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Abstract
Species distribution models (SDMs) are now being widely used in ecology for man‐
agement and conservation purposes across terrestrial, freshwater, and marine realms. 
The increasing interest in SDMs has drawn the attention of ecologists to spatial mod‐
els and, in particular, to geostatistical models, which are used to associate observa‐
tions of species occurrence or abundance with environmental covariates in a finite 
number of locations in order to predict where (and how much of) a species is likely to 
be present in unsampled locations. Standard geostatistical methodology assumes 
that the choice of sampling locations is independent of the values of the variable of 
interest. However, in natural environments, due to practical limitations related to 
time and financial constraints, this theoretical assumption is often violated. In fact, 
data commonly derive from opportunistic sampling (e.g., whale or bird watching), in 
which observers tend to look for a specific species in areas where they expect to find 
it. These are examples of what is referred to as preferential sampling, which can lead 
to biased predictions of the distribution of the species. The aim of this study is to 
discuss a SDM that addresses this problem and that it is more computationally effi‐
cient than existing MCMC methods. From a statistical point of view, we interpret the 
data as a marked point pattern, where the sampling locations form a point pattern 
and the measurements taken in those locations (i.e., species abundance or occur‐
rence) are the associated marks. Inference and prediction of species distribution is 
performed using a Bayesian approach, and integrated nested Laplace approximation 
(INLA) methodology and software are used for model fitting to minimize the compu‐
tational burden. We show that abundance is highly overestimated at low abundance 
locations when preferential sampling effects not accounted for, in both a simulated 
example and a practical application using fishery data. This highlights that ecologists 
should be aware of the potential bias resulting from preferential sampling and ac‐
count for it in a model when a survey is based on non‐randomized and/or non‐sys‐
tematic sampling.
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1  | INTRODUC TION

An increasing interest in Species distribution models (SDMs) for 
management and conservation purposes has drawn the attention of 
ecologists to spatial models (Dormann et al., 2007). SDMs are rele‐
vant in theoretical and practical contexts, where there is an interest 
in, for example, assessing the relationship between species and their 
environment, identifying and managing protected areas and predict‐
ing a species’ response to ecological changes (Latimer, Wu, Gelfand, 
& Silander, 2006). In all these contexts, the main issue is to link infor‐
mation on the abundance, presence/absence, or presence only of a 
species to environmental variables to predict where (and how much 
of) a species is likely to be present in unsampled locations elsewhere 
in space.

In studies of species distribution, collecting data on the species 
of interest is not a trivial problem ([Kery et al., 2010). With the excep‐
tion of a few studies (Thogmartin, Knutson, & Sauer, 2006), SDMs 
frequently rely on opportunistic data collection due to the high cost 
and time consuming nature of sampling data in the field, especially 
on a large spatial scale (Kery et al., 2010). Indeed, it is often infea‐
sible to collect data based on a well‐designed, randomized, and/or 
systematic sampling scheme to estimate the distribution of a specific 
species over the entire area of interest (Brotons, Herrando, & Pla, 
2007). Hence, various types of opportunistic sampling schemes are 
commonly used. As an example, studies on sea mammals commonly 
resort to the affordable practice of sampling from recreational boats 
(so‐called platforms of opportunity), whose bearings are neither 
random nor systematic (Rodríguez, Brotons, Bustamante, & Seoane, 
2007). Similarly, bird data are often derived from online databases 
such as eBird, which make available locations of birds sighted by bird‐
watchers, who tend to visit habitats suitable for interesting species 
(https://ebird.org/). Also, in the context of fishery ecology, fishery‐
dependent survey data are often derived from commercial fleets 
tend to be readily available for analysis. However, the fishing boats 
naturally tend to fish in locations where they expect a high concen‐
tration of their target species (Vasconcellos & Cochrane, 2005).

All these types of opportunistically collected data tend to suffer 
from a specific complication: The sampling scheme that determines 
sampling locations is not random, and hence not independent of the 
response variable of interest, for example, species abundance (Conn, 
Thorson, & Johnson, 2017; Diggle, Menezes, & Su, 2010). However, 
SDMs typically assume, if only implicitly, that sampling locations are 
not informative and that they have been chosen independently of 
what values are expected to be observed in a specific location. This 
assumption is typically violated for opportunistic data resulting in 
preferentially sampled data, collected in locations that were deliber‐
ately chosen in areas where the abundance of the species of interest 

is thought to be particularly high or low. This violation leads to bi‐
ased estimates and predictions (Diggle et al., 2010).

Consequently, biased estimation and predictions of species dis‐
tribution lead to badly informed decision making and to inefficient or 
in appropriate management of natural resources (Conn et al., 2017; 
Diggle et al., 2010; Dinsdale & Salibian‐Barrera, 2018). This paper 
seeks to address preferential sampling in the context of fisheries 
ecology, where this issue is particularly relevant since the identifi‐
cation and management of sensitive habitats (e.g., through marine 
protected areas, nurseries, high‐discard locations) is a common 
conservation tool used to sustain the long‐term viability of species 
populations.

Diggle et al. (2010) suggest a modeling approach that accounts 
for preferential sampling using likelihood‐based inference with 
Monte Carlo methods. However, the resulting approach can be com‐
putationally intensive, as the authors recognize in their reply to the 
issues raised on the discussion of their paper, which implies that it 
is quite difficult to use in practical situations, especially when the 
objective of the analysis is to predict into in extended areas. This 
is of significant concern as prediction is often the main objective of 
SDMs and preferential sampling issues are by their very definition a 
practical problem that needs to be addressed in a form that makes 
them accessible to users.

As Rue, Martino, Mondal, and Chopin (2010) indicate in the dis‐
cussion on Diggle et al.’ s paper, preferential sampling may be seen 
as a marked spatial point process model, in particular a marked log‐
Gaussian Cox process. These models can be fitted in a computation‐
ally efficient way using integrated nested Laplace approximation 
(INLA) and associated software Rue, Martino, and Chopin (2009) in 
a fast computational way.

In this study, we thoroughly explain the methodology for per‐
forming preferential sampling models using the approach proposed 
by Rue et al. (2010) within the context of SDMs, with the final aim 
to provide guidance on the appropriate use and interpretation of the 
fitted models. A practical application assessing the spatial distribu‐
tion of blue and red shrimp (Aristeus antennatus, Risso 1816) from 
fishing data in the Gulf of Alicante (Spain) is provided as a tutorial, 
while simulated data are used to demonstrate performance issues of 
standard methods which do not account for preferential sampling.

2  | MATERIAL AND METHODS

Preferentially collected data consist of two pieces of information: (a) 
sampling locations, and (b) measured abundance (or occurrence) of 
target species in these locations, where the intensity of sampling lo‐
cations is positively or negatively correlated with abundance, that is, 

K E Y W O R D S
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(a) and (b) are not independent. Predicting the distribution of target 
species using this type of data implies that the sampling distribution 
is not uniformly random as it tends to have more observations where 
abundance is higher, and thus, basic statistical model assumptions 
are violated.

In order to overcome this problem, Diggle et al. (2010) pro‐
posed to interpret the preferential sampling process as a marked 
point processes model. This approach uses the information on sam‐
pling locations and models them along with the measured values 
of the variable of interest in a joint model. In particular, sampling 
locations are interpreted as a spatial point pattern, accounting for 
a higher point intensity where measured values are higher. The 
measurements taken in each of the points (the mark in point pro‐
cess terminology) are modeled along with and assumed to be po‐
tentially dependent on the point‐pattern intensity in a joint model. 
This approach accounts for preferential sampling while still mak‐
ing predictions for the variable of interest in space. In particular, 
in the fishery example discussed here, fishing locations are inter‐
preted as a point pattern, while the species catch at each location 
is interpreted as a mark.

2.1 | Statistical model

Formally, a spatial point pattern consists of the spatial locations of 
events or objects in a defined study region Illian, Penttinen, Stoyan, 
and Stoyan (2008). Examples include locations of species in a par‐
ticular area, or parasites in a microbiology culture. Spatial point pro‐
cesses are mathematical models (random variables) used to describe 
and analyze these spatial patterns. A simple theoretical model for 
a spatial point pattern is the Poisson process, usually described in 
terms of its intensity function Λx. This intensity function represents 
the distribution of locations (“points”) in space. In a Poisson process, 
the number of points follows a Poisson distribution and the locations 
of these points independent of any of the other points. The homoge‐
neous Poisson process represents complete spatial randomness and 
serves as a reference or null model in many applications.

The intensity of a point process, that is, the number of points per 
unit area, may either be constant over space, resulting in a homoge‐
neous or stationary pattern, or vary in space with a spatial trend, re‐
sulting in a non‐homogeneous pattern. However, the assumption of 
stationarity is generally unrealistic in most SDM applications as the 
intensity function varies with the environment, making non‐homo‐
geneous Poisson processes potentially a better choice to describe 
species distribution based on a trend function that may depend on 
covariates. Nonetheless, in applications covariates may not explain 
the entire spatial structure in a spatial pattern. In contrast, the class 
of Cox processes provides the flexibility to model aggregated point 
patterns relative to observed and unobserved abiotic and biotic 
mechanisms. Here, spatial structures in an observed point pattern 
may reflect dependence on known and measured covariates, as well 
as on unknown or unmeasurable covariates or biotic mechanisms 
that cannot be readily represented by a covariate, such as disper‐
sal limitation. Indeed, the spatial structure of both abiotic and biotic 

variables can impact on ecological processes and consequently be 
reflected in the species distribution.

Log‐Gaussian Cox processes (LGCPs) are a specific class of Cox 
process models in which the logarithm of the intensity surface is a 
Gaussian random field. Given the random field, More formally: 

where Vs is a Gaussian random field. Given the random field, the 
observed locations s = (s1, …, sn) are independent and form a Poisson 
process.

In the case of preferentially sampled species, the observed abun‐
dance Y = (y1, …, yn) is also linked to the intensity of the underlying 
spatial field. In practice, only very few samples might be available 
in some areas if it is assumed that abundance is particularly low in 
these areas. The LGCP model fitted to the sampling locations re‐
flects areas with low species abundance that have resulted in areas 
with fewer sampling locations. To incorporate such information in 
the SDM abundance model we apply joint modeling techniques, 
which allow fitting shared model components in models with two or 
more linear predictors. Here, we consider two dependent predictors 
with two responses, that is, the observed species abundances (the 
marks) and the intensity of the point process reflecting sampling in‐
tensity through space.

This results in a preferential sampling model that consists of 
two levels, where information is shared between the two levels, 
the mark model and the pattern model. In particular, the mark Y 
is assumed to follow an exponential family distribution such as a 
Gaussian, lognormal or gamma distribution for continuous vari‐
ables or a Poisson distribution for count data. In all these cases, 
the mean μs is related to the spatial term through an appropriate 
link function η: 

where �′
0
 is the intercept of the model, the coefficients �′

n
 quantify 

the effect of some covariates Xn on the response, and Ws is the spa‐
tial effect of the model, that is, the Gaussian random field. The co‐
variates in the additive predictor are environmental features linked 
to habitat preferences of a species.

In the second part of the model, an LGCP model with intensity 
function Λs reflecting the sampling locations: 

 where β0 is the intercept of the LGCP, the coefficients βn quantify the 
effect of some covariates Xn on the intensity function, and Ws is the 
spatial term shared with the LGCP but scaled by α to allow for the dif‐
ferences in scale between the mark values and the LGCP intensities.

Bayesian inference turns out to be a good option to fit spatial 
hierarchical models because it allows both the observed data and 
model parameters to be random variables ([Banerjee, Carlin, & 
Gelfand, 2004), resulting in a more realistic and accurate estima‐
tion of uncertainty. An important issue of the Bayesian approach 
is that prior distributions must be assigned to the parameters (in 
our case, β0 and �

′

0
) and hyperparameters (in our case, those of the 

(1)log(Λs)=Vs,

(2)�(�s)=��
0
+��

n
Xn+Ws,

(3)Λs=exp
{

�0+�nXn+�Ws

}

,
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spatial effect W ) involved in the models. Nevertheless, as usual in 
this kind of models, the resulting posterior distributions are not 
analytically known and so numerical approaches are needed.

2.2 | Fitting models with INLA

Model‐fitting methods based on Markov chain Monte Carlo 
(MCMC) can be very time‐consuming for spatial models, in par‐
ticular LGCPs. Nevertheless, LGCPs are a special case of the more 
general class of latent Gaussian models, which can be described 
as a subclass of structured additive regression (STAR) models, 
(Fahrmeir & Tutz, 2001). In these models the mean of the re‐
sponse variable is linked to a structured predictor, which can be 
expressed in terms of linear and non‐linear effects of covariates. 
In a Bayesian framework, by assigning Gaussian priors to all ran‐
dom terms in the predictor, we obtain a latent Gaussian model. As 
a result, we can directly compute LGCP models using Integrated 
nested Laplace approximation (INLA). INLA provides a fast, yet 
accurate approach to fitting latent Gaussian models and makes 
the inclusion of covariates and marked point processes mathe‐
matically tractable with computationally efficient inference (Illian 
et al., 2013; Simpson, Illian, Lindgren, Sørbye, & Rue, 2016).

2.3 | Preferential and non‐preferential models

As mentioned above, the resulting preferential model can be ex‐
pressed as a two‐part model as follows. Assuming that the ob‐
served locations s = (s1, …, sn) come from a Poisson process with 
intensity Λs=exp

{

�0+�Ws

}

, we have to assign a distribution for 
the abundance. Based on the fact that the abundance is usually 
a positive outcome, we have considered a gamma distribution, 
although clearly other options could be possible (exponential, 
lognormal, or Poisson for counts). This yields: 

 where the Gaussian random field Ws links the LGCP and the abundance 
process scaled by α in the Poisson process predictor to allow for dif‐
ferences in scale. The matrix Q(�,�) is estimated implicitly through an 
approximation of the Gaussian random field through the stochastic 
partial differential equation (SPDE) approach as in Lindgren, Rue, and 
Lindström (2011) and Simpson et al. (2016).

It is worth noting that not taking account of preferential sampling 
leads to biased results. This can be easily seen by comparing the 
preferential sampling approach with the following simpler model: 

 Note that the model in Equation 5 assumes that for the random 
fields we have Z≠W, whereas the preferential sampling model assumes 
a single, shared random field for both the point pattern and the mark. 
For both models, prior distributions have to be chosen for to all the pa‐
rameters and hyperparameters. We have assigned vague priors, that is, 
used the default in R‐INLA due to a general lack of prior information. 
Another approach that could be used here is penalized complexity pri‐
ors (hereafter pc.priors) as described in Fuglstad, Simpson, Lindgren, 
and Rue (2017) and readily available in R‐INLA.

As mentioned above, both models in 4 and 5 may include covari‐
ates, the significance of which may be tested through model selection 
procedures. There is very little literature available on model selection 
for point process models; however, criteria like the deviance informa‐
tion criterion (DIC) (Spiegelhalter, Best, Carlinm, & Van Der Linde, 2002) 
are sometimes used.

2.4 | Simulated example

In order to illustrate the effectiveness of the preferential sampling 
method and to emphasize the misleading results we would obtain if we 
do not take it into consideration, we initially consider a simulation study 
(Figure 1). One hundred realizations of a Gaussian spatial random field 
with Matérn covariance function were generated over a 100‐by‐100 
grid using the RandomFields package (Schlather, Malinowski, Menck, 
Oesting, & Strokorb, 2015).

For each of the 100 simulated Gaussian spatial random fields that 
represent the distribution of a species in the study area, two sets of 
100 samples were reproduced, one distributed preferentially and one 
distributed randomly. In particular, preferentially locations were se‐
lected using relative probabilities proportional to the intensity function 
Λs. Abundance estimates were extracted at the selected locations, as a 
simulation of the observations for this experiment.

Both preferential and non‐preferential models were fitted to 
each of the sample sets and compared in their performance using 

(4)

Ys∼Ga (�s,�)

log (�s)=��
0
+Ws

W∼N (0,Q (�,�))

(2 log �, log �)∼MN(�w,�w)

(5)

Ys∼Ga(�s,�)

log(�s)=���
0
+Zs

Z∼N(0,Q(�,�))

(2 log �, log �)∼MN(�z,�z)

F I G U R E  1  Representation of one of the one hundred Gaussian 
field simulated and the respective preferentially sampling locations 
generated

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016



     |  5PENNINO et al.

three different criteria: the deviance information criterion (DIC) 
(Spiegelhalter et al., 2002), the log‐conditional predictive ordinates 
(LCPO) (Roos & Held, 2011), and the predictive mean absolute error 
(MAE) (Willmott & Matsuura, 2005). Specifically, the DIC measures 
the compromise between the fit and the parsimony of the model, 
the LCPO is a “leaveoneout” cross‐validation index to assess the pre‐
dictive power of the model, and the MAE indicates the prediction 
error. Lower values of DIC, LCPO and MAE suggest better model 
performance. Finally, a sensitivity analysis with different pc.priors 
was carried out to assess their influence on the final inference of 
the range and variance of a simulated Gaussian spatial random field.

2.5 | Spatial distribution of blue and red shrimp 
in the Western Mediterranean Sea

In this section, we illustrate how preferential sampling can be 
accounted for in the concrete data example from the context of 
fishery data. Fishery‐dependent data derived from opportunistic 
sampling on boats from the commercial fleet present a standard 
example of preferential sampling, since clearly fishers preferen‐
tially fish in areas where they expect to find large amounts of their 
target species.

We consider data on blue and red shrimp (Aristeus antennatus, 
Risso 1816) (Carbonell et al., 2017; Deval & Kapiris, 2016; Lleonart, 
2005), one of the most economically important deep‐sea trawl fish‐
ery in the Western Mediterranean Sea. The data were collected by 
observers onboard a number of fishing boats in the Gulf of Alicante 
(Spain) from 2009 to 2012. The dataset includes 77 hauls from nine 
different trawling vessels (Figure 2) and was provided by the Instituto 
Español de Oceanografía (IEO, Spanish Oceanographic Institute).

As mentioned, the fitted effects for the abundance of blue and 
red shrimp (Y) are corrected by jointly fitting a model for the abun‐
dances and the sampling (fishing) locations, reflecting fishers’ (poten‐
tially) imprecise knowledge of the distribution of blue and red shrimp. 
We also assume that the observed locations s = (s1, …, sn) come from 
a Poisson process with intensity Λs=exp

{

�0+�df(d)+�wWs

}

, where 
f(d) represents the not necessarily linear relationship with one co‐
variate, in this case bathymetry. The reason underneath this selec‐
tion was that exploratory analysis revealed non‐linear relationships 
between depth and blue and red shrimp abundance. The remaining 
second part of the model, that is, the one explaining the abundance, 
also contains the relationship with the bathymetry: 

 where s indexes the location of each haul and j indexes different 
depths (dj, representing the different values of bathymetry observed 
in the study area from d1 = 90 m tp dm = 40 = 920 m).

We use a Bayesian smoothing spline Fahrmeir and Lang (2001) 
to model non‐linear effects of depth, using a second‐order random 
walk (RW2) latent model.

As no prior information on the parameters of the model was avail‐
able, we used a vague zero‐mean Gaussian prior distribution with a 
variance of 100 for the fixed effects. Regarding the spatial effect, pri‐
ors on μκ and μτ were selected so that the median prior range of this 
component was half of the study area and its prior median standard 
deviation was 1. It was only in the case of the bathymetry that a visual 
pre‐selection of priors was made, to avoid overfitting, by changing the 
prior of the precision parameter while the models were scaled to have 
a generalized variance equal to 1 (Sørbye & Rue, 2014). In any case, all 
resulting posterior distributions concentrated well within the support 
of the priors selected.

Note that each predictor has its own intercept (�0,�′0) but bathy‐
metric f(d) and spatial effects Ws are shared in both predictors. Also, 
both the bathymetric and the spatial effects are scaled by αd and αw, 
respectively, to allow for the differences in scale between blue and 
red shrimp abundances and the LGCP intensities.

It is also worth noting that ρ is a parameter of the entire model 
that reflects the global variability of the response variable. As al‐
ready mentioned before, in a preferential sampling situation, obser‐
vations are more frequent where abundance values are likely to be 
higher and this fact could affect the inference about the ρ param‐
eter. In line with this, a possible extension to our global modeling 
approach could be a model that could take into account this type of 
variability by linking ρ to the abundance measurements.

Model comparison was performed using the DIC and LCPO cri‐
teria. Finally, in order to test the prediction performance of the final 
preferential and non‐preferential models, we calculated the Pearson 
correlation (r) index between the predicted abundance estimates 
and an external database of observed abundance values in the 
same time period (2009–2012). This independent dataset includes 

(6)

Ys∼Ga(�s,�)

log(�s)=��
0
+ f(d)+Ws

W∼N(0,Q(�,�))

(2 log �, log �)∼MN(�w,�w)

Δdj=dj−dj+1∼N(0,�d), j=1,… ,m

�d∼LogGamma(4,0.0001)

F I G U R E  2  Study area and sampling locations (hauls) of blue and 
red shrimp (Aristeus antennatus). The size of the dots represents the 
amount caught in each of the locations
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fishery‐independent data collected during the MEDITS (EU‐funded 
MEDIterranean Trawl Survey). The MEDITS is carried out from 
spring to early summer (April to June) every year in the area, and it 
uses a random sampling (Pennino et al., 2016).

3  | RESULTS

3.1 | Simulated example

Results obtained in this simulation study show that not taking into 
consideration preferential sampling leads to misleading results, spe‐
cially at low‐abundance areas.

Figure 3 shows the difference in DIC, LCPO, and MAE scores 
between preferential and non‐preferential models for both sam‐
ples, the ones distributed preferentially and the one distributed 
randomly. In particular, more than 75% of the DIC, LCPO, and MAE 
values obtained in the 100 simulated Gaussian fields using prefer‐
ential models were lower than the ones obtained with non‐pref‐
erential models.

In addition, as it can be appreciated in the example shown in 
Figure 4, which presents the results of one of the one hundred sim‐
ulations for explanatory purposes, even if none of the models was 

able to make optimal predictions at low abundance locations, the 
non‐preferential model performed significantly worse.

Similarly, Figure 5, which shows the posterior predictive mean 
of one of the simulated abundance processes without and with the 
preferential sampling correction ((a) and (b), respectively)), illustrates 
that although both models have similar predictive spatial patterns, 
the preferentially corrected model predicts better at moderate‐to‐
low abundance areas.

Finally, Figure 6 shows how all different priors of the hyperpa‐
rameters of the spatial field end up fitting posterior distributions 
that are all concentrated within the real values. Results clearly indi‐
cate that slight changes in the priors are not an issue when dealing 
with the preferential sampling models.

3.2 | Distribution of blue and red shrimp in the 
Western Mediterranean Sea

All possible models derived from 6 were run. Among them, the 
most relevant results are presented in Table 1. While analyzing 
the data, we observed that both the bathymetric and the spatial 
terms of the LGCP accounted for approximately the same infor‐
mation. As a consequence, full models did not converge in the 

F I G U R E  3   Improvement of the preferential model against a conventional model in model fit scores (DIC, LCPO, and MAE). Comparison is 
based on 100 preferentially and randomly sampled datasets. Note that positive values represent an improvement on model fit and vice versa
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point‐pattern process, which restricted the model comparison in 
Table 1 to correcting only one of the effects, either the bathymet‐
ric or the spatial effect.

The best model (based on the DIC and LCPO) was the prefer‐
ential one with an shared spatial effect (i.e., Model 5 in Table 1). 
The second most relevant model in term is DIC, and LCPO was the 

F I G U R E  4  Simulated abundance against predicted abundance in the non‐preferential model (left) and in the model with the preferential 
correction (right) for one of the one hundred simulations performed. The non‐preferential model predicts worse than the preferential model 
at low‐abundance areas
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F I G U R E  5  Posterior predictive mean maps of one of the one hundred simulated abundance processes without (left) and with (right) the 
preferential sampling correction
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preferential one that included, in addition to the spatial effect, a 
shared bathymetric effect (i.e., Model 8 in Table 1).

Figure 7 shows the mean of the posterior distribution of the spa‐
tial effect in the model without and with preferential sampling, while 
Figure 8 illustrates the posterior predictive mean of the blue and red 
shrimp distribution without and with the preferential correction. 
Both figures show a similar pattern. Indeed, it is clear that the spatial 
outputs obtained with the preferential model better absorb the vari‐
ability of the species habitat providing a more natural pattern of the 
blue and red shrimp distribution.

Finally, for model validation, the final preferential model ob‐
tained a reasonably high value for Pearson's r (r = 0.47) in the 
cross‐validation with the MEDITS dataset with respect to the non‐
preferential one (r = 0.22). It is worth mentioning that MEDITSs 
are performed only in spring/summer and few samplings are car‐
ried out in the study area. These findings further highlight how the 

correction of the preferential model is important to reflect the real 
distribution of a species.

4  | DISCUSSION

In this paper, we presented a modeling approach that could be very 
useful for modeling the distribution of species using opportunistic 
data and acquiring in‐depth knowledge that could be essential for 
the correct management of natural resources. Spatial ecology has 
a direct applied relevance to natural resource management, but it 
also has a broad ecological significance. Although it may be compli‐
cated to define the boundaries of species habitats combined with 
an efficient management that recognizes the importance of such 
areas, this represents the first step toward facilitating an effective 
spatial management. However, as shown by our results, using a 
non‐accurate approach could culminate in misidentification of a 
species habitat and uncertain predictions and so in inappropriate 
management measures which can sometimes be irreversible.

The results of the practical application on blue and red shrimp, 
included here as a real world scenario, show that predictive maps 
significantly improve the prediction of the target species when 
the model accounts for preferential sampling. Indeed, it is known 
that the suitable bathymetric range of the blue and red shrimp in 
the Mediterranean sea is between 200 and 200 meters (Guijarro, 
Massutí, Moranta, & Díaz, 2008) that is reflected by the preferen‐
tial model prediction map. In contrast the non‐preferential model 
prediction was not able to capture the real distribution of the spe‐
cies. In addition, if a management measure, such as creation of a 
marine conservation area, should be applied on the basis of the 
non‐preferential model, it is clear that it would not be appropri‐
ate. This could result in extremely large area being recommended 

TA B L E  1  Model comparison for the abundance of the blue and 
red shrimp (Aristeus antennatus) based on DIC, LCPO and 
computational times

Model DIC LCPO Times (s)

1 Intc + Depth +19 +0.05 3

2 Intc + Spatial +9 − 24

3 Intc + Depth + Spatial +11 +0.01 57

4 Intc + Depth +52 +0.24 21

5 Intc + Spatial − − 171

6 Intc + Spatial + Depth +5 +0.02 212

7 Intc + Depth + Spatial +10 +0.01 2,275

8 Intc + Depth + Spatial +3 +0.03 3,470

Notes. DIC and LCPO scores are presented as deviations from the best 
model. Intc: Intercept; Bold terms: shared components.

F I G U R E  6  Sensitivity analysis of the pc.prior distributions for the range and variance of a simulated spatial field. Dashed lines represent 
prior distributions, solid lines posterior distributions and vertical lines the real values of each of the hyperparameters of the spatial field: 
range in the left panel and variance in the right panel. Range priors were set so that the probability of having a range smaller than 10%, 20%, 
30%, 40% and 50% of the maximum distance of the study area was 0.25. Similarly, priors over the variance of the spatial field were set so 
that the probability of having a variance higher than 2, 3, 4, 5 and 6 was 0.1

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Matern range

x

y

Posterior
Prior
Real

Posterior
Prior
Real

15 10 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Matern variance

x

y

(a) (b)



     |  9PENNINO et al.

for protection, which is usually difficult to implement in most 
contexts, especially given the social and economic relevance of 
fishing (Reid, Almeida, & Zetlin, 1999). Moreover, the results of 
the cross‐validation with an external independent dataset further 
highlighted how the correction of the preferential model is im‐
portant to reflect the real distribution of a species.

Nevertheless, even if the preferential model improves the es‐
timation of the bathymetric effect, new observations at deeper 
waters could further improve this relationship and better under‐
stand the blue and red shrimp distribution in this area (Gorelli, 
Sardà, & Company, 2016).

Similarly, the simulated example showed that not taking into ac‐
count the preferential sampling model could lead to misleading results.

Consequently, we conclude that this approach could suppose 
a major step forward in the understanding of target fished species 
mesoscale ecology given that most of the available data today are 
fishery‐dependent data. In addition, using a non‐preferential model 
with opportunistic data in a SDM context is not correct as spatial 
SDMs assume that the selection of the sampling locations does not 
depend on the values of the observed species.

Another advantage is undoubtedly the use of INLA in this con‐
text, which might be a key geostatistical tool due to its notable flex‐
ibility in fitting complex models and its computational efficiency 
(Paradinas et al., 2015).

This modeling could be expanded to the spatiotemporal do‐
main by incorporating an extra term for the temporal effect, using 

F I G U R E  7  Maps of the mean of the posterior distribution of the spatial effect in the model without (left) and with (right) preferential 
sampling. Black dots represent sampling locations
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F I G U R E  8  Posterior predictive mean maps of the blue and red shrimp (Aristeus antennatus) species, without and with the preferential 
sampling correction. Black dots represent sampling locations

25

30

35

40

45

−4

−3

−2

−1

0

1

2

3

4

5

(a) (b)



10  |     PENNINO et al.

parametric or semiparametric constructions to reflect linear, 
non‐linear, autoregressive or more complex behaviors that could 
be very important to describe the distribution of a particular spe‐
cies. Moreover, although we presented a case study related to 
abundance data, this approach could be also extended for species 
presence–absence data that are more common when SDMs are 
performed. In particular, using occurrences the modeling frame‐
work will be the same as the one described in our study, but the 
Gaussian field will be an approximation of the probability of the 
species presence.

Finally, it is worth to be noting that, as shown by Howard, 
Stephens, Pearce‐Higgins, Gregory, and Willis (2014), even using 
coarse‐scale abundance data, large improvements in the ability to 
predict species distributions can be achieved over their presence–
absence model counterparts. Consequently, where available, it will 
be better to use abundance data rather than presence–absence data 
in order to more accurately predict the ecological consequences of 
environmental changes.
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