Trophic relationships among cephalopod species along the water column inferred from stomach contents and stable isotope analyses

S. Keller*, A. Quetglas, M. Valls, F. Ordines, A. de Mesa and E. Massutí

Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent, s/n, 07015 Palma, Spain. Fax: +34971404945 *E-mail: <u>stefanie.keller@ba.ieo.es</u>

Pelagic hauls were

strongest and widest

acoustic sound layers

column, using a

18, 38, 70, 120 and

200 kHz. The images

(echograms) are only

two examples from

the continental shelf

the different layers

preadth (LNB)

of the

echosounder

Simrad

carried out in the **JUKL**

water

EK60

at

and slope showing Average similarity: 56.06

Sprey

BBL

Sprey

3

BO

Average similarity: 26.36

Species

Teleost unidentified

Natantia unidentified

Nprey

items

36

Species

Teleost unidentified

Nprey

items

15

Average similarity: 12.28

Species

Teleost unidentified

Meganyctiphanes norvegica

Introduction

It is well known that cephalopods play a key role in the marine food webs, either as voracious predators or important prey of a large set of predators. In this study we investigated the trophic relationships among cephalopod species taken along the water column by means of stomach content and stable isotope analyses. With the main aim of determining if there are fluxes of matter between nectobenthic and pelagic domains mediated by cephalopods, we analysed different aspects such as diet composition, niche breadth, diet overlap, diet seasonal differences and day-night feeding rhythms from samplings conducted in the western Mediterranean during two seasons with contrasting oceanographic conditions.

Species composition

A total of 1286 stomachs from 26 cephalopod species belonging to 12 Families were analyzed. **Species** Nstomachs Sprey Nprey items Abralia veranvi 192 11 61 Enoploteuthidae 10 3 Loliginidae Alloteuthis media 9

Material and methods

Samples were collected on the shelf (200 m depth, bathymetric stratum 1) and slope (600-900 m, bathymetric stratum 2) during summer and autumn surveys. At the shelf bathymetric stratum, sampling was carried out at: 1) near surface (SUR1) from 0-60 m; 2) in the benthic boundary layer (BBL1), less than 50 m above the bottom; and 3) on the bottom (BOT1). At the slope bathymetric stratum, sampling was performed at: 1) near surface (SUR2) from 0-80 m depth; 2) in the 400-600 m deep scattering layers (DSL); 3) on the bottom (BOT2). For comparative purposes, a few hauls were also performed near the bottom in this slope bathymetric stratum (BBL2). In all cases, SUR, BBL and DSL samplings were performed using a mid-water trawl, while the BOT samplings using a bottom trawl. The stomachs of all cephalopod individuals caught in these samplings were analyzed, with the only exception of a few cases where random samples were taken owing to the large amount of available material. Whenever possible, a sample of three individuals per species was collected for carbon and nitrogen stable isotope analyses (SIA).

In all the diet analyses shown, only those species with a number of stomachs ≥10 were used. Diet overlap and niche breadth were obtained with Ecological Methodology software v7.0 (Krebs 1999), whereas similarity analysis (SIMPER) and dietary indexes were calculated using PRIMERv6.1.6 (Clarke & Gorley 2006).

Prey composition along the water column

	B Ancistrocheirus lesueuri	Ancistrocheiridae	1	0	0
(Ancistroteuthis lichtensteini	Onychoteuthidae	6	3	6
	5 Bathypolypus sponsalis	Octopodidae	31	7	79
	6 Chiroteuthis verani	Chiroteuthidae	1	0	0
•	Eledone cirrhosa	Octopodidae	133	21	101
	B Heteroteuthis dispar	Sepiolidae	39	7	20
1	Histioteuthis bonnelli	Histioteuthidae	3	2	2
1) Histioteuthis reversa	Histioteuthidae	86	16	64
1	l Illex coindeti	Ommastrephidae	264	28	516
1	Loligo forbesi	Loliginidae	110	30	1228
1	8 Neorossia caroli	Sepiolidae	2	2	2
1	Cctopus saluti	Octopodidae	18	8	17
1	5 Octopus vulgaris	Octopodidae	1	1	2
1	6 Onychoteuthis banksi	Onychoteuthidae	1	0	0
1	Opisthoteuthis calypso	Opisthoteuthidae	4	2	3
1	B Pteroctopus tetracirrhus	Octopodidae	8	9	13
1) Rossia macrosoma	Sepiolidae	72	19	45
2) Rondeletiola minor	Sepiolidae	51	5	19
2	L Scaeurgus unicirrhus	Octopodidae	2	0	0
2	2 Sepia orbignyana	Sepiidae	20	17	29
2	B Sepietta oweniana	Sepiolidae	172	13	101
2	Taonius pavo	Cranchiidae	1	1	1
2	5 Todaropsis eblanae	Ommastrephidae	1	0	0
2	5 Todarodes sagittatus	Ommastrephidae	57	28	101

			D	iet o	ovei	<u>rlap</u>							anaiyze
			Pe	ercenta	ige die	et over	lap (So	choene	er index	()			
	Ab_verE	Ba_spo l	El_cir	He_dis I	Hi_rev I	l_coi l	Lo_for(Oc_sal R	Ro_mac F	Ro_min S	Se_orb S	Se_owe ⁻	To_sag
Ab_ver	100.0									0.	7		
Ba_spo	6.0	100.0								0.	6 -	Levi	n's niche
El_cir	11.5	20.1	100.0							0.	5 -		
He_dis	56.6	6.0	15.4	100.0						82, ^{0.}	4 -		b-o-a
Hi_rev	65.7	11.7	18.2	53.1	100.0					– _{0.}	3 -		
ll_coi	33.7	3.3	9.3	17.2	49.0	100.0				0.	2 -		
Lo_for	8.1	0.5	2.4	10.4	17.4	49.1	100.0			0.			
Oc_sal	1.4	15.3	46.7	0.0	5.7	7.0	0.3	100.0		0.	di sh	sal , cir ,	, , , , , , , , , , , , , , , , , , ,
Ro_mac	44.6	10.3	23.3	27.6	39.9	26.3	3.6	11.8	100.0		He_ Se_ c	0c_ Ro_r	Hi To_s
Ro_min	49.1	6.0	15.4	59.7	39.1	4.8	2.0	0.0	27.3	100.0			
Se_orb	25.0	1.2	26.9	22.3	30.4	23.4	6.1	10.3	54.5	14.6	100.0		
Se_owe	68.6	7.1	13.4	40.1	62.3	37.7	6.1	0.0	47.4	34.2	34.0	100.0	
To_sag	36.8	3.0	18.4	21.9	46.2	43.9	4.1	10.8	34.4	11.8	33.0	47.0	100.0

CONTINENTAL SHELF

21.3

Pielou's

evenness

(J')

0.81

Pielou's

evenness

(J')

0.57

4.6

4.9

Species

richness (d)

2.23

Species

richness (d)

0.74

2.4

SIMPER

Av.Abund Av.Sim Sim/SD Contrib% Cum.%

0.6

0.3

Shannon

diversity (H')

1.77

SIMPER

Av.Abund Av.Sim Sim/SD Contrib% Cum.%

7.5 54.6 1.1 97.3 97.3

Shannon

diversity (H')

0.63

SIMPER

Av.Abund Av.Sim Sim/SD Contrib% Cum.%

0.3

0.2

62.9

12.2

80.7

17.3

80.7

98.0

EMI

48.7

EMI

76.5

62.9

75.1

200 m

CONTINENTAL SLOPE

All States of the state of the state is the state of t

SL	JR2	654.1	СЩ.,	4	24.5	NY)			Ċ,	N. des
Aver	age similar	rity: 16.27			SIMPER				Χ.,	
	Species			Av.Sin	n Sim/SD	Contr	rib%	Cum.%		
Nat	Natantia unidentified		3.2	9.3	0.4	57.	.0	57.0		and the
Teleost unidentified			1.7	2.4	0.2	14.	.4.7 71.6		2	18 A.
Megar	nyctiphane	s norvegica	1.6	2.1	0.2	13.	.2	84.8		1.1.1
Nerr	natoscelis i	megalops	1.4	1.5	0.1	9.	1	93.9	62	A TAD
			Pielo	ou's					53	1
	Nprey Species		even	ness	Shanno	n			1	1.14
Sprey	items	richness (d) (J	')	diversity	(H')	E	MI	-	
15	69	3.31	0.8	36	2.34		3	6.5	2	200 m
and the second second		and the second second	The second second							

Both on the shelf and the slope, the diversity was highest on the bottom and lowest on the BBL.

DSL

	Avera	ge similarity	: 18.58		SIMPER							
	Species			Av.Ab	und	Av.Sim	Sim/SD	Cont	rib%	Cum.%		
	Natantia unidentified			3.5		11.0 0.4 59.		9.2	59.2			
	Teleost unidentified			2.7	7	6.0	0.3	32	2.3	91.5		
ſ					Pi	elou's						
		Nprey	Spec	cies	evenness		Shannon					
	Sprey	items	richne	richness (d)		(J')	diversity (H')) EMI			
	14	65	3.1	3.11		0.82	2.17	7	42.9			
			10000									

Significant diet overlap (Schoener index>0.6) was only found for a reduced number of species (Abralia veranyi vs Histioteuthis reversa vs Sepietta oweniana; and Heteroteuthis dispar vs Rondeletiola minor). Loligo forbesi displayed the most specialized diet (LNB=0.02), whereas Sepia orbinyiana and H. dispar were the most generalist (LNB=0.6); for all other species this index ranged from 0.12 to 0.47.

Diet indices

There were not clear homogeneous seasonal trends for the diet indexes shown. However, most species had higher H' values in summer than in autumn (6 vs 3). Although EMI did not display important seasonal differences, autumn values were notoriously higher than summer values in some species (Histioteuthis reversa, Todarodes sagittatus and Loligo forbesi).

M	aurolicus r	nuelleri		1.2	1.2	0.1		9.6	84.6	_
Nat	tantia unic	lentified		1.0	1.0	0.1		8.3	92.9	1.500
			Pielo	ou's					-	
	Nprey	Species		evenness Shannon		n				
Sprey	items	richness (d	d)	(J')	diversity (H		E	MI	C. Carlo
64	2035	8.27		0.4	7	1 94		40.4		Services

7.7

1.5

2.9

1.3

Along the water column, cephalopod trophic chains were based on fishes on the shelf but on crustaceans on the slope.

BBL2

600 I	n
-------	---

400 m

Avera	age similar	ity: 26.67		SIMPER							
	Specie	S	Av.	Av.Abund Av.Sim Sim/SI			Contrib%		Cum.		
Nat	antia unid	entified		5.0	20.0 0.5		75.0		75.0		
Cerato	oscopelus r	maderensis		3.3	6.7	0.3	2	5.0	100.		
				Pielo	ou's						
	Nprey	Species	Species		evenness		Shannon				
Sprey	items	richness (d)	(J)	diversity	/ (H')		MI		
3	6	1.12		0.92		1.01		2	0.0		

800 m

BC)T2		2							
Avera	ige similari	ity: 14.47		SIMPER						
	Av.A	Abund	Av.Sin	n Sim/SD	Con	trib%	Cum.%			
Tele	2.8 7.0		0.3	4	8.1	48.1				
Crusta	icean unde	etermined		2.6	6.3	0.3	4	3.3	91.3	
				Piel	ou's					
	Nprey	Species	S	even		Shanno	on			
Sprey	items	richness	(d)	()	')	diversity	(H')	E	IMI	
35	193	6.46		0.	72	2.56		51.5		

Diet composition per species

Stable isotope analysis (SIA)

11.0

Stable isotope analysis (SIA) clearly separated typical pelagic species such as Histioteuthis sp (upper left-hand side) from typical benthic species such as Pteroctopus tetracirrhus (down right-hand side). Interestingly, species such as Illex coindetii and Todarodes sagittatus, which are considered important nictemeral migrators (Jereb & Roper 2010), were closer to the benthic than to the pelagic species.

In most species diet composition changed with season (summer, autumn). The figures show some examples in terms of occurrence index (OCI) for four different species.

Diet differences during day-night cycle

Todarodes so	agittatus		Histioteuthis I	reversa		Abralia veranyi			
DAY			DAY	DAY					
Average similarity: 17.77 SIMPER			Average similarity: 13.67	Average similarity: 13.67 SIMPER			SIMPER		
Species	Av.Abund	Contrib%	Species	Av.Abund Contrib%		Species	Av.Abund	Contril	
Teleost unidentified	4.3	84.8	Teleost unidentified	3.3	65.6	Natantia unidentified	4.4	61.8	
Natantia unidentified	1.2	5.3	Natantia unidentified	2.2	29.1	Teleost unidentified	3.4	33.7	

NIGHT			NIGHT			NIGHT		
Average similarity: 12.21	SIMPER		Average similarity: 19.26	SIMPER		Average similarity: 28.41	SIMPER	
Species	Av.Abund	Contrib%	Species	Av.Abund	Contrib%	Species	Av.Abund	Contrib%
Teleost unidentified	2.8	45.2	Natantia unidentified	3.5	55.5	Teleost unidentified	4.8	71.6
Hygophum sp	2.6	37.1	Meganyctiphanes norvegica	2.2	20.0	Natantia unidentified	2.9	24.8
Plesionika sp	1.2	7.2	Teleost unidentified	2.1	17.9			
Natantia unidentified	1.11	6.59						

Some species showed important differences in diet during the day-night cycle. H. reversa, for instance, consumed preferentially fishes (66%) during the day but natantian crustaceans (76%) during the night. The contrary is true for A. veranyi, which based its diet on natantians (62%) during daylight but on fishes (72%) at night. Other species, such as *T. sagittatus*, did not show important differences, preying mostly on fishes both at day (85%) and night (82%).

Diet changes along the water column

Histio	teuthis reversa		SIMPE	R			
Layer	Av. Similarity	Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
		Natantia unidentified	4.2	14.9	0.5	66.7	66.7
51102	22.26	Meganyctiphanes					
3012	z zz.za norvegica		2.4	4.4	0.2	19.9	86.5
		Teleost unidentified	1.7	2.1	0.2	9.5	96.0
		Teleost unidentified	3.1	7.2	0.3	50.9	50.9
DSL	14.16	Natantia unidentified	2.5	4.6	0.2	32.1	83.0
		Cephalopod unidentified	1.7	1.5	0.1	10.7	93.7
BBL2	33.33	Natantia unidentified	6.7	33.3	0.6	100.0	100.0
POTO	20.26	Teleost unidentified	4.7	18.4	0.6	91.0	91.0
BUIZ		Crustacean unidentified	1.8	1.8	0.1	9.0	100.0

Diet changed depending on the position along the water column. In our case, this analysis was only possible for a single species, H. reversa, which is supposed to perform nictemeral migrations in our study area (Quetglas et al. 2010). Excluding the BBL2 case, which only contained 5 stomachs, the importance of fishes decreased and that of crustaceans increased from the bottom to the sea surface.

Acknowledgements

This work was carried out in the framework of the IDEADOS project (CTM2008-04489-C03-01/MAR). Thanks to the Acoustic Group for providing the images of the echograms.

References

Clarke KR, Gorley RN (2006). PRIMER v6: user manual/tutorial. Plymouth. Jereb P, Roper CFW (2010). FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 2. Rome, FAO. Krebs C (1999) Ecological Methodology. 2nd. ed. A. Wesley Longman, New York. Quetglas A, de Mesa A, Ordines F, Grau A (2010). Deep-Sea Research I, 57: 999–1008