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10 Abstract

11 The invasive seaweed Caulerpa cylindracea has shown a reduced ability to invade healthy Posidonia 

12 oceanica meadows by penetrating only meadow margins in early invasion stages in the western 

13 Mediterranean Sea. However, the long-term interaction with invasive seaweed could deteriorate the 

14 structure of meadows by diminishing their initial resistance to invasion as a result of potential competitive 

15 mechanisms between both macrophytes (e.g. allelopathic effects, enhanced sediment anoxia). In this 

16 study, populations of both species were monitored over a 10-year period (2007-2016) in invaded and non-

17 invaded sites to assess meadows’ resistance evolution to the long-term negative interactions between both 

18 macrophytes. The C. cylindracea biomass in the seagrass canopy was much lower (from 5- to 60-fold) 

19 than the biomass that developed just outside the seagrass meadows at all the invaded sites. The monitored 

20 seagrass populations showed stable and/or progressive trends throughout the study period, and no 

21 structural differences were observed between invaded and non-invaded meadows. To conclude, our 

22 results evidence, for the first time, the absence of a long-term competitive interaction between invasive 

23 seaweed and the structure and shoot dynamics of native P. oceanica meadows. The long-term presence of 

24 persistent gradients of algal biomass from outside to inside meadows supports the existence of highly 

25 limiting conditions for algal growth and survival in undisturbed P. oceanica canopies, which reinforces 

26 the role of healthy meadows acting as ecological barriers against the spread of C. cylindracea. This 

27 highlights the importance of conserving valuable P. oceanica meadows as a way to control bioinvasions 

28 in the Mediterranean Sea. 
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31 1. Introduction

32 The ecological effects of biological invasions on natural communities depend mainly on the 

33 abundance and biological/ecological characteristics of invasive species, and on the resistance of native 

34 communities to invasion (Vitousek, 1990; Londsale, 1999; Theoarides and Dukes, 2007). These attributes 

35 are dynamics that can change over time by modulating the interaction between native and exotic species. 

36 Acclimative or evolutionary processes (e.g. hybridisation with endemic species) can improve the growth 

37 and competitive capacity of the introduced species to the detriment of native species (Yamashita et al., 

38 2000; Ayres et al., 2004). Resistance to the invasion of native communities can also be modified as a 

39 result of the environmental changes induced by the presence of exotic species and the action of natural or 

40 anthropogenic disturbances (Davis et al., 2000). Given the dynamic character of these attributes, long-

41 term studies need to be conducted under contrasting environmental to understand the potential impact of 

42 exotic species on native communities (Strayer et al., 2006). 

43 Exotic macroalgae have been recognised as a potential threat to seagrass habitats in coastal areas 

44 worldwide (Williams, 2007). The replacement of a native seagrass community with exotic macroalgae 

45 can trigger profound ecosystem transformations by generating alternative states characterised by loss of 

46 the valuable ecosystem functions and services that seagrasses provide (McGlathery, 2001; Montefalcone 

47 et al., 2015). Despite this increasing threat, our understanding of the interactions between alien and native 

48 macrophytes, and how these interactions determine the final impact that exotic macroalgae invasion has 

49 on these ecological relevant habitats, is limited (Williams, 2007; Thomsen et al., 2009). To date, most 

50 studies on the effects of exotic macroalgale on seagrass ecosystems are short and have been conducted 

51 more or less indiscriminately during the time course of invasions instead of within the appropriate time 

52 frame.

53 Species of the genus Caulerpa (Chlorophyta) are among the most studied invasive macroalgae 

54 and their introduction into new areas has been linked to declining seagrass habitats (Williams and Smith 

55 2007). C. taxifolia is the most widely studied species whose proliferation has been correlated with 

56 seagrass habitat loss and degradation in different oceans, including the Mediterranean Sea (Ceccherelli 

57 and Cinelli 1997; Dumay et al., 2002; Williams and Grosholz, 2002; Garcias-Bonet et al., 2008). 

58 However, recent experimental studies have suggested that C. taxifolia behaves as a passenger, rather than 

59 as a driver, of decline by responding opportunistically to the degradation of seagrass beds caused by other 

60 disturbances (Glasby 2013). However, Caulerpa cylindracea (Sonder) has received much less attention 
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61 than its congeneric species despite being considered one of the most threatening invasions in the 

62 Mediterranean Sea (Piazzi et al., 2016). Available evidence suggests that the ability of C. cylindracea to 

63 proliferate in seagrass habitats is vastly variable, and largely depends on the seagrass species, and also on 

64 its size, growth rate and the complexity of the three-dimensional structures of its meadows. The species is 

65 able to grow and develop dense stands in the seagrass canopies formed by medium-/small-sized species, 

66 such as Cymodocea nodosa and Zostera noltii, in both the Mediterranean Sea and the Atlantic Ocean 

67 (Raniello et al., 2004, Fabbri et al., 2015). This ability is much more restricted in the more complex leaf 

68 canopies of the larger seagrass species Posidonia oceanica, where invader populations were initially 

69 restricted to margins without penetrating inner meadow areas (Katsanevakis et al., 2010; Ceccherelli et 

70 al., 2014; Marín-Guirao et al., 2015). Despite the contrasting resistance observed among seagrasses to 

71 initial C. cylindracea invasion, very few works have assessed the existence of biotic interactions among 

72 these macrophytes, and have not explored how these interactions may influence the susceptibility to 

73 invasion of seagrass meadows in the long term. The seagrass C. nodosa showed a progressively reduced 

74 shoot density after the initial invasion by C. cylindracea, whereas Z. noltii displayed an opposite response 

75 as its shoot density increased after invasion (Cecherelli and Campo, 2002). For P. oceanica, no data are 

76 available on the population dynamics following C. cylindracea invasion. However, it has been suggested 

77 that C. cylindracea secondary metabolites can potentially cause allelophatic stress by negatively affecting 

78 the vegetative development of this seagrass (Dumay et al., 2002). Other authors have suggested that the 

79 increased sediment anoxia promoted by Caulerpa species invasion (C. prolifera and C. cylindracea) 

80 might induce plant mortality and may, therefore, be responsible for the less seagrass abundance observed 

81 in invaded areas (Holmer et al., 2009). Besides the likely existence of interactions between C. cylindracea 

82 invasion and seagrasses with potential long-term consequences on the integrity of meadows, no empirical 

83 or experimental evidence exists to date. All the conducted studies are short and based on descriptive or 

84 correlational approaches, which prevents the cause-effect relationships between this invasion and seagrass 

85 decline being established. It is, therefore, of key importance to evaluate and quantify the long-term effects 

86 of C. cylindracea invasion on the vitality, structure and function of P. oceanica meadows to manage and 

87 conserve this valuable habitat in the future (Boudouresque et al., 2009)..  

88 This study is the first quantitative assessment of the evolution of P. oceanica meadows’ 

89 resistance to C. cylindracea invasion over time, which could be influenced by the existence of long-term 

90 interactions between invasive alga and the endemic seagrass. To this end, the population dynamics of 
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91 both macrophytes and the structure of seagrass meadows were studied over a 10-year period at invaded 

92 and non-invaded sites in the south-western Mediterranean Sea. We hypothesised that if the presence of C. 

93 cylindracea had negative effects on the initial resistance of P. oceanica meadows to this structure over 

94 time, we could expect: (i) P. oceanica populations and meadows structure at invaded localities to decline 

95 over time compared to non-invaded sites; (ii) the abundance of the invasive alga in the seagrass canopy to 

96 progressively increase. 

97 2. Material and Methods

98 2.1. Study area and sampling design 

99 The present study was conducted between 2007 and 2016 on the south-eastern coast of Spain, 

100 where the exotic seaweed C. cylindracea was observed for the first time in 2005 (Ruiz et al. 2011). 

101 Similarly to other Mediterranean regions, P. oceanica is the most abundant and relevant infralitoral 

102 habitat in the study area (Ruiz et al., 2015), where C. cylindracea invasion is currently considered one of 

103 the most important potential threats to marine coastal ecosystems (Ruiz et al. 2017). Six sampling sites 

104 were selected in six well-developed P. oceanica meadows distributed along a coastline stretching more 

105 than 200 km: three invaded (I1, I2, and I3) by the alga and three not invaded (N1, N2, and N3); the 

106 invaded sites were isla Grosa (I1, -11 m, 0701985-4177946 UTM ETRS89), cabo Tiñoso (I2, -18 m, 

107 0664377-4156507 UTM ETRS89), and Calblanque (I3, -25 m, 0700040-4161890 UTM ETRS89), and 

108 the non-invaded ones were Calabardina (N1, -14 m, 0632933-4142986 UTM ETRS89), Las Palomas (N2, 

109 -17 m, 0673128-4160785 UTM ETRS89) and La Azohia (N3, -20 m, 0661074-4157999). All the selected 

110 meadows spread over biogenic carbonate sediments in oligotrophic waters far from anthropogenic 

111 disturbances (Ruiz et al., 2015). In the three invaded sites, C. cylindracea almost completely covered the 

112 sediments outside the meadow, and penetrated only the first few centimetres (up to 50 cm) inside meadow 

113 margins. At each site, a surface area of 450 m2 was delimited by pushing stainless iron pegs into the 

114 sediment every 15 m. The sampling area was located along the meadow margin and covered a 1-metre 

115 band inside the meadow, and a 1-metre band outside it and adjacent to the meadow edge. This transition 

116 area on meadow margins was selected to assess the existence of the long-term interactions between the 

117 invasive C. cylindracea and P. oceanica as it represents the contact zone between both macrophytes. 

118 Within each sampling area, six permanent square plots of 1,600 cm2 were randomly located inside the 

119 meadow following the margin. Each permanent plot consisted in four metal stakes connected by a string 

120 at the sediment level to avoid any effect on seagrass vitality.
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121 2.2. Sampling procedures

122 Abundance of C. cylindacea (standing biomass, g FW m-2) was measured at the invaded sites 

123 both within the margins of the P. oceanica meadow (from the edge to 1 m inwards; IN) and in the 

124 adjacent substrates outside the meadow edge (OUT). The C. cylindracea biomass was measured twice a 

125 year during two seasons, and gave contrasting growth rates during the seaweed’s annual cycle in this and 

126 other areas of the western Mediterranean Sea (Bernardeau-Esteller, unpublished data; Ruitton et al., 2005; 

127 Mezgui et al., 2007; Cebrian and Ballesteros, 2009; Enguix et al., 2014): October (autumn) when growth 

128 rates and biomass are still at their highest annual levels; January (winter) when the growth and abundance 

129 of the alga are usually lower. Fronds, stolons and rhizoids of C. cylindracea were carefully collected by 

130 hand within 400 cm2 square frames and placed inside labelled plastic bags. At each site, ten samples were 

131 randomly collected on the seagrass meadow margin (IN) and 10 other samples were obtained in the area 

132 outside and just in front of the meadow edge (OUT). Samples were transported to the laboratory in chilled 

133 containers with seawater. The sediment, debris and fragments of other algal species were gently removed 

134 from each sample to determine the total C. cylindracea standing biomass (g FW·m-2). Relative alga 

135 abundance was also measured during the autumn sampling in the six permanent plots established within 

136 the meadow margins to characterise the P. oceanica shoot density and population dynamics (see below). 

137 This measurement was taken using a square frame of the same surface area in the permanent plot (i.e. 

138 1,600 cm2) subdivided into 25-cm2 subquadrats (Bernardeau-Esteller 2015). C. cylindracea abundance 

139 was estimated as the percentage of cover obtained from the number of subquadrats in which the alga was 

140 present in relation to the total number of subquadrats. 

141 At each sampling site, the seagrass meadow descriptors shoot density, the percentage of meadow 

142 cover and the net shoot population growth in the permanent plots were measured every year during the 

143 autumn sampling. All these descriptors have been demonstrated to be robust indicators of meadow 

144 structure and vitality, and are the most widely used ones in ecological assessments and long-term 

145 monitoring programmes of this seagrass species (Pergent-Martini et al., 2004; Marbá et al., 2005; Ruiz et 

146 al., 2015). The percentage of meadow cover was estimated along four 10-metre linear transects deployed 

147 from four of the six permanent plots of the sampling station following a fixed compass bearing. Within 

148 each transect, a visual estimation of the percentage of the bottom covered by seagrass patches was 

149 performed inside the 1,600-cm2 quadrats subdivided into four 20x20 cm squares. The values obtained 

150 along each transect were averaged to represent the cover percentage of the whole transect, which was the 
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151 replicate (n=4). Shoot density was estimated by counting the number of shoots inside three 400-cm2 

152 square frames randomly placed inside the living seagrass patches at the beginning, the middle and the end 

153 of the same transects used for the cover measurements. The average of the three measurements obtained 

154 along each transect was used as an independent replicate (n=4 replicates). The exact number of shoots 

155 was also counted inside the six permanent plots. This shoot census was used to estimate the annual net 

156 shoot population growth (NPGy), which is the relative change in shoot numbers that the meadow had 

157 undergone in a per year basis (ln units·year-1). This variable was estimated following Marba et al. (2005) 

158 and using the equation: 

159 𝑁𝑃𝐺𝑦 =
(ln 𝑛𝑓 ‒ ln 𝑛𝑖)𝑥365

𝑃

160 where nf and ni are, respectively, the mean value obtained at the end and the beginning of each annual 

161 period, and P is the length of that period in days. The total net population shoot growth (NPGT, ln units) 

162 for each permanent plot was calculated by summing all the NPGy values obtained throughout the 

163 monitoring period (2007-2016). This variable represents the net balance between recruitments and the 

164 mortality of the shoot population, which take positive values when shoot recruitment exceeds mortality 

165 (population growth), and negative values when mortality exceeds recruitment (population decline).   

166 2.3. Statistical analysis 

167 For each season, the spatio-temporal variation of the C. cylindracea biomass was analysed by a 

168 three-way ANOVA with Position (two levels: inside the meadow (IN) and outside the meadow (OUT)) as 

169 a fixed factor, and Site (three levels: I1, I2 and I3) and Time (10 levels) as random factors. Multiple 

170 comparisons were made by the Bonferroni test for the posteriori analyses. 

171 The potential influence of C. cylindracea on seagrass descriptors (meadow cover, shoot density 

172 and NPGy) with time was explored by a two-way repeated measures ANOVA with Condition (two levels: 

173 invaded and non-invaded) as fixed factor, Site (three levels), a random factor nested within Condition. 

174 Time was included as the repeated measured factor (10 levels corresponding to the 10 successive annual 

175 periods). The analyses of repeated measures ANOVA were computed using Greenhouse-Geisser adjusted 

176 degrees of freedom when the data did not meet the assumption of sphericity (Mauchly’s test, α = 0.05). 

177 The differences in NPGT between the invaded and non-invaded meadows were examined by a two-way 

178 ANOVA with Condition (two levels, invaded, non-invaded) as a fixed factor and Site (three levels) as a 

179 random factor nested within Condition. In all the analyses, depth was introduced as a covariate to control 

180 the possible influence on the measured variables. Prior to carrying out the analyses, data were tested for 
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181 normality (Kolmogorov–Smirnov test) and equal variances (Levene test), and were transformed whenever 

182 necessary. A significant probability level of 0.05 was regarded, except when data transformation was not 

183 possible. In such cases the level of significance lowered to P<0.01 to minimise type I errors, and special 

184 care was taken to interpret the results (Underwood, 1997). In order to assess any trends of the time series 

185 on the abundance of both macrophytes (shoot density and meadow cover for P. oceanica, and biomass 

186 outside and inside the meadow for C. cylindracea), non-parametric Kendall’s coefficient of rank 

187 correlation (τ) wasused. The relationships between the algal cover percentage and the shoot number of the 

188 seagrass in the permanent plots were also explored with this correlation coefficient. In both cases a 

189 significance value of 0.05 was used. Statistical analyses were performed using version 17.0 of the SPSS 

190 statistical package (SPSS Inc. Chicago, Ill, USA). 

191 3. Results

192 C. cylindracea abundance

193 In winter, the complete regression of the C. cylindracea populations inside and outside the 

194 meadow were detected over the entire study period at all sites, except for a few cases (I1 in 2011, and I2 

195 and I3 in 2009; Fig. 1). No significant correlations between biomass and time were found for both 

196 positions IN and OUT at all the sites during this season. In autumn, a significant interaction of position, 

197 site and time was observed, which evidenced that the differences in the C. cylindracea biomass between 

198 the IN and OUT positions of the meadow depended on both time and site (Table 1). In particular, the 

199 biomass outside the meadow was ~ 5-60-fold higher than it was inside (Fig. 1) at all the sites and for all 

200 the times, except at I1 in 2012, 2014, 2015 and 2016, at I2 in 2010 and 2015, and at I3 in 2015. In these 

201 cases, the biomass recorded outside was very low (<5 g FW m-2), with complete population regression 

202 being recorded in some situations (at I1 in 2014 and at I2 in 2015) (Fig. 1). Vast interannual variations in 

203 the C. cylindracea biomass were found in this OUT position, but with different patterns between sites. 

204 The autumn biomass values for the 2007-2010 period were ~10-70-fold higher than in subsequent years at 

205 I1. The maximum biomass values were also recorded at the beginning of the study period for I2 and I3, 

206 but the multiple comparisons did not show any clear temporal pattern at these sites. The autumn values 

207 within the meadow (IN) were generally lower or equalled 5 g FW m-2, and showed no interannual 

208 differences, except for I2, where the alga abundance in 2007 and 2008 was higher than in later years (Fig. 

209 1). Despite there being no significant interannual differences, the C. cylindracea biomass from the IN and 

210 OUT positions showed significant negative temporal trends at I1 and I2, whereas they were stable at the 
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211 I3 site(Table 2). The C. cylindracea cover in the permanent plots correlated highly with the autumn 

212 biomass values recorded inside meadows (I1: τ = 1, p <0.001; I2: τ = 0.975, p <0.001; I3: τ = 1, p 

213 <0.001), and ranged from zero for the 2012-2015 period to 24.7 ±4.5 (2008) at I1, from 3.8±1.2 (2010) to 

214 74.8±6.8 (2008) at I2, and from 1.3±0.3 (2013) to 11.2±5.2 (2011) at I3. 

215 P. oceanica abundance

216 No differences in meadow cover, shoot density and NPGy were detected between the invaded 

217 and non-invaded P. oceanica meadows throughout the study period, but temporal patterns varied 

218 depending on site (Table 3). Considerable interannual fluctuations (> 50%) for these descriptors were 

219 detected in all the meadows, even between consecutive years (Fig. 2). Meadow cover and shoot density 

220 showed positive correlations with time at I2. Positive trends were also observed for meadow cover at I3 

221 and for shoot density at N3. Stable trends (no correlations with time) were found for both descriptors at I1 

222 and N2, and only for meadow cover at N3. Shoot density also displayed stable trends at I3 and N1 (Table 

223 4). The average NPGT values were 0.40±0.16 at I1, 1.02±0.58 at I2, -0.32±0.30 at I3, 0.60±0.72 at N1, 

224 1.03±0.38 at N2 and 0.24±0.14 at N3. No differences between sites were found for this variable (Table 3). 

225 Significant correlations between the seagrass shoot number and the C. cylindracea cover values within 

226 permanent plots were found, and were negative at I1 (τ = -0.798, p = 0.011) and I2 (τ =-0.683, p = 0.029), 

227 and positive at I3 (τ = 0.494, p = 0.043).

228 4. Discussion

229 This work is the only long-term monitoring study to have been conducted to date to assess the 

230 population dynamics of the native seagrass P. oceanica and the invasive seaweed C. cylindracea, which 

231 have grown in close contact for more than one decade. The 10-year data series evidenced the absence of 

232 any long-term interactions between both macrophytes. It demonstrated, for the first time, that P. oceanica 

233 meadows, in the absence of human perturbations, are able to maintain their initial resistance to C. 

234 cylindracea invasion. 

235 Since the introduction and rapid settlement of the invasive seaweed on the south-eastern coast of 

236 Spain in 2005 (Ruiz et al., 2011), established populations have persisted until the present-day and present 

237 considerable temporal fluctuations in their development level (i.e. biomass and cover). Marked seasonal 

238 fluctuations are common in the C. cylindracea populations from the Western Mediterranean, where the 

239 greatest abundance is usually observed in autumn, followed by a drastic winter decline (Buia et al., 2001; 

240 Ruitton et al., 2005; Lenzi et al., 2007; Enguix et al., 2014). The C. cylindracea populations have also 
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241 shown substantial interannual variations, but with different patterns, among study sites, which suggests 

242 the existence of local factors influencing C. cylindracea growth and development. Biological invasions in 

243 marine ecosystems are indeed considered highly idiosyncratic and are dependent on local conditions 

244 (Meiners et al., 2004; McQuaid and Arenas, 2009). However, lack of other long-term studies on C. 

245 cylindracea population dynamics from other Mediterranean regions precludes the identification of such 

246 local factors. Thus further studies are needed. 

247 The P. oceanica meadows also showed strong interannual fluctuations in their structural 

248 descriptors (cover and density), as previously reported in this and other regions of the western 

249 Mediterranean (Marbà and Duarte, 1997; Gobert 2002; Terrados and Medina-Pons, 201; Ruiz et al., 

250 2015). Despite this temporal variability, the monitored meadows followed stable or progressive trends 

251 throughout the studied 10-year period, with no differences observed between the invaded and non-

252 invaded meadows. Only site I3 showed slightly negative total population growth (NPGt) in the permanent 

253 plots, which could be interpreted as a negative interaction with the invasive seaweed. Nevertheless, both 

254 the invaded and non-invaded meadows showed interannual periods of negative growth (e.g. NPGy 

255 between 2012 and 2014), which suggests that the observed year-to-year changes fall within the natural 

256 demographic fluctuations of P. oceanica populations (Guillén et al. 2013; Ruiz et al. 2015). C. 

257 cylindracea also underwent a net decline at I3 throughout the study period, and this invaded site was the 

258 only one where the abundance of both species correlated positively in the permanent plots. This suggests  

259 the existence of local factors or processes which could act on the meadow edge and similarly affect both 

260 macrophytes. Seagrass meadow margins are indeed very vulnerable to the physical disturbances caused 

261 by sediment dynamics and hydrodynamic forces (Fonseca and Bell,1998; Infantes et al., 2009). Buried P. 

262 oceanica shoots in the meadow margins have been frequently observed at this site through the migration 

263 of large sand waves following severe storms. These intense natural events are the likely cause of the 

264 observed declines because P. oceanica is particularly sensitive to burial (Manzanera et al., 2014; 

265 Ceccherelli et al., 2018), and C. cylindracea is negatively affected by high hydrodynamic forces (Vaselli 

266 et al., 2008; Incera et al., 2010). However, the mechanistic interaction between hydrodynamics and C. 

267 cylindracea proliferation/abundance is still unknown (Piazzi et al. 2016). Furthermore, only the P. 

268 oceanica meadow at this site was highly fragmented and formed by scattered patches of tens of meters, 

269 which revealed the existence of a particular natural regime of physical disturbance (Hemminga and 

270 Duarte, 2000). Therefore, the negative population growth shown by both macrophytes in this locality 
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271 would most likely reflect the effects of extreme storm events rather than a negative interaction between 

272 the native seagrass and the invasive seaweed. 

273 Despite the fact that C. cylindracea maintained permanent populations with wide temporal 

274 variability in their development level, the abundance of the alga along the edges of the P. oceanica 

275 meadows was constantly very much lower than in the adjacent sedimentary bottoms. This supports the 

276 notion of the good resistance of P. oceanica meadows to C. cylindracea invasion, as reported in previous 

277 studies (Katsanevakis et al., 2010; Ceccherelli et al., 2014; Marín-Guirao et al., 2015), and demonstrates 

278 that this resistance is stable in the long-term, even when the invasive seaweed have been growing within 

279 meadow margins for more than one decade. Several factors have been suggested to contribute to 

280 meadows’ initial resistance to invasion, but it is unknown if and how these factors can be modified in the 

281 long-term by invasive seaweed being present. The little light and small substrate surface available for the 

282 alga within meadows have been suggested to significantly contribute to this resistance, as derived from 

283 the fact C. cylindracea growth and abundance within meadow margins are facilitated when the seagrass 

284 biomass is manipulatively reduced (Ceccherelli et al., 2014; Tamburello et al., 2014). The marked 

285 reduction in light caused by the dense leaf canopy of meadows has been subsequently demonstrated as a 

286 key factor underlying the initial resistance to C. cylindracea invasion (Marín-Guirao et al., 2015; 

287 Bernardeau-Esteller et al., 2015), although this mechanism of resistance could diminish over time given 

288 the potential adverse effects induced by the alga on seagrass productivity (Raniello et al., 2007). This 

289 competitive interaction (i.e. allelopathy) could result in undersized P. oceanica plants within meadow 

290 margins (Dumay et al. 2002) by increasing the levels of available light for the alga to grow and favouring 

291 the progressive invasion of meadows. Although we cannot rule out the possibility of phytotoxic-induced 

292 effects on P. oceanica, lack of increasing trends in the invasive seaweed abundance within margins 

293 evidences that these potential effects do not impact the meadow’s structure. We can, therefore, assume 

294 that the interaction between both macrophytes does not affect the long-term light conditions underneath 

295 the seagrass canopy that confers resistance to invasion. Besides the effects of above-ground processes 

296 (e.g. canopy shading), below-ground processes are also likely to contribute to P. oceanica meadows 

297 resisting C. cylindracea invasion (Gribben et al. 2018). The particular microbial communities and the 

298 chemical/nutrient properties of sediments populated by both these macrophytes seem to offer positive 

299 feedback for each species to grow. Consequently, the sediment quality and the associated microbial 

300 community within meadows have been recently suggested to play an important role by driving meadows’ 
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301 resistance to C. cylindracea invasion. Moreover, the fact that the invasive alga is unable to progressively 

302 develop dense stands within meadows precludes the sediment accumulation of phytotoxic compounds 

303 with potential negative effects on both seagrass performance and mortality (Holmer & Hasler-Sheetal, 

304 2014). 

305 In short, our results evidence, for the first time, the absence of a long-term competitive 

306 interaction between invasive seaweed and the structure and shoot dynamics of native P. oceanica 

307 meadows. The long-term presence of persistent gradients of algal biomass from outside to inside 

308 meadows supports the existence of highly limiting conditions for algal growth and survival in undisturbed 

309 P. oceanica canopies, which reinforces the role of healthy meadows acting as ecological barriers against 

310 the spread of C. cylindracea. This highlights the importance of conserving valuable P. oceanica meadows 

311 as a way to control bioinvasions in the Mediterranean Sea. 
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477

478
479 Tables and Figures
480
481 Table 1. Summary of the three-way ANOVAs performed to assess the effect of Position, Site and Time 

482 on the C. cylindracea biomass in autumn and winter. The Depth factor was included as a covariate.

          
winter autumn

Source df MS F p df MS F p

Depth[covariate] 1 5384311.22      0.54   0.46 1 17.98 0.20 0.65
Position 1 29432112.22     0.98   0.43 1 50131.48 26.83 0.01
Site 2 14515013.49      0.72   0.55 2 660.08 1.27 0.47
Time 8 6514102.40     0.93   0.57 9 3448.16 1.67 0.27
PositionxSite 2 30302985.98     4.20   0.06 2 1006.87 0.80 0.47
PositionxTime 7 7013464.35      0.97   0.49 9 2122.34 1.68 0.17
SitexTime 14 7193845.31      1.00   0.50 18 1199.03 0.95 0.54
PositionxSitexTime 14 7216144.17      0.73   0.74 18 1260.58 14.36 <0,001
Residual 440 9888556.28    535 87.794   

483
484 Table 2. Relations between C. cylindracea abundance (biomass) and time for all the monitored invaded 

485 sites (I1, I2 and I3) for the two studied seasons (winter, autumn) and the two positions in relation to the 

486 meadow edge (IN, OUT); Ƭ: Kendall’s coefficient of rank correlation, p: calculated probability. 

487
            
SITE winter autumn

IN  OUT IN  OUT

Ƭ p Ƭ p Ƭ p Ƭ p

I1 -0.39 0.19 -0.30 0.31 -0.68 0.01 -0.78 <0.01
I2 -0.25 0.17 -0.39 0.19 -0.74 0.02 -0.56 <0.01
I3 -0.35 0.11  -0.33 0.25  -0.24 0.33  -0.20 0.42

488
489
490 Table 3. Summary of the three-way Repeated Measured ANOVA performed to assess the effects of 

491 Condition, Site and Time on Meadow Cover, Shoot Density and NPGy and the two-way ANOVA 

492 performed to assess the effects of Condition and Site on Total Population Growth (NPGt). The Depth 

493 factor was included as a covariate. Asterisk indicates the Greenhouse-Geisser-adjusted degrees of 

494 freedom used when data did not meet the sphericity assumption. 

                    
Shoot Density Meadow Cover NPGy NPGt

Source df MS F p  df MS F p  df MS F p  df MS F p

Between-Subjects Effects              
Depth [covariate] 1 10.70 0.26 0.62  1 51.42 0.63 0.44  1 0.002 0.12 0.73  1 0.02 0.16 0.69
Condition 1 27.49 0.66 0.43  1 86.43 1.05 0.32  1 0.002 0.16 0.69  1 0.03 0.21 0.65
Site (Condition) 4 621.11 14.85 <0.001  4 553.62 6.73 0.004  4 0.01 0.58 0.68  4 0.08 0.60 0.67
Residual 17 41.83    13 82.24   28 0.01    28 0.13   
                   

Within-Subjects Effects             

Time 5.38* 10.70 0.73 0.61  4.73* 132.28 2.32 0.06  5.43* 0.12 1.31 0.26  

TimexDepth 5.38* 10.74 0.73 0.61  4.73* 137.71 2.42 0.05  5.43* 0.12 1.31 0.26  

TimexCondition 5.38* 11.28 0.77 0.58  4.73* 131.91 2.32 0.06  5.43* 0.12 1.35 0.24  

TimexSite(Condition) 21.53* 44.21 3.01 <0.001  18.92* 122.30 2.15 0.009  21.72* 0.16 1.76 0.03  
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Residual 91.52* 14.66    61.49* 56.93    152.02 0.09        

495
496 Table 4.  Relations between P. oceanic abundance (meadow cover and shoot density) and time for the 

497 invaded (I1, I2 and I3) and non-invaded sites (N1, N2 and N3); Ƭ: Kendall’s coefficient of rank 

498 correlation, p: calculated probability. 

499
      

SITE Meadow Cover Shoot Density
Ƭ p Ƭ p

I1 0.022 0.93 0.27 0.45

I2 0.511 0.04 0.689 0.023

I3 0.82 0.01 0.27 0.45

N1 0.675 0.03 0.156 0.531

N2 0.2 0.421 0.333 0.18

N3 0.111 0.655  0.654 0.04

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
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527 Figure 1. Temporal variation of biomass (g FWm-2) of the C. cylindracea stands growing inside (IN, full 

528 dots) and outside (OUT, empty dots) the three studied invaded meadows (I1, I2 and I3). Data are 

529 presented as means and standard errors. 

530
531 Figure 2. Temporal variation of the seagrass descriptors (Meadow cover, Shoot density and Annual net 

532 population growth (NPGy)) of the and non-invaded (N1, N2 and N3) and invaded (I1, I2 and I3) meadows 

533 from 2007 to 2016. Data are presented as means±standard error.

534
535
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