amina (83% rendimiento)
- 2) desprotección del grupo nitrobencenosulfonilo de acuerdo com el procedimiento descrito en el ejemplo 19 para dar el compuesto (S)-1- ((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)- N^2 -

((1'S,2'S,3'S,4'S,5'S,6'R)- 5'-hidroximetil-2',3',4',6'-tetrakis(benciloxi))etano-

1,2-diamina (79% rendimiento); 3) Acilación con ácido cerótico de la amina primaria en dicha diamina siguiendo un procedimiento análogo al descrito en el ejemplo 21 para dar (2S,3S,4R)-(3,4-isopropilidendioxi-1-(1'S,2'S,3'S,4'S,5'S,6'R)-5'-hidroximetil-2,3,4,6-

- 5 tetrabenciloxiciclohexilaminooctadecan-2-il)hexacosanamida correspondiente con un rendimiento del 79%;
 - y 4) desprotección de los sustituyentes hidroxilados de dicha amida mediante hidrogenación catalítica siguiendo el siguiente procedimiento. Una disolución de (0.02 mmol) in 10 mL of CH₃OH conteniendo dos gotas de HCl conc. se agita bajo H₂ (2 atm) en presencia de 10 mg de Pd-C, 5 % durante 48 h. La mezcla de reacción se filtra y se concentra a presión reducida para dar el hidrocloruro de (2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'S,6'R)-5-hidroximetil-2,'3',4',6'-
- tetrahidroxiciclohexilamino)octadecano-3,4-diol en forma de sólido ligeramente marrón con un rendimiento del 85%.

Pf = 277-279, $[\alpha]_D$ = +3 (MeOH, C, 0.5); IR (film): 34000-3200 (br), 2861, 1672, 985. 1H-NMR (CD3OD, 500 MHz); δ 4.36 (m, 1H); 4.26 (m, 1H), 4.14 (m, 3H); 4.00 (m, 2H); 3.92-3.57 m (m, 3H); 3.44 (dd, J = 12.5, 6.5, 1H); 3.26 (dd, J = 12.5, 6, 1H); 2.45 (m, 1H); 2.40 (br, 1H); 2.26 (m, 2H); 1.63 (m, 4H); 1.23 (m, 68H); 0.90 (m, 6H).13C-NMR (DMSO, 100 MHz, 60°C): δ 173.3, 75.6, 71.7, 71.4, 67.1, 66.3 (2C), 59.5, 57.1, 46.5, 45.6, 41.8, 35.7, 31.4(2C), 29.7-28.8 (29C), 25.5, 25.3, 22.1 (2C), 13.5, 13.4. HRMS. Calculado para $C_{51}H_{102}N_2O_8$ (M+H $^+$): 871.7714. Encontrado: 871.7713.

25

10

Ejemplo 29:

(2*S*,3*S*,4*R*)-2-hexacosanamido-1-((1'*S*,2'*S*,3'*S*,4'*S*,5'*R*)-5-hidroximetil-2',3',4',-trihidroxiciclohexilamino)octadecano-3,4-diol;

30 Este compuesto fue preparado en cuatro etapas:

5

WO 2010/106215 PCT/ES2010/070164

1) siguiendo el método descrito en el ejemplo 17 por reacción de (1S,2S,3S,4S,5R)-5-hidroximetil-2,3,4-tris(benciloxi)ciclohexilamina con (S)-2-((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-1-(2-

40

nitrofenilsulfonil)aziridina [Y. Harrak et al. Eur J Org. Chem 2008, 4647-4654] para dar la correspondiente amina (88% rendimiento);

- 2) desprotección del grupo nitrobencenosulfonilo de acuerdo com el procedimiento descrito en el ejemplo 19 para dar el compuesto (S)-1- ((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)- N^2 -((1'S,2'S,3'S,4'S,5'R)-5'-hidroximetil-2',3',4'-tris(benciloxi))etano-1,2-diamina (69% rendimiento);
- 3) Acilación con ácido cerótico de la amina primaria siguiendo el procedimiento descrito en el ejemplo 21 para dar (2S,3S,4R)-(3,4-isopropilidendioxi-1-(1'S,2'S,3'S,4'S,5'R,)-5'-hidroximetil-2',3',4'-tribenciloxiciclohexilaminooctadecan-2-il)hexacosanamida con un rendimiento del 74%;
- y 4) desprotección de los sustituyentes hidroxilados mediante reacción con metanol y ácido clorhídrico siguiendo el siguiente procedimiento: una disolución de (0.02 mmol) in 10 mL of CH₃OH conteniendo dos gotas de HCl conc. se agita bajo H₂ (2 atm) en presencia de 10 mg de Pd-C, 5 % durante 48 h. La mezcla de reacción se filtra y concentra a vacío para dar el hidrocloruro de (2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'R)-5-hidroximetil-2',3',4'-trihidroxiciclohexilamino)octadecano-3,4-diol en forma de sólido ligeramente marrón con un rendimiento del 88%.

IR (film, cm⁻¹): 3300-3400 (br), 2966, 2851, 1659, 1440, 1024. 1H-NMR (DMSO, 400 MHz); δ 4.8 (br, 1H); 4.22 (br, 1H); 3.85-3.15 (m, 10H); 2.44 (m, 2H); 2.15(m, 1H); 2.0 (m, 1H); 1.7 (m, 1H); 1.5 (m, 2H); 1.23 (m, 70H); 0.84 (m, 6H). 13C-NMR (DMSO, 100 MHz, 60°C): δ 174.9, 76.3, 73.4, 71.8, 68.9, 68.8, 61.4, 58.2, 48.4, 38.7, 36.5, 33.3, 31.8(2C), 29.7-29.0 (30 C), 25.8, 25.1, 22.7 (2C), 14.2 (2C). HRMS. Calculado para $C_{51}H_{102}N_2O_7$ (M+H⁺⁾: 871.7765. Found: 871.7742.

WO 2010/106215 PCT/ES2010/070164

41

Ejemplo 30:

10

(2S,3S,4R)-2-hexacosanamido-1-((1'R,2'S,3'S,4'S,5'R)-5-hidroximetil-2',3',4'-trihidroxiciclohexilamino)octadecano-3,4-diol.

- 5 Este compuesto fue preparado en cuatro etapas:
 - 1) siguiendo el método descrito en el ejemplo 17 por reacción de (1*R*,2*S*,3*S*,4*S*,5*R*)-5-hidroximetil-2,3,4-tris(benciloxi)ciclohexilamina con (*S*)-2-((4*S*,5*R*)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-1-(2-nitrofenilsulfonil)aziridina (cfr. Y. Harrak et al., <u>Eur J Org. Chem</u> 2008, 4647-4654) para dar la correspondiente amina (88% rendimiento);
 - 2) desprotección del grupo nitrobencenosulfonilo de acuerdo com el procedimiento descrito en el ejemplo 19 para dar el compuesto (S)-1- $((4S,5R)-2,2-dimetil-5-tetradecil-1,3-dioxolan-4-il)-<math>N^2-((1^7R,2^7S,3^7S,4^7S,5^7R)-5^7-hidroximetil-2^7,3^7,4^7-tris(benciloxi))$ etano-1,2-diamina (69% rendimiento);
- 3) Acilación con ácido cerótico de la amina primaria siguiendo el procedimiento descrito en el ejemplo 21 para dar (2S,3S,4R)-(3,4-isopropilidendioxi-1-(1'R,2'S,3'S,4'S,5'R,)-5'-hidroximetil-2,3,4-tribenciloxiciclohexilaminooctadecan-2-il)hexacosanamida con un rendimiento del 74%;
- y 4) desprotección de los sustituyentes hidroxilados mediante reacción con metanol y ácido clorhídrico siguiendo el siguiente procedimiento: una disolución de 22.5 mg (0.018 mmol) de la amida en 10 mL of CH₃OH conteniendo dos gotas de HCl conc. se agita bajo H₂ (2 atm) en presencia de 10 mg de Pd-C, 5 % durante 48 h. La mezcla de reacción se filtra y concentra a vacío para dar 14 mg (0.015 mmol) del hidrocloruro de (2S,3S,4R)-2-hexacosanamido-1-((1'R,2'S,3'S,4'S,5'R)-5-hidroximetil-2',3',4'-trihidroxiciclohexilamino)octadecano-3,4-diol en forma de sólido ligeramente marrón con un rendimiento del 81%.
- 30 IR (neat, cm⁻¹): 3381 (br), 2963, 2841, 1655, 1439, 1024. 1H-NMR (DMSO, 400 MHz); δ 4.83 (br, 1H); 4.23 (br, 1H); 3.85-3.17 (m, 10H); 2.42 (m, 2H);

PCT/ES2010/070164 WO 2010/106215

42

2.13 (m, 1H); 2.00 (m, 1H); 1.71 (m, 1H); 1.51 (m, 2H); 1.23 (m, 70H); 0.84 (m, 6H). ¹³C-NMR (DMSO, 100 MHz, 60 °C): δ 173.9, 76.1, 73.4, 71.7, 68.9, 68.7, 61.6 58.0, 48.3, 38.6, 36.1, 33.1, 31.9(2C), 29.7-29.3 (30C), 25.9, 25.1, 22.6 (2C), 14.4 (2C). HRMS. Calculado para $C_{51}H_{102}N_2O_7$ (M+H⁺): 871.7765. Encontrado: 871.7742

5

Ensayos biológicos de los compuestos de fórmula (I)

Ejemplo 31

15

20

25

10 Determinación de la expansion de células iNKT de ratón inducida por los compuestos de tipo aminociclitol in vitro.

La determinación de la capacidad de inducir la activación de las células iNKT por los compuestos de la invención se realizó de acuerdo con los métodos conocidos por un experto en la materia.

En primer lugar, se determinó la capacidad de inducir la proliferación específica de iNKT de ratón mediante experimentos de cultivos in vitro. Para ello se aislaron células de bazo provenientes de ratones B57Bl/6 de hembras entre 10 a 20 semanas y se eliminaron los hematíes mediante lisis hipotónica. Las células de bazo se distribuyen en placas de 96 pocillos en U, entre 100.000 y 500.000 células por pocillo y se incuban en presencia de cada uno de los compuestos 1a, 1b, 2b, 3a, 3b y 4b a una concentración final de 1µg/mL en medio de cultivo RPMI-1640, 10% suero fetal, 100 mM glutamina, 1 % metanol. Al día 2 de cultivo se añadió interleucina 2 humana recombinante, a una concentración final de 25 unidades/mL, condiciones que no indujeron la proliferación inespecífica de las células NK. El cultivo se analizó a día 5 ó 6 mediante citometría de flujo, utilizando anticuerpos específicos del TCR y NK1.1 En presencia del control a GalCer:

la población de células NKT se expandió más de 5 veces sobre las condiciones basales, en concordancia con los resultados establecidos en la literatura científica. En las mismas condiciones, el compuesto 4b induce una fuerte proliferación de las iNKT, similar a la aGalCer, representando un aumento del 1,2 al 6,2% de las células T (fig 1). Asimismo, los compuestos 3a y 3b, inducen una débil expansión de las iNKT (aproximadamente 2 veces), pero los resultados son demasiado pequeños para atribuir una capacidad inmuestimuladora de forma inequívoca. ΕI uso de dimetilsulfóxido (DMSO) en vez de metanol como disolvente o el uso de concentraciones superiores de los compuestos, sólo permiten confirmar la tendencia estimuladora sobre las iNKT, pero los experimentos muestran una variabilidad demasiado elevada como para extraer conclusiones definitivas, debido a la baja solubilidad de los compuestos.

15

20

25

10

5

Cuantificación de la capacidad estimuladora de las células iNKT del compuesto 4b

Los ligandos glicolipídicos de CD1d inducen una desviación de la producción de citocinas por parte de las células iNKT hacia Th1 o Th2, dependiendo de su capacidad de ser presentados por CD1d y de sus características estructurales reconocidas por el TCR. Para cuantificar más precisamente la capacidad inmunoestimuladora del compuesto 4b y determinar si induce una desviación de la respuesta iNKT, se titula su capacidad de inducir la producción de IFNy e IL-4 en los cultivos celulares

WO 2010/106215 PCT/ES2010/070164

44

usando diferentes concentraciones, y comparándola con los dos ligandos prototípicos, $\tilde{\alpha}$ GalCer y OCH (disueltos en MeOH), que han sido descritos como inductores de de una respuesta Th1 y Th2 respectivamente.

El compuesto 4b induce la producción de IFNy a una concentración de 333ng/mL, alcanzando el plateau de máxima respuesta a 1µg/mL, siendo éste de menor magnitud y a una mayor concentración de compuesto que en el caso de la respuesta producida por α -GalCer (fig. 3a). α -GalCer se representa como aGC en las figuras 2 y 3. El compuesto 4b induce una mayor producción relativa de IL-4 frente a IFNy, comparada con la inducida por aGalCer (relación de IFNy/IL-4 de 2 en el caso del compuesto 4b frente a una relación de 10 en el caso de α-GalCer). Esta capacidad de inducción de IL-4 se mantiene con alta eficiencia a una concentración de 100 ng/mL, siendo aún significativa a 33 ng/mL (fig 3b). Comparando con el prototipo de respuesta Th2. OCH, el compuesto 4b induce una menor respuesta. pero conserva un perfil similar, de forma que ambos compuestos mantienen una capacidad muy superior de inducción de IL-4 frente a IFNy a dosis menores, en contraste con el alto perfil Th1 de la α -GalCer. Por tanto, el compuesto 4b induce preferiblemente una respuesta de tipo Th2 tras su reconocimiento por las iNKT.

Cultivos celulares

5

10

15

20

Esplenocitos de ratones C57BL/6 se obtienen mediante aislamiento del bazo de ratones hembras de 8 a 12 semanas de edad, según protocolos aprobados por el Comité de Etica en Experimentación Animal y Humana de la Universidad Autónoma de Barcelona. Los bazos son disgregados con el émbolo de una jeringa en placas de 60 mL en cabina de flujo laminar, elimando los hematíes con tampón de lisis (Sigma-Aldrich). 5x10⁵ células se depositan en pocillos de placas de 96 con fondo en U y se incuban con 100 ng/mL de α-GalCer, OCH, o 1μg/mL de los compuestos 1a, 1b, 2b, 3a,

PCT/ES2010/070164 WO 2010/106215

3b, y 4b en medio RPMI-1640 suplementado con 10% de suero bovino fetal (FCS) (Labclinics), 2-mercaptoetanol 50 µM, L-glutamina 2mM y 1% de metanol (concentración no tóxica para las células) y se cultivan a 37°C en atmósfera de 5% de CO₂ humidificada. Se añaden 25 U/mL de interleucina

5 2 humana recombinante a día 2 de cultivo.

Para las determinaciones de IL-4 e IFNy, se toman los sobrenadantes de cultivo a día 4 o día 7 y se almacenan a -70°C o se usan inmediatamente en ensayos de ELISA (eBioscience) para la cuantificación de citocinas, siguiendo las instrucciones del fabricante. Las curvas estandar se generan con las citocinas recombinantes incluidas en el kit. La significación estadística de los resultados se analiza usando un test de t-Student, considerándose significativas diferencias con un p<0,01.

Los compuestos 1a, 1b, 2b, 3a, 3b, y 4b se resuspenden en 100% de metanol o 100% dimetilsulfóxido a una concentración de 1mg/mL, y se prepara una dilución de uso 1/10 en PBS, con una concentración final de 100 µg/mL. Los compuestos se calientan a 56°C durante 10-30 min y se sonican, antes de ser diluidos en medio de cultivo completo, con una concentración final de 1% del vehículo en el ensayo celular.

20

25

30

10

15

Análisis por citometría de flujo

Los cultivos de esplenocitos cultivados en las condiciones indicadas se analizan mediante citometría de flujo en un FACS Calibur (Beckton Dickinson Bioscience) para cuantificar los niveles de proliferación de las iNKT tras la incubación con los compuestos 1a, 1b, 2b, 3a, 3b, y 4b. Los cultivos de bazo estimulados son lavados y preincubados con 50µl de medio de tinción (PBS con 2% de FCS) con anti-CD16 (clone 2.4G2) durante 20 min en hielo. Posteriormente se lavan y se resuspenden las células en medio de tinción con anticuerpo anti-TCR de ratón conjugado a isotiocianato de fluoresceina (FITC) (clone H57-597, BD-Pharmingen) y WO 2010/106215 PCT/ES2010/070164

46

anti-NK1.1 conjugado con avidina (clone PK-136, BD-Pharmingen) durante 30 min en hielo. Se lavan las células y se resuspenden en medio de tinción con estreptavidina-phicoeritrina (Southern Biotechonology) durante 30 min en hielo. Se lavan dos veces las células y se resuspenden me medio de tinción. Las muestras se analizan en el citómetro de flujo (FACSCalibur) y los datos se procesan usando el programa CellQuest (BD Bioscience).

REIVINDICACIONES

1. Compuesto de fórmula general (I):

$$R^4$$
 R^5
 R^5
 R^7
 R^7

5

donde: R^1 es un grupo alquilo (C_5 - C_{35}), sustituido o no sustituido.

R², R³, R⁴ y R⁵ son iguales o diferentes entre sí y se seleccionan de la lista que comprende hidrógeno, hidroxilo, alcoxilo o alquilo (C1-C6), sustituido o no sustituido;

 ${\sf R}^6$ se selecciona de la lista que comprende un alquilo (C5-C35), arilo, cicloalquilo, heterociclo; y

---- representa la existencia o no de un doble enlace;

15

10

o un isómero, sus sales y/o solvato del mismo.

2. Compuesto según la reivindicación 1, donde R^1 es un grupo alquilo (C_{7} - C_{25}).

20

- 3. Compuesto según cualquiera de las reivindicaciones 1 ó 2, donde R^2 , R^3 , R^4 y/o R^5 son hidroxilo.
- 4. Compuesto según cualquiera de las reivindicaciones 1 a 3, donde R⁴ es
 25 hidroxilo y/o R⁵ es hidrógeno.

- 5. Compuesto según cualquiera de las reivindicaciones 1 a 4, donde R² es hidrógeno o alcoxilo.
- 5 6. Compuesto según la reivindicación 5, donde R² es metoxilo.
 - 7. Compuesto según cualquiera de las reivindicaciones 1 a 6, donde R³ es hidroxilo o un hidroxialquilo (C₁-C₃).
- 10 8. Compuesto según la reivindicación 7, donde R³ es hidroximetilo.
 - 9. Compuesto según cualquiera de las reivindicaciones 1 a 8, donde R^6 es un grupo alquilo (C_{10} - C_{20}).
- 15 10. Compuesto según la reivindicación 1, de fórmula:

(2S,3S,4R)-2-octanamido-1-(1'rs,2'RS,3'SR,4'SR,5'RS,6'SR)-

2',3',4',5',6'-pentahidroxiciclohexilaminooctadecano-3,4-diol;

(2S,3S,4R)-2-Hexacosanamido-1-(1'rs,2'RS,3'SR,4'sr,5'RS,6'SR)-

2',3',4',5',6'-pentahidroxiciclohexilaminooctadecano-3,4-diol;

- 20 (2S,3S,4R)-2-octanamido-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2',3',4',5', 6'-pentahidroxiciclohexilaminooctadecano-3,4-diol; (2S,3S,4R)-2-Hexacosanamido-1-(1'R,2'S,3'R,4'S,5'S,6'S)-2,3,4,5,6-pentahidroxiciclohexilaminooctadecano-3,4-diol; (2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S)-2,3,4,5,-
- tetrahidroxiciclohexilaminooctadecano-3,4-diol;
 (2S,3S,4R)-2-hexacosanamido-1-(1'R,2'S,3'R,4'R,5'S)-2,3,4,5,tetrahidroxiciclohexilaminooctadecano-3,4-diol;
 (2S,3S,4R)-2-hexacosanamido-1-(1'S,2'S,3'R,4'R,5'S, 6'S)-2,3,4,5,tetrahidroxi-6-metoxiciclohexilaminooctadecano-3,4-diol;
- 30 (2S,3S,4R)-2-Hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'-trihidroxiciclohexenilaminooctadecano-3,4-diol;

(2S,3S,4R)-2-Hexacosanamido-1-(1'S,4'S,5'S,6'S)-4',5',6'trihidroxiciclohexilaminooctadecano-3,4-diol;
(2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'S,6'R)-5hidroximetil-2,3,4,6,-tetrahidroxiciclohexilamino)octadecano-3,4-diol;
(2S,3S,4R)-2-hexacosanamido-1-((1'S,2'S,3'S,4'S,5'R)-5-hidroximetil2,3,4,-trihidroxiciclohexilamino)octadecano-3,4-diol; o
(2S,3S,4R)-2-hexacosanamido-1-((1'R,2'S,3'S,4'S,5'R)-5-hidroximetil2,3,4,-trihidroxiciclohexilamino)octadecano-3,4-diol.

- 11. Compuesto según cualquiera de las reivindicaciones 1 a 10, donde dicho compuesto es una sal de un clorhidrato.
 - 12. Procedimiento de obtención del compuesto de fórmula general (I) que comprende:
 - el acoplamiento de un aminociclitol de fórmula general (II)

15

20

$$R^4$$
 R^5
 R^2
 R^2

con una aziridina de fórmula general (V) mediante ataque nucleofílico,

o con un aldehído de fórmula general (VI) mediante aminación reductiva:

para dar los compuestos intermedios (VII),

- y la posterior eliminación de los grupos protectores PG y acilación,

donde: R^1 , R^2 , R^3 , R^4 , R^5 y R^6 están descritos en la reivindicación 1 y PG es un grupo protector.

- 13. Procedimiento según la reivindicación 12, donde el aminociclitol de fórmula general (II) se obtiene:
 - por reducción del compuesto de fórmula general (III);

$$\begin{array}{c}
R^4 \\
R^5 \\
R^3 \\
R^2 \\
R^3 \\
R^2 \\
N_3 \\
(III)
\end{array}$$

- o por sustitución de compuestos de fórmula general (IV)

$$\begin{array}{c}
R^4 \\
R^5 \\
R^3 \\
R^2 \\
R^2 \\
X \\
GP \\
O \\
(IV)
\end{array}$$

5

WO 2010/106215 PCT/ES2010/070164

51

donde: R¹, R², R³, R⁴ y R⁵ están descritos en la reivindicación 1, X es haluro o sulfonato y PG es un grupo protector.

- 14. Uso del compuesto de fórmula general (I) para la elaboración de una composición farmacéutica.
 - 15. Uso del compuesto de fórmula general (I) para la elaboración de una composición farmacéutica para el tratamiento y/o prevención de enfermedades a través de la estimulación de las células iNKT.

10

16. Uso según la reivindicación 15, donde las enfermedades tratables o prevenibles a través de la estimulación de las células iNKT se seleccionan de la lista que comprende: enfermedades autoinmunes, cáncer, infecciones microbianas o enfermedades inflamatorias.

15

17. Uso según la reivindicación 16, donde las enfermedades autoinmunes se seleccionan de la lista que comprende asma, EPOC, colitis crónica, diversas alergias, lupus eritematoso sistémico, diabetes mellitus de tipo 1, esclerosis múltiple, síndrome de Sjögren o artritis reumatoide.

20

18. Uso según la reivindicación 16, donde las infecciones causadas por microorganismos patógenos se seleccionan de la lista que comprende gripe, SIDA, hepatitis, clamidiosis, leishmaniosis, malaria, tuberculosis, tripanosomiasis, estreptococosis, o pseudomoniasis.

25

- 19. Composición farmacéutica que comprende al menos un compuesto de fórmula general (I) y un vehículo farmacéuticamente aceptable.
- 20. Composición farmacéutica según la reivindicación 19 que además comprende otro principio activo.

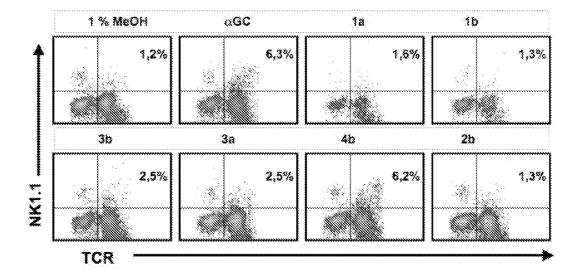


FIG. 1

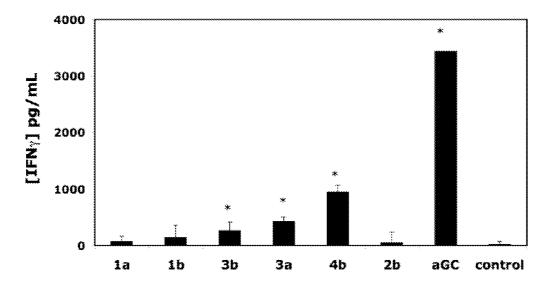
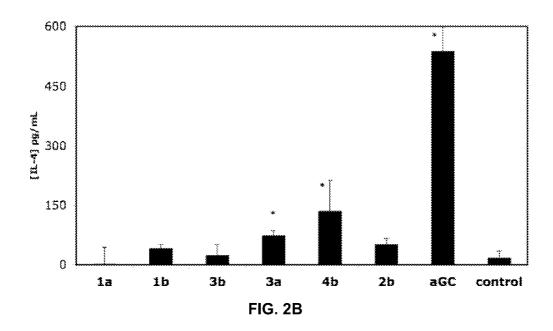



FIG. 2A

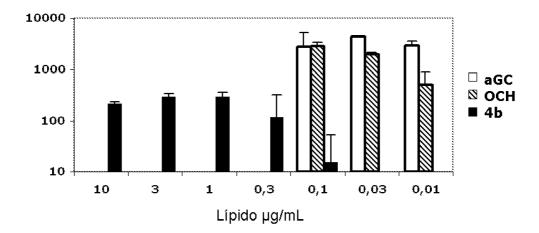


FIG. 3A

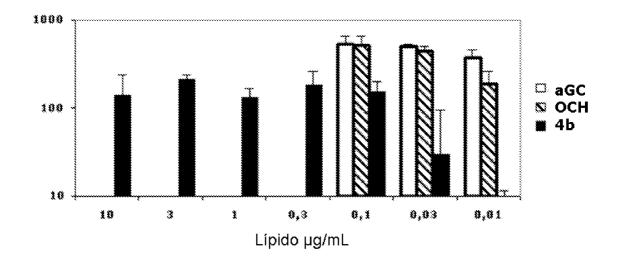


FIG. 3B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2010/070164

A. CLASSIFICATION OF SUBJECT MATTER see extra sheet According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07C, C07H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) INVENES, EPODOC, WPI, CAS, REGISTRY C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 2008/128062 A1 (THE ROCKEFELLER UNIVERSITY, 1-20 A THE SCRIPPS RESEARCH INSTITUTE), 23-10-2008 the whole document, citada in the application WO 2007/118234 A2 (THE SCRIPPS RESEARCH 1-20Α INSTITUTE), 18-10-2007 the whole document A M Egido Gabas et al, Organic Biomolecular 1-20 Chemistry 2005, vol 3, pp 1195-1201. "New aminocyclitols as modulators of glucosylceramide metabolism" abstract, introducción See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents: later document published after the international filing date or "A" document defining the general state of the art which is not considered priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance. "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is "X" document of particular relevance; the claimed invention cannot be cited to establish the publication date of another citation or other considered novel or cannot be considered to involve an inventive special reason (as specified) step when the document is taken alone document referring to an oral disclosure use, exhibition, or other "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report (15/06/2010)21 May 2010 (21.05.2010)Name and mailing address of the ISA/ Authorized officer O.E.P.M. P. Fernández Fernández Paseo de la Castellana, 75 28071 Madrid, España. Facsimile No. 34 91 3495304 Telephone No. +34 91 349 54 89

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/ ES 2010/070164

			I
Patent document cited in the search report	Publication date	Patent family member(s)	Publication date
WO 2008128062 A	23.10.2008	US 2007238871 A	11.10.2007
WO 2007118234 A	18.10.2007	CA 2661789 A AU 2007234753 A US 2009047299 A EP 2056842 A	18.10.2007 18.10.2007 19.02.2009 13.05.2009

INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2010/070164

CLASSIFICATION OF SUBJECT MATTER	
C07C 233/36 (2006.01) C07H 5/04 (2006.01)	

INFORME DE BÚSQUEDA INTERNACIONAL

Solicitud internacional Nº

PCT/ ES 2010/070164

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

Ver hoja adicional

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)

C07C, C07H

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

INVENES,EPODOC,WPI,CAS,REGISTRY

C. DOCUMENTOS CONSIDERADOS RELEVANTES

Categoría*	Documentos citados, con indicación, si procede, de las partes relevantes	Relevante para las reivindicaciones Nº
A	WO 2008/128062 A1 (THE ROCKEFELLER UNIVERSITY, THE SCRIPPS RESEARCH INSTITUTE), 23-10-2008 todo el documento, citada en la solicitud	1-20
A	WO 2007/118234 A2 (THE SCRIPPS RESEARCH INSTITUTE), 18-10-2007 todo el documento	1-20
A	M Egido Gabas et al, Organic Biomolecular Chemistry 2005, vol 3, pp 1195-1201. "New aminocyclitols as modulators of glucosylceramide metabolism" resumen, introducción	1-20

En la continuación del Recuadro C se relacionan otros documentos	☑ Los documentos de familias de patentes se indican en el
	Anexo
* Categorías especiales de documentos citados: "T	ecommon district products can perfect and in its in the
"A" documento que define el estado general de la técnica no considerado como particularmente relevante.	presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la
"E" solicitud de patente o patente anterior pero publicada en la fecha de	comprensión del principio o teoría que constituye la base de la
presentación internacional o en fecha posterior.	invención.
E documento que puede plantear dadas sobre una rervindreación de	documento particularmente relevante; la invención reivindicada no
prioridad o que se cita para determinar la fecha de publicación de otra	puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.
cita o por una razón especial (como la indicada). "O" documento que se refiere a una divulgación oral, a una utilización, a	-
una exposición o a cualquier otro medio.	puede considerarse que implique una actividad inventiva cuando el
"P" documento publicado antes de la fecha de presentación internacional	documento se asocia a otro u otros documentos de la misma
pero con posterioridad a la fecha de prioridad reivindicada.	naturaleza, cuya combinación resulta evidente para un experto en la materia.
",	documento que forma parte de la misma familia de patentes.
Fecha en que se ha concluido efectivamente la búsqueda internacional.	Fecha de expedición del informe de búsqueda internacional
21 Maya 2010 (21.05.2010)	15-JUNIO-2010 (15/06/2010)
21 Mayo 2010 (21.05.2010)	- , , , ,
Nombre y dirección postal de la Administración encargada de la	Funcionario autorizado
búsqueda internacional O.E.P.M.	P. Fernández Fernández
Paseo de la Castellana, 75 28071 Madrid, España.	
Nº de fax 34 91 3495304	N° de teléfono +34 91 349 54 89

INFORME DE BÚSQUEDA INTERNACIONAL

Información relativa a miembros de familias de patentes

Solicitud internacional N°

PCT/ES 2010/070164

		PCT/ES 2010/07/0164	
Documento de patente citado en el informe de búsqueda	Fecha de Publicación	Miembro(s) de la familia de patentes	Fecha de Publicación
WO 2008128062 A	23.10.2008	US 2007238871 A	11.10.2007
WO 2007118234 A	18.10.2007	CA 2661789 A AU 2007234753 A US 2009047299 A EP 2056842 A	18.10.200′ 18.10.200′ 19.02.2009 13.05.2009
		EP 2056842 A 	13.05.2009

INFORME DE BÚSQUEDA INTERNACIONAL

Solicitud internacional Nº

PCT/ ES 2010/070164

CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD	
C07C 233/36 (2006.01) C07H 5/04 (2006.01)	

Formulario PCT/ISA/210 (hoja adicional) (Julio 2009)