Exploratory assessments of small pelagics off Canary Islands using data-limited methods

Marta Quinzan and Alba Jurado-Ruzafa
marta.quinzan@ieo.es
alba.jurado@ieo.es
Artisanal fisheries in Canary Islands

- Multi-gear, multi-species, polyvalent and opportunistic artisanal fleet (>600 vessels)
- Small pelagic fishing is carried out by purse seiners (25-30 vessels)
- 4 main target species: *S. colias, T. picturatus, S. aurita, S. pilchardus* – each considered a single stock.

Target species

- Chub mackerel, *Scomber colias*
- Round sardinella, *Sardinella aurita*
- Horse mackerel, *Trachurus picturatus*
- Sardine, *Sardina pilchardus*
Data-limited approaches: variety of situations, characterized by “poor” data and/or Knowledge

→ often rely on strong assumptions (e.g. “equilibrium” -constant recruitment and constant M and F over a period of years... or likely productivity or depletion level)

→ expert judgment needed to determine if assumptions are “adequate” and to interpret results appropriately
Assessment: data-limited approaches

<table>
<thead>
<tr>
<th>Length – based methods</th>
<th>Data needed</th>
<th>Output</th>
</tr>
</thead>
</table>
| LBI | • Catch@length in numbers
• Biological parameters | **Range of indicators** and their expected values when exploitation is consistent with sustainability objectives |
| LB-SPR | | Estimates **F/M** and **SPR/SPR0** |
| LCA+YR | | Estimates **Fcur, Fmax, F0.1** |

<table>
<thead>
<tr>
<th>Surplus production models</th>
<th>Data needed</th>
<th>Output</th>
</tr>
</thead>
</table>
| BioDyn | • Time series of catch and biomass indices
• Initial values of r, K and B/K | Estimates **BMSY, FMSY, B0.1, F0.1** |
| CMSY | • Time series of catch
• Prior ranges of r and B/K | **FMSY** and **BMSY** (estimated internally, as model parameters) + CI
Time series of $F/FMSY$ and $B/BMSY$ + CI |
| JABBA | • Time series of catch and biomass indices
• Prior ranges of r and B_0/K | |
| SPICT | • Time series of catch and biomass indices or effort
(trial configurations failed to converge) | |
• Landings in the Canary Islands for the period 2013-2021.
• Proxy of abundance index: LPUE (tons/fishing days of the fleet) in the period 2013-2021.

• Length frequencies of the landings. Availability in the period 2013-2021 differed among species.
• Life-history parameters.
Results (I): Length-based methods

<table>
<thead>
<tr>
<th>Year</th>
<th>L_c / L_{mat}</th>
<th>$L_{25%} / L_{rat}$</th>
<th>L_{max} / L_{inf}</th>
<th>P_{opt}</th>
<th>L_{mean} / L_{opt}</th>
<th>$L_{mean} / L_{F=M}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>0.92</td>
<td>1.13</td>
<td>0.64</td>
<td>0.00</td>
<td>0.69</td>
<td>0.92</td>
</tr>
<tr>
<td>2014</td>
<td>1.03</td>
<td>1.13</td>
<td>0.61</td>
<td>0.00</td>
<td>0.68</td>
<td>0.86</td>
</tr>
<tr>
<td>2015</td>
<td>1.03</td>
<td>1.08</td>
<td>0.58</td>
<td>0.00</td>
<td>0.66</td>
<td>0.84</td>
</tr>
<tr>
<td>2016</td>
<td>0.97</td>
<td>1.03</td>
<td>0.54</td>
<td>0.00</td>
<td>0.62</td>
<td>0.80</td>
</tr>
<tr>
<td>2017</td>
<td>1.08</td>
<td>1.13</td>
<td>0.61</td>
<td>0.00</td>
<td>0.71</td>
<td>0.87</td>
</tr>
<tr>
<td>2018</td>
<td>1.08</td>
<td>1.18</td>
<td>0.63</td>
<td>0.00</td>
<td>0.75</td>
<td>0.91</td>
</tr>
<tr>
<td>2019</td>
<td>1.08</td>
<td>1.25</td>
<td>0.69</td>
<td>0.00</td>
<td>0.75</td>
<td>0.93</td>
</tr>
<tr>
<td>2020</td>
<td>1.08</td>
<td>1.25</td>
<td>0.66</td>
<td>0.00</td>
<td>0.73</td>
<td>0.99</td>
</tr>
<tr>
<td>2021</td>
<td>1.13</td>
<td>1.24</td>
<td>0.71</td>
<td>0.01</td>
<td>0.81</td>
<td>0.95</td>
</tr>
</tbody>
</table>

LBI
- L_c generally above L_{mat}: opportunity to spawn prior to entry to the fishery
- Indication of depletion of large animals
- L_{mean} far from $L_{F=M}$: fishery is operating with a target length that is not sustainable

LB-SPR
- SPR has been well below the range of 30–40% (sustainable) for the entire time series

YR
- F_{cur} exceeds F_{max}
Results (II): Production models

CMSY
• Prior ranges of depletion at the start of the time series had a great influence on the estimated B/BMSY and F/FMSY status.

JABBA

Biodyn
• Sensitivity to values of r and K, reliable values for the stock unavailable
• Apparently, current B exceeds BMSY
Results (I): Length-based methods

LBI
- L_c below L_{mat}: fishery operating on sizes below the length of maturity
- Indication of depletion of large animals
- L_{mean} far from $L_{F=M}$: fishery is operating with a target length that is not sustainable

LB-SPR
- SPR has been well below the range of 30–40% (sustainable) for the entire time series

YR
- F_{cur} exceeds F_{max}

Table

<table>
<thead>
<tr>
<th>Year</th>
<th>L_c / L_{mat}</th>
<th>$L_{25%} / L_{mat}$</th>
<th>L_{max} / L_{inf}</th>
<th>F_{mean} / L_{opt}</th>
<th>$L_{mean} / L_{F=M}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>0.64</td>
<td>0.69</td>
<td>0.62</td>
<td>0.00</td>
<td>0.80</td>
</tr>
<tr>
<td>2014</td>
<td>0.56</td>
<td>0.60</td>
<td>0.66</td>
<td>0.01</td>
<td>0.77</td>
</tr>
<tr>
<td>2015</td>
<td>0.64</td>
<td>0.69</td>
<td>0.70</td>
<td>0.03</td>
<td>0.86</td>
</tr>
<tr>
<td>2016</td>
<td>0.73</td>
<td>0.75</td>
<td>0.80</td>
<td>0.00</td>
<td>0.85</td>
</tr>
<tr>
<td>2017</td>
<td>0.73</td>
<td>0.75</td>
<td>0.65</td>
<td>0.01</td>
<td>0.84</td>
</tr>
<tr>
<td>2018</td>
<td>0.64</td>
<td>0.69</td>
<td>0.67</td>
<td>0.01</td>
<td>0.82</td>
</tr>
<tr>
<td>2019</td>
<td>0.64</td>
<td>0.64</td>
<td>0.57</td>
<td>0.00</td>
<td>0.74</td>
</tr>
<tr>
<td>2020</td>
<td>0.64</td>
<td>0.69</td>
<td>0.60</td>
<td>0.00</td>
<td>0.77</td>
</tr>
<tr>
<td>2021</td>
<td>0.64</td>
<td>0.69</td>
<td>0.69</td>
<td>0.01</td>
<td>0.80</td>
</tr>
</tbody>
</table>
"Results (II): Production models

CMSY
- Prior ranges of depletion at the start of the time series had a great influence on the estimated B/B_{MSY} and F/F_{MSY} status.

JABBA

Biodyn
- Sensitivity to values of r and K, reliable values for the stock unavailable
- Apparently, current B exceeds BMSY
Results (I): Length-based methods

LBI
- L_c generally above L_{mat}: opportunity to spawn prior to entry to the fishery
- Indication of depletion of large animals
- L_{mean} far from $L_{F=M}$: fishery is operating with a target length that is not sustainable

LB-SPR
- SPR has been below the range of 30–40% (sustainable) for the entire time series.

YR
- F_{cur} exceeds F_{max}
Results (II): Production models

CMSY
• Estimated biomass trajectory is descendent and stock status in the terminal year is below BMSY

JABBA

Biodyn
• Sensitivity to values of r and K, reliable values for the stock unavailable
• Fcur exceeds FMSY

Sardinella spp
Results (I): Length-based methods

Year	Lc/Lmat																				
2013	1.10	1.10	0.85	0.82	1.17	0.96															
2014	0.97	1.03	0.92	0.96	1.15	1.03															
2015	0.93	0.90	0.92	0.44	1.09	1.07															
2016	0.90	0.80	0.86	0.35	1.07	1.01															
2017	0.85	0.85	0.88	0.41	1.08	1.06															
2018	0.77	0.77	0.60	0.45	1.04	1.09															
2019	1.03	1.03	0.89	0.60	1.19	1.02															
2020	1.10	1.10	0.88	0.95	1.19	0.97															

LBI
• L_c below L_{max}: fishery operating on sizes below the length of maturity
• No concerns regarding fishing on large individuals
• Exploitation consistent with optimum yield and FMSY proxy ($L_F=M$)

LB-SPR
• SPR has been above the range of 30–40% (sustainable) most of the years, even reaching values of unfished stock (!) for some years

YR
• Unrealistic F_{max}
Results (II): Production models

CMSY
- Estimated biomass trajectory is descendent and stock status in the terminal year is below BMSY

JABBA

Biodyn
- Sensitivity to values of r and K, reliable values for the stock unavailable
- Results are very unrealistic

Sardina pilchardus
Length-based approaches

- Parameter values for \(\text{Lmat} \), growth and natural mortality may not be representative for some stocks.
- Length distribution must represent catch (rather than landings only). Only recent discard information (from 2017) is available for these stocks.
- Assumptions of equilibrium, steady-state stock and predetermined shape of selectivity curve may be violated.

Surplus production-based approaches

- SPiCT multiple trial assessments with different configurations failed to converge or estimate parameters.
- Short time-series and lack of contrast in data negatively affect the performance of these models.
- LPUE might not be a suitable indicator of population abundance.
- CMSY and JABBA provide opposite perception of \(S.\colias \) and \(Trachurus \) spp status.
- CMSY and BioDyn assessments are strongly dependent on good knowledge of priors of initial depletion and ‘guesstimates’ of \(r \) and \(K \).
- Since clupeids landings (mainly \(S.\ pilchardus \)) have drastically decreased during last years of the time series, BioDyn results for these species might not be realistic.

→ These exploratory assessments cannot be used in a quantitative manner to provide scientific advice in terms of catch or effort limits

→ Further work (catch data rather than landings, standardized CPUE, sensitivity analysis...) and (ideally) longer time-series is required to improve the quality of the assessments
Merci pour votre attention