UNITAS MALACOLOGICA

Ninth International Malacological Congress

EDINBURGH, SCOTLAND
31 August—6 September 1986

ABSTRACTS
Published by the National Museums of Scotland
ISBN 0 948636 05 X
Price: £3.50
N J MORRIS & S MORRIS
Department of Palaeontology, British Museum (Natural History), London, UK

Survey of fossil and Recent evidence for the phylogeny and classification of the
Anomalodesmata

A survey of the extensive fossil and living record of the Anomalodesmata, inspired by and interpreted in
consideration of functional analyses by Sir Maurice Yonge and his students, has led to a major
reclassification of the group. Re-evaluation of neglected taxonomic relationships among eumallicinbranch
bivalves reveals some previously misinterpreted taxa. Information from fossils has led to a reappraisal of
the systematic position of the Myiacca, Pholasacia, Gastrochaenacea and Hiatellacea, expanding the
subclass and inevitably leading to nomenclatural changes. Some problems of relationship remain
unresolved. The Anomalodesmata in common with other groups of sedentary infaunal bivalves exhibit
both an historically conservative morphology and more recent adaptations for a wider range of
substrate habits.

M P MORRONDO-PELAYO, M Y MANGA-GONZALEZ, M CORDERO-DEL-
CAMPILLO, P DIEZ-BAÑOS & N DIEZ-BAÑOS
1Estación Agrícola Experimental (CSIC), León, Spain
2Laboratorio de Parasitología, Facultad de Veterinaria, León, Spain

Evolution of Muellerius capillaris (Nematoda: Protostrongylidae) larvae in Cernuella
(Xeromagna) cespitum arigoni (Styloymmatophora) infected in the laboratory and
kept in its natural environment

In this work (between December 1979 and January 1981), the larval development of *M. capillaris*
(Müller, 1889) was studied in *Cernuella* (*Xeromagna*) cespitum arigoni *Schmidt*, 1853 experimentally infected and
kept under natural conditions. The snails (collected in the surroundings of León, Spain) were
checked (10%) in order to prove the absence of the natural infection by *Nematoda*. At the beginning of
each month a batch of 100 molluscs were infected with 200 L-I of *M. capillaris*. These snails, along with
100 control specimens were moved immediately to the experimental land (about 8 km from León) and
put into small plots isolated by metal fabric in order to avoid their re-infection. The euthanasia of the
infected molluscs (8 to 10) was carried out weekly or fortnightly according to warmer or colder months,
respectively.

In the evolution of the *M. capillaris* the following parameters have been considered: (1) Degree of
evolution (% of the total amount of larvae (I, II, III) found in each mollusc, calculated on the total number
of larvae that had penetrated t); (2) Percentage of L-III per mollusc (also according to the penetration);
(3) Average of the total number of L-I, II, III per snail; (4) Average of the total number of L-III per
mollusc.

The L-I penetration was similar in the twelve experiments (63.8%). The average of the parameters
noted above, in the May to October infections, were 15.9% (1st), 16.5% (2nd), 22.8 (3rd)
and 21.3 (4th); moreover the first L-III were observed on the 21st day (p.i.). In the rest of the experiments
(with lower temperatures) the larval development decreased and the values of the parameters were 6.4%
(1st), 7.5% (2nd), 14.9 (3rd) and 16.2 (4th); and the first L-III were seen on the 51st day (p.i.). The %
and total number of L-III were, generally, related in a positive way to the thermal integral. There are
no statistically significant differences between the mortality rate of the infected molluscs and that of the
control snails.

M P MORSE
Marine Science Laboratory and Biology Department, Northeastern University, Nahant,
Massachusetts, USA

Ultrastructural studies of the protobranchiate bivalve mollusc, *Acila castrensis*:
description of cellular elements of the heart–kidney complex and demonstration of the
presence of the respiratory pigment, haemocyanin

Protobranchiate molluscs are considered to constitute the primitive taxon within the class Bivalvia,
in large part due to the contributions of Sir Maurice Yonge. His investigations of protobranchs associated
functional morphology with their mode of life, i.e. shallow burrowers in inshore waters or waters of great
depth. Further investigations, including the present study, substantiate the primitive nature of the taxon.
An electron microscopical study was used to examine the heart-kidney complex of the protobranchiate
mollusc, *Acila castrensis*. The characters discussed include the arrangement and cytology of the pericardial
glands as sites of ultrafiltration, the type of kidney cells and the presence of the common respiratory
pigment, haemocyanin, in the haemolymph of protobranchs.

The pericardial glands, located on the surface of the tubular auricles, consist of specialized epithelial
cells called podocytes. Basal extensions (pedicels) form a network with minute slits and, together with
the underlying basement membrane, form a filtration barrier between the haemal spaces and the
pericardial cavity. As reported elsewhere, ultrastructural studies of the pericardial gland led to the
discovery of the copper-containing respiratory pigment, haemocyanin, in the haemolymph of the blood
spaces. Characterization of the protein demonstrated that shape and size of the molecules are similar to
the haemocyanin of gastropods. This is the first substantiated report of haemocyanin in the class Bivalvia
and indicates a commonality of bivalves with the other major molluscan classes.