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INTRODUCTION

Heterotrophic prokaryotes make up the largest
living biomass of aquatic ecosystems, playing a key
role in the carbon cycle by incorporating dissolved
organic matter and recycling nutrients in the oceans
(Azam et al. 1983, Hansell & Carlson 1998). The
estimation of total bacterioplankton abundance has
evolved from the tedious estimation by micro scopy
techniques to automatic counting using flow cytom-
etry. Flow cytometry allows counting at a rate of
200 to 2000 cells s−1. Fast sample processing by
flow cytometry has proven very useful for large-
scale studies of plankton communities (Gasol & del
Giorgio 2000). In addition to abundance estimates,

interest in automated flow cytometric properties
arises from the increasing use of side scatter (SSC)
signals as a surrogate for cell size (Calvo-Díaz &
Morán 2006, Felip et al. 2007), thus allowing for
precise estimation of the biomass contributed by
each subgroup.

The analysis of bacterial population abundance by
flow cytometry consists of 2 separate steps. The first
step, which is truly automated, is the processing of
the sample under the flow cytometer. The second,
not automated step, is the posterior analysis of the
flow cytometer output. Flow cytometry uses the cell
properties of light scattering and fluorescence, and
records the information of each analyzed cell in a
flow cytometry standard (FCS) file. The analysis of
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ABSTRACT: Flow cytometry has become a standard method to analyze bacterioplankton. Analy-
sis of samples by flow cytometry is automatic, but it is followed by manual classification of the bac-
terioplankton groups in flow cytometry standard (FCS) files. This classification is a time consum-
ing and subjective task performed by manually drawing the limits of the groups present in
cytograms, a process referred to as gating. The automation of flow cytometry data processing
based on pattern recognition techniques could provide an efficient tool to overcome some of these
disadvantages. Here, we propose the use of model-based clustering techniques for the automatic
detection of low (LNA) and high (HNA) nucleic acid bacterioplankton groups in FCS files. To val-
idate our method, we compared the automatic classification with a flow cytometry database from
a 9 yr time series collected in the central Cantabrian Sea that had been manually analyzed. The
correlation between automatic and manual gating methods was >0.9 for cell counts and 0.7 to 0.95
for side scatter values, a proxy of cell size. In addition, no significant differences were found in the
mean annual cycle of LNA and HNA cell abundance depicted by both methods. We also quanti-
fied the subjectivity of manual gating. The coefficient of variation for heterotrophic bacteria
counts obtained by different analysts was around 10 to 20%. Our results suggest that the combi-
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munities objectively and accurately, allowing us to safely compare bacterioplankton samples from
different environments.
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the samples by flow cytometry is automatic, but the
clustering of the data stored in the FCS files is usually
done manually. Two widespread groups of heterotro-
phic bacteria separated by their relative nucleic acid
(NA) content, after appropriate NA staining, and
commonly referred to as low (LNA) and high (HNA)
are found in almost any aqueous sample (Li et al.
1995, Gasol et al. 1999, Bouvier et al. 2007), from
fresh water, to estuarine, to open-ocean waters. After
some debate, a consensus is emerging that LNA and
HNA subgroups comprise fundamentally different
phylotypes (Schattenhofer et al. 2011, Vila-Costa et
al. 2012). These and other groups usually have to be
identified by means of drawing the limits between
populations in scatterplots, a process referred to as
gating. Manual gating is done in 2-dimensional
graphical representations of the flow cytometry vari-
ables of SSC and fluorescence (most frequently red
and green). However, the limit between populations
is not always clear, and significant subjectivity is
introduced based on the analyst’s criterion. In addi-
tion, it is often hard to visually discriminate sub-
groups in flow cytometry samples (Andreatta et al.
2004, Finak et al. 2009), introducing an important
error in the bacterial population estimates. The mag-
nitude of this error is even more important in large-
scale studies where flow cytometry files are pro-
cessed by different analysts.

In recent years, many automatic techniques for
gating populations have been developed to mini-
mize the time-consuming step of manual processing.
Different clustering methods have been proposed
(Rajwa et al. 2008, Bashashati & Brinkman 2009,
Scheuermann et al. 2009, Lahesmaa-Korpinen et al.
2011, Aghaeepour et al. 2013). A clustering tech-
nique that has given good results in medical and
health sciences is model-based clustering. Model-
based clustering is an unsupervised clustering tech-
nique, meaning that it attempts to classify the data
in a given number of homogeneous groups without
the need for training by the user with a set of classi-
fied examples. This technique tries to find the best
model that describes the structure in the data. Lo et
al. (2009) proposed a model-based clustering ap -
proach based on t-mixture models with a Box-Cox
transformation. Contrary to previous methods, their
algorithm can detect groups with an elliptical shape
and is unbiased to the presence of outliers. An addi-
tional advantage of automatic clustering techniques
is that the number of groups detected is variable, so,
for example, it is possible to easily detect subgroups
within the HNA and LNA categories usually de -
tected by manual gating.

Our objective was to evaluate the performance of
t-mixture model-based clustering for HNA and LNA
bacterioplankton from a coastal environment. We
developed a methodology for automated clustering
of bacterioplankton flow cytometry data and tested it
with a long-term database that had also been ana-
lyzed manually. Our method is an adaptation of the
flowClust function (Lo et al. 2009) for the identifica-
tion of bacterioplankton groups. In addition, we pro-
vide an evaluation of the errors introduced by the
subjectivity in the manual gating of bacterioplankton
by comparing the analyses of the same flow cytome-
try plots by different analysts.

MATERIALS AND METHODS

Sample collection and analysis using 
traditional manual gating

A monthly 9 yr time series of flow cytometry bac-
terioplankton samples collected under the Radiales
programme (Spanish Institute of Oceanography,
IEO) at 3 stations off Gijón in the southern Bay of
Biscay was used to validate the methodology devel-
oped. Samples were collected at 8 depths (from the
surface to 150 m depth). Bacterioplankton samples
were preserved with 1% paraformaldehyde + 0.05%
glutaraldehyde and frozen at −80°C. To analyze het-
erotrophic bacterioplankton, an aliquot of 0.4 ml
was stained with 2.5 µmol l−1 SYTO-13 NA fluo ro -
chrome (Molecular Probes) and analyzed using a
FACSCalibur flow cytometer (BD/Becton, Dickinson
and Company) equipped with a laser emitting at
488 nm.

We used a total of 2050 files in this intercompari-
son. Flow cytometry scatterplots are routinely ana-
lyzed manually as part of the ongoing time-series
programme. Manual gating has been performed by
different analysts (although they all received the
same training), so a certain degree of variability can
be expected in the manually gated data. Fluorescent
latex beads (1.0 µm diameter, Molecular Probes) were
added as an internal standard to relate the measured
SSC and fluorescence signals, which might change
slightly from sample to sample due to laser drift, to
the constant SSC and fluorescence of the beads. LNA
and HNA bacteria were easily distinguished within
bacterioplankton based on their relative green fluo-
rescence (FL1, a variable related to NA content,
(Marie et al. 1997)). LNA cells were almost always
smaller (lower SSC values) than the HNA counter-
parts (Calvo-Díaz & Morán 2006).
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Automatic gating

Detection of beads

Because beads are used as the standard, they need
to be identified very precisely. In many samples, the
beads population is a mixture of single beads, dou-
blets, triplets and higher associations. Beads usually
lay in an area of the cytogram where no other popula-
tion exists, making it easier to separate these subpop-
ulations. Hence, we have developed an additional
methodology to analyze the beads first, so that they
could be used later to correct bacterioplankton data.

For the automatic analysis of beads, we first selected
a window of SSC and FL1 containing the beads pop-
ulation for all samples. A window wide enough is
needed to ensure that the beads do not lay outside of
the selected window if slight changes in the laser
occur.

In this window, the population of single beads is a
bi-normal distribution (i.e. the beads have normal
SSC and FL1 distributions). This bi-normal distribu-
tion of single beads sometimes has 2 or 3 adjacent
subpopulations (doublets, triplets, etc.). To automati-
cally gate the subpopulation of single beads within
this wide window, and since the single bead popula-
tion is the most abundant, we first located the SSC
and FL1 corresponding to the most abundant histo-
gram class. Then, for the specific brand of beads used
in our samples, a range of ±0.2 log SSC and FL1 units
around the mode encompassed all the single beads
but removed doublets and triplets and was therefore
used to select a reduced window containing all single
beads.

Once this reduced window was automatically se -
lected, we fitted a normal distribution to the SSC
data. For a large number of samples, the beads pop-
ulation was superimposed over background noise.
Therefore, the beads population was defined as those
particles falling within the 99% confidence intervals
of the fitted normal distribution. The same analysis
was performed automatically for all selected FCS
files. If different beads were used, the ranges of SSC
and FL1 for the window selection would need to be
readjusted.

Detection of bacterioplankton groups

Although bacterioplankton tend to show marked
bimodal distributions of FL1, distinct groups may be
occasionally hard to detect because they are com-
posed of different subgroups with similar SSC and

FL1. In addition, not all groups of bacterioplankton
are distributed following a normal distribution.
 t-mixture model-based clustering is supposedly able
to cope with these peculiarities. We used the R pack-
age flowClust (Clustering for Flow Cytometry) (Lo et
al. 2009) to evaluate the ability of this technique to
cluster natural bacterial populations.

Software

FlowClust uses a model-based clustering approach
based on t-mixture models with a Box-Cox transfor-
mation. In t-mixture models, the number of subpopu-
lations to detect needs to be specified a priori. The
flowClust package uses a expectation-maximization
algorithm to calculate the parameters when fitting t-
distributions to the n subpopulations (Lo et al. 2008),
selecting the best fit. To test the goodness of the fitted
t-distributions, flowClust compares the error and
tries to minimize it. A modified Box-Cox transforma-
tion is needed to minimize the effects of outliers pres-
ent in the flow cytometry files. The resulting classifi-
cation allows each cell to be assigned to one of the n
subpopulations. Lo et al. (2008) provides a more
detailed description of the flowClust algorithm.

File analysis

FCS files were read into R using the Bioconductor
package flowCore (Hahne et al. 2009) providing flow
cytometric signals for each cell. The variables used in
the flowClust function were SSC, FL1 and red fluo-
rescence (FL3), characteristic of autotrophic cells.
Once the flow cytometry file was read, we had a mul-
tiparameter matrix with all values of each of the cells
of that file. Data were log-transformed for subse-
quent analyses.

As we have explained above, to apply a classifica-
tion using t-mixture models, we need to specify the
number of clusters (K) to be fitted. But the number of
bacterioplankton populations in a cytogram changes,
and there can be several groups of noise (e.g. viruses,
sample contamination). To select the best number of
clusters in a sample, and given that the number of
subpopulations was rarely >10, we fitted 10 t-mixture
models to each cytogram, with K from 1 to 10. For
each K we calculated the Bayesian information crite-
rion (BIC) (Lo et al. 2009) relative to the maximum
value of BIC for the 10 fitted models. The most appro-
priate value of K for each cytogram was selected as
the lower K with BIC >95%.
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We filtered the flow cytometry data before the fit of
the 10 t-distribution models. Filtering data prior to
analysis is a common practice in automatic clustering
methodologies (Andreatta et al. 2001, Zare et al.
2010, Ribalet et al. 2011) that reduces the effect of
noise and speeds up the analysis. However, this pre-
treatment has to be carefully applied to not affect the
biologically important information. The filtering pro-
cedure is based on a binning of the data, so an image
representation of the data is produced. Each pixel of
the image represents the number of cells present in
the given combination of SSC and FL1. To filter the
data, if <2 cells fall in a pixel, they are removed.
Three sequential filters were performed on each FCS
file. First, a 3-dimensional filter (SSC, FL1, FL3 with
40 bins in each axis), then 2-dimensional filters (first
SSC vs. FL1, then FL1 vs. FL3 with 80 bins in each
axis). This pre-filtering is an optional step prior to the
clustering function; therefore, it could be used or not
depending on the expert criterion.

Once we had the optimal number of clusters for
each file, the flowClust function returned each of the
K groups and each cell was assigned to a given
group. The flowClust is performed on the filtered
data and hence, even if the threshold to filter the data
is carefully selected, the number of cells belonging to
each group could be underestimated. To correct this
underestimation, we first calculated the boundaries
of the cloud of points in the 3-dimensional (SSC, FL1
and FL3) space for each of the K groups. Then, with
the unfiltered data, we used these boundaries to
assign each cell to a group. If a cell was not within
any group, it was labelled as an outlier. To calculate
the boundaries of a group, we used a convolution
algorithm that calculates the smallest polygon that
includes the input points (using function convhulln of
the package ‘geometry’ available in R).

Fig. 1 shows an example summary graphic of the
flowClust results for one file. FlowClust returns a
numbered list of groups, but we do not know which
cluster represents each subgroup of bacteria (HNA
and LNA in this case) or whether the cluster is in fact
a group of noise. To assign each cluster to a category,
we designed a method to label each group when all
the FCS files had been analyzed. We first calculated
the mean value of the flow cytometry parameters for
each cluster. Then we corrected these data using
mean values for the beads for the corresponding FCS
file. We plotted the corrected mean value for each
group using the SSC, FL1 and FL3 signals. We
obtained a plot of all the centres of the groups of all
the FCS files analyzed. We gated this plot manually
to select which groups were assigned as HNA or
LNA (Fig. 2). The purpose of this step was to label the
groups with names instead of numbers.
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and green fluorescence (FL1, y-axis). HNA: high nucleic 
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The R code to automatically analyze bacterioplank-
ton FCS files is provided in the Supplement at www.
int-res. com / articles / suppl / a072 p175 _ supp/.

Validation

We compared our automatic clustering with the
manual analysis of 2050 files. The automated ana -
lysis of the beads was also compared with the manual
analysis. Bacterioplankton groups were divided into
2 categories, HNA and LNA, to match the groups
detected in the manual-gated database processing.
To determine the inherent variability in the manual
analysis, 10 FCS files randomly selected from the
Radiales database were analyzed by 6 different
experts. For the 2050 files analyzed by the ongoing
Radiales monitoring programme, we had information
on the cytometric properties for each group, and
mean size values calculated using the arithmetic
mean. Since the distribution of flow cytometric prop-
erties is frequently not normal, other measures of
central tendency, such as the median, might be more
appropriate. To evaluate which measure of central
tendency is more adequate, we manually analyzed

50 files selected to have maximum variability in the
data and including a wide range of depths and dates.
Files were manually analyzed by the same person.
We also provide error estimations between different
methods and experts.

RESULTS

The correlation between the automatic clustering
and the manual gating data was high for the counts
(Fig. 3A−C; r = 1 for beads, r = 0.96 for LNA and r =
0.97 for HNA groups), but rather low for the
average SSC (Fig. 3E,F; r = 0.37 for LNA bacteria
and r = 0.56 for HNA bacteria). These estimates of
average SSC represent the arithmetic mean of the
SSC of the particles within each group, but many
bacterioplankton groups have SSC distributions that
are not normally or even log-normally distributed.
Hence, the median of the distribution is a more reli-
able estimate of the average SSC as it is less sensi-
tive to data distribution. Because the Radiales data-
set was analyzed using the arithmetic mean and it
was not feasible to manually reanalyze the 2050
FCS files, we selected 50 files and manually gated
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the data. We calculated the median instead of the
arithmetic mean for both automatic and manual
methods and a better correlation be tween the median
SSC estimates was found (see Ap pendix; r = 0.76 for
LNA bacteria and r = 0.99 for HNA bacteria).

However, a good correlation is not a measure of the
correspondence between 2 methodologies. Usually,
when comparing 2 analyses, a test on whether the
slope and intercept of the fit are significantly differ-
ent than 1 and 0 is provided. For the data shown in
Fig. 3, all slopes and intercepts are significantly dif-
ferent than 1 and 0, respectively. Even for the beads
where the differences between the 2 methodologies
are irrelevant (i.e. when manual counts were 1000
beads the automatic method counted 1011), the
ANOVA revealed significant differences (test for
slope different to 1: F1,2036 = 85, p < 0.001). This sug-
gested that in our database of 2050 FCS files, the
ANOVA had so much power that even the slightest
differences were detected as statistically significant
and, therefore, we can not rely just on the p-value to
study the goodness of fit of our method.

Despite this problem with the exceedingly high
power of the ANOVA, the significance of the tests
points to dissimilarities between the methodologies.
However, it is also necessary to study the magnitude
and whether these differences are biologically im -
portant (Peters 1991).

To detect the disagreement or bias between the
methodologies, we estimated the error, which repre-
sents the ratio between the automatic and the man-
ual methods (Fig. 4). A positive error hence indicates
an overestimation by the automatic method while a
negative error implies an underestimation by the
automatic method. When this error was calculated,
we found important differences between the manual

and automatic methods both in the HNA and the
LNA bacteria groups, especially at the lowest counts
(Fig. 4).

To understand the origin of the error, we evaluated
the influence of the error introduced by the analyst
who manually gated the data. We therefore asked an
external analyst who was not involved in the process-
ing of the Radiales database to manually gate the
same 50 files (Fig. 5C,D). Although the error be tween
these 2 manual gating analyses (Fig. 5C,D) was lower
than the comparison between automatic and manual
(Fig. 5A,B), the differences observed suggest that
even when the gating was done manually by 2 differ-
ent experts important errors were found.

Interestingly, the errors of the latest comparison,
and in particular the errors in Fig. 5C, suggest that
the external analyst underestimates the abundance
at the lowest counts, very similarly to the automatic
method. We hypothesized that this underestimation
was due to the fact that when an analyst is asked to
gate 50 files for an intercomparison study, he/she
pays special attention to adjusting the gates as much
as possible, trying to avoid the inclusion of adjacent
noise or outliers. To test this hypothesis, we asked an
analyst involved in the routine processing of the
Radiales database to gate these 50 files (we refer to
this analysis as re-analysis data). The counts were
quite similar to the external analyst (Fig. 5E,F) and
different to the routine database counts (data not
shown). The error was higher for HNA at the lowest
counts. We tested for significant differences in the
counts for each intercomparison in Fig. 5 using
paired t-tests. For HNA bacteria, counts obtained by
the external analyst and the re-analysis counts were
not significantly different (Fig. 5E: t-test, t = −1.47,
df = 49, p = 0.15). However, for the other 2 cases,

 significant differences were found
(Fig. 5A: t-test, t = −20.51, df = 48, p <
0.001; Fig. 5C: t-test, t = −10.59, df =
49, p < 0.001). A different tendency
was found for the LNA subgroup with
significant differences between counts
by the external analyst and the re-
analysis (Fig. 5D: t-test, t = 2.7, df = 49,
p = 0.009; Fig. 5F: t-test, t = −7.43, df =
49, p < 0.001), and no differences
between automatic and manual gating
(Fig. 5B: t-test, t = 1.88, df = 47, p =
0.07).

To obtain a quantitative estimate of
the influence of the analyst, we tested
the variation in the counts obtained by
6 experts. When the same flow cytom-
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etry file was analyzed by different experts the coeffi-
cient of variation between the HNA and LNA bacter-
ial groups counts was relatively high, with values
around 10 to 20%. For the beads counts, the variabil-
ity dropped to around 5% (Fig. 6). Similar to Fig. 5,
the variation between experts was higher for samples
with lower abundance of cells for beads and HNA
groups; however, we did not observe this effect for
the LNA subgroup.

Finally, to study whether the differences between
methods were ecologically significant, we calculated

a mean annual cycle using all avail-
able surface data at station 3. Seasonal
cycles of total bacterial abundance ob -
tained by manual and automatic meth-
ods were similar (Fig. 7A). However,
when the contribution of HNA cells (%
HNA) was examined, some differ-
ences were found (Fig. 7B) yet show-
ing a similar pattern. Fig. 7C,D shows
the seasonal cycles of mean LNA−
HNA cell biovolume. Differences were
higher for the HNA group (13%) than
for LNA (1.4%), but the pattern was
quite similar.

DISCUSSION

Recently, several automatic tech-
niques for flow cytometry data process-
ing have been widely applied in med-
ical fields (Le Meur 2013, Robinson et
al. 2012, Aghaeepour et al. 2013). How-
ever, in microbial ecology, experts still
rely largely on manual gating of the
FCS files. One peculiarity of flow cy-
tometry samples of bacterioplankton
when we process samples is the high
variability between samples hampering
automated analysis. Al though some of
these automated methods have been
applied to analyze planktonic groups
(Andreatta et al. 2004, Ribalet et al.
2011), these methodologies are not
able to cope with such dynamic fea-
tures, due to the presence of noise or
variability of the community composi-
tion, usually en countered in large-
scale studies. For example, Ribalet et
al. (2011) used a set of pre-defined win-
dows where picoplankton populations
should lay and the method detected the

spatial dynamics of each group of bacterioplankton
within each window. Therefore, their method is not
readily applicable whenever the position in the cy-
togram of each group changes. This is frequently the
case in large datasets. Andreatta et al. (2001) used im-
age analysis to identify subgroups of bacterial popula-
tions in FCS files, but again, manual gates were re-
quired to distinguish each bacterial population from
the background noise.

Another special feature of bacterioplankton FCS
files is that the number of subgroups and the bound-
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aries between them are not always clearly defined.
Frequently, it is even hard to identify them manually.
Usually, it is easy to differentiate between the 2 wide-
spread groups of bacterioplankton assessed here
(HNA and LNA), but often other subgroups are also
present. In addition, the presence of outliers in the

 cytogram is quite common and not all automatic
methods respond adequately to the presence of a sig-
nificant contribution of them (Luta 2011). The model-
based clustering used in the flowClust algorithm is ro-
bust to the presence of outliers (Lo et al. 2009, Finak et
al. 2010). Another interesting feature of this method is
the ability to detect non-elliptical population shapes,
such as the HNA cell distribution (e.g. cluster 3 in
Fig. 1) in contrast to the more circular LNA bacteria
cell distribution (e.g. cluster 1 in Fig. 1), as is usually
the case in aquatic samples (Bouvier et al. 2007). Al-
though other automated techniques are unbiased for
population shape, they are not able to detect overlap-
ping groups (Naumann & Wand 2009, Naumann et al.
2010, Sugár & Sealfon 2010, Ge & Sealfon 2012).
 Finally, other methods cannot be applied to large
datasets due to computational efficiency (Zare et al.
2010). In addition, the flowClust algorithm is provided
as open software and it is thus free to use and modify.

The main aim of this work was to apply the flow-
Clust algorithm to develop an automatic and stan-
dardized method for processing flow cytometry
analysis of heterotrophic bacterioplankton groups
that could be routinely adopted as an alternative to
manual processing. We tested it under a real-case

scenario using a large dataset and
compared the results with the tradi-
tional, manual gating technique. We
used a database consisting of 9 yr of
monthly sampling of continental shelf
bacteria from the surface down to
150 m, characterized by a wide range of
natural variability at the seasonal and
spatial (inshore− offshore and vertical
gradients) scales (Calvo-Díaz & Morán
2006, Morán & Calvo-Díaz 2009).

As we have explained in the ‘Re sults’
section, automatically clustered bacte-
rioplankton groups were aggregated
into 2 categories, HNA and LNA, to be
able to compare them with the manual
method. Manual gating is more limited
for identifying bacterioplankton sub-
groups or even cyanobacteria, espe-
cially when groups such as Proch clo -
roccus overlap with the HNA group
in natural bacterioplankton samples.
Nevertheless, the methodology we pro-
pose is able to detect a higher number
of bacterioplankton groups and sub-
groups as there is no a priori restriction
on the number of groups that can be
detected. However, we recommend
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visual inspection of the flowClust output to under-
stand the results of the automatic clustering. For exam-
ple, in open-ocean surface samples where Proch clo -
roccous populations frequently partially fall within
the HNA cell cluster, our methods detected them
quite accurately (data not shown). Nevertheless, in
these types of conditions both in vivo and stained
samples are usually analyzed, so it would be easier to
automatically gate both samples in a similar way to
how it is done with manual gating to differentiate
autotrophic and heterotrophic cells.

We have shown that the subjectivity of the analyst
can introduce around 10 to 20% of variability in the
manual gating of bacterioplankton samples (Fig. 6).
The consequences of this variability are important, es-
pecially in large-scale studies where data from differ-
ent analysts are combined. An automatic ap proach
such as the one we have developed certainly does bet-
ter at comparing different datasets, producing more
consistent counts. Despite its importance, the subjec-
tivity of manual gating has not been quantified previ-
ously. We have shown that not only different analysts
reach different counts due to this subjectivity error
but also the same expert can introduce some bias due
to fatigue when analyzing a large number of samples.

The quality of the samples analyzed by flow cytom-
etry is important for the results of the automated ana -
lysis. Similarly, when gating is done manually, sam-
ples are analyzed more effectively if all the groups
are centred with the adequate number of cells per
sample and without much noise. In testing the method,
major differences between automated and manual
counts were due to the presence of these problematic
files. It is therefore important to follow recommenda-
tions (Marie et al. 1997, Gasol & del Giorgio 2000) on
using bacterioplankton optimal flow rates and num-
ber of cells per sample. At higher rates, populations
begin to overlap and it is more difficult to set limits
between them, even automatically.

Despite previous filtering being applied to the
data, the method is relatively fast (<5 min per sam-
ple). The processing time for our method is similar to
the time spent processing FCS files manually, but the
clustering is unsupervised and the time required is
only computing time and not analyst time. However,
we strongly recommend a visual check of the analy-
sis output. This method has the advantage of being
more objective and reproducible. It is possible to
reduce the analysis time using a server with multiple
processors, as we did. Moreover, the fact that the
FCS files are read using the flowCore package
allows access to the information on each cell in the
file. This information allows us to know the distribu-

tion of any group and thus improves the subsequent
statistical treatments. We propose that the beads
should be analyzed before the clustering technique
using another method because beads measurements
are required to correct for the deviations that cytome-
ter lasers can experience with time (Shapiro 1995).

FlowClust provides an effective tool for gating the
populations, mainly for counts. Significant differences
were still found in the biovolume estimates (with an
empirically determined calibration between SSC and
cell diameter (Calvo-Díaz & Morán 2006)), especially
for the HNA group (Fig. 7B), which was 13% higher.
While the LNA group has a more or less spherical
population shape, the HNA group is usually more ir-
regular with a non-spherical shape. Consequently,
the measure of central tendency that is used to calcu-
late the mean size introduces more variability for the
HNA case (Fig. 7B−D). % HNA values obtained by
the automatic method (Fig. 7C) are usually lower than
the % HNA obtained by manual gating, although the
distinct seasonal pattern of maxima in April and min-
ima in July (Calvo-Díaz & Morán 2006, Morán &
Calvo-Díaz 2009) was well reproduced. This is due to
both an underestimation of the abundance of HNA
cells and an overestimation of LNA cells by the auto-
matic method (Fig. 4). These methodological devia-
tions between the manual and automatic analyses can
result in different ecological patterns in cell size and
biomass estimates. These differences become more
important in large-scale studies or when we compare
different databases. In these type of studies, the im-
portance of using objective and standardized methods
of clustering in microbial ecology becomes critical.

In summary, our methodology is a powerful tool to
analyze groups and subgroups of heterotrophic bac-
terioplankton, allowing the processing of thousands
of files, quickly and with reduced error. The com-
puter-based processing of the FCS files results in the
full automation of sample analysis by flow cytometry.
It increases the efficiency and quality of the results
and makes them comparable with other data from
large-scale studies. The technique could be easily
adapted to the analysis of phytoplankton samples or
even extended to the analysis of viruses.
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Appendix. Correlation between the output of manual (y-axis) and automatic (x-axis) methods using 50 files from the
Radiales database. The upper panels show the relationship for counts of (A) high nucleic acid content (HNA) bacteria
and (B) low nucleic acid content (LNA) bacteria, while the lower panels show the comparison between median side 

scatter of (C) HNA bacteria and (D) LNA bacteria
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