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Our main concern in this work is to show how higher shell admixtures affect the spectrum of a
Q ·Q interaction. We first review how, in the valence space, the familiar SU(3) result for the energy
spectrum can be obtained using a coordinate space Q·Q interaction rather than the Elliott one which
is symmetric in r and p. We then reemphasize that the Elliott spectrum goes as L(L+1) where L is
the orbital angular momentum. While in many cases this is compatible with the rotational formula
which involves I(I+1), where I is the total angular momentum, there are cases, e.g. odd-odd nuclei,
where there is disagreement. Finally, we consider higher shell admixtures and devise a scheme so as
to obtain results, with the Q · Q interaction, which converge as the model spaces are increased. We
consider not only ground state rotational bands but also those that involve intruder states.

I. INTRODUCTION

There have been studies in the past of the quadrupole-quadrupole (Q · Q) interaction in multishell spaces using
the non-compact symplectic groups [1,2]. Most of the focus of these studies has been on the ground state rotational
bands, the γ vibration bands (K = 2), the giant quadrupole resonances and the effective charges. In this work we
wish to discuss the problems of extending the above studies to other topics such as intruder states, odd-odd nuclei,
etc. We feel that there has not been any clear discussion of how higher shell admixtures affect the overall low lying
spectrum in a given nucleus, nor of how the low lying bands of odd-odd nuclei are described with this interaction.
Also we have recently shown how to restore Elliott’s SU(3) results [3] with a coordinate space quadrupole-quadrupole
interaction rather than one that is symmetric in position and momentum. We will show that this is of more than
academic interest. We also discuss differences between Elliott’s SU(3) approach [3–6] and the rotational model. The
problem of convergence with a Q · Q interaction is discussed in the last section.

The Q · Q interaction has a long history, the early part of which can be found by reading excerpts from the text
book by A.M. Lane [7], and for recent applications the book by I. Talmi is recommended [8].

Following the notation of Golin and Zamick [9] we define the multipole-multipole interaction (including isospin) as

V (r) = −χ [(2L + 1) (2T + 1)]
1/2 [

Y L (1)Y L (2)
]0

f (r1) f (r2)
[

δT,1 [τ (1) τ (2)]
0
+ δT,0

]

(1)

where −
√

3 [τ (1) τ (2)]
0

= τ (1) · τ (2) .
The detailed expressions for the unnormalized antisymmetrized matrix elements of this interaction are given in the

above mentioned work of Golin and Zamick [9]. The expression is fairly complicated, involving Racah coefficients.
However the expression for the direct part of the particle-hole matrix element (ph) for a ph state with total angular
momentum I and isospin T ′ is much simpler. The expression is proportional to δI,LδT,T ′ and indeed there is no other
I, T ′ dependence. Thus, if one ignores the exchange part of the interaction one has a simple schematic interaction.
Thus, as Lane describes [7], we can use this interaction to describe collective vibrational spectra.

The pairing plus quadrupole model was very popular and has been used by Kisslinger and Sorensen [10], Baranger
[11] and Ikeda et al. [12] around 1960, especially to describe the first excited 2+ state in vibrational nuclei. It can also
be applied to giant quadrupole resonances as emphasized by Bohr and Mottelson [13]. Here, the schematic model of
Brown and Bolsterli [14] can be used. One can also couple a particle to the giant quadrupole resonance and get an
E2 effective charge. If one uses the selfconsistent strength for χ as given by Bohr and Mottelson one finds that the
isoscalar polarization charge δep + δen is equal to the bare charge in an RPA calculation.

In a different direction Elliott has shown [3] that a suitably defined Q ·Q interaction leads to rotational spectra in an
open shell nucleus with single-particle states defined by an isotropic three-dimensional harmonic oscillator potential.
His interaction is

VE = −χ

2

∑

ij

(

Qr + Qp

2

)

·
(

Qr + Qp

2

)

(2)
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Note that it includes i = j terms and that his quadrupole operator is symmetric in position and momentum and this
ensures that there will be no mixing of major shells. This will be discussed in more detail later. Elliott noted that
the Casimir operator for the SU(3) group is

C̃2 = Q · Q − 3L · L (3)

From this he obtained the famous expression for the energy levels for a rotational band for states with SU(3) quantum
numbers λ, µ

〈VE〉 = χ̄
[

−4
(

λ2 + µ2 + λµ + 3 (λ + µ)
)

+ 3L (L + 1)
]

(4)

For fixed λ, µ one gets the spectrum of a rotational band, but going as L (L + 1) rather than I (I + 1).
We thus see that the Q · Q interaction has been used to make more transparent how nuclear collectivity arises

despite the fact that the shell model with its implications of single particle motion seems to work. It should be added
that one can regard Q ·Q as the long range part of a more realistic interaction. This has been shown by many authors
and we recommend Talmi’s book [8] for a nice detailed derivation of this.

II. MOMENTUM DEPENDENT Q.Q INTERACTIONS AND THE STABILITY PARADOX

It is of general interest to know how momentum dependent interactions affect nuclear deformations. For example
the Skyrme interaction contains the momentum dependent terms k′ 2δ (r1 − r2) + δ (r1 − r2) k2 and k′·δ (r1 − r2)k
[15–17]. The presence of those terms leads to an effective mass m∗ < m in the nucleus. The rationale given to
those momentum dependent terms is that they simulate the finite range nature of the nucleon-nucleon interaction.
However, since the Skyrme interactions are phenomenological they may be simulating more fundamental momentum
dependence of the nucleon-nucleon interaction.

The effect of the momentum dependent terms is known for the energy of the isoscalar giant quadrupole resonance
[18,13]

E∗ =
√

2h̄ω

√

m

m∗
. (5)

The effect on the ground state deformations is not so well known.
Another example of momentum dependence is the Hamiltonian used by Elliott to obtain SU(3) results [3]. This

Hamiltonian is symmetric in position and momentum coordinates

H =
∑

i

(

p2

2m
+

1

2
mω2r2

)

− χ

2

∑

ij

[

Qr + Qp

2

]

·
[

Qr + Qp

2

]

, (6)

Qr
µ = r2Y2,µ (Ωr) ; Qp

µ = b4p2Y2,µ (Ωp) ;
(

b2 = h̄/mω
)

. (7)

We also define for convenience

QE =
1

2
(Qr + Qp) . (8)

The momentum terms prevent ∆N = 2 mixing between major shells. Although the original intention for this
Hamiltonian is for valence nucleons in a given major shell, let us use it here as an extreme example of a momentum
dependent Hamiltonian which is symmetric in r and p and perform a Hartree-Fock calculation with it.

In general, for any interaction in a deformed Hartree-Fock calculation the condition for stability can be formulated
as follows [19]

〈

∑

i

(Qp)

〉

= 0 , (9)

where Qp is the quadrupole moment operator in momentum space

Qp = b4

√

5

16π

(

2p2
z − p2

x − p2
y

)

. (10)
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However, since the Hamiltonian is symmetric in r and p, so is the Wigner distribution function [20]. This leads to
the conclusion 〈∑i Qr〉 = 0, i.e., the expectation value of the usual quadrupole moment also vanishes. But then this
goes against the common belief that the Elliott model supports rotational motion.

A way out of this dilemma is to do, as we have done, go back to the r space interaction Qr · Qr and note that we
can still get the SU(3) results by including in the single-particle energies, not only the contribution from the i = j
term in the sum

1

2

∑

i,j

Qr(i) · Qr(j)

but also the particle-core interaction [21,22]. In these references it was noted that Qr ·Qr and QE ·QE do not give the
same results in a valence space even if one uses harmonic oscillator wave functions unless the particle-core interaction
is included. We can write

1

2

∑

ij

Q (i) · Q (j) =
∑

i<j

Q (i) · Q (j) +
1

2

∑

i

Q (i) · Q (i) . (11)

For the first term one does get the same result for Q = QE and Q = Qr in a given N shell. However this is not the
case for the second i = j term. Using Q = Qr one only gets 2/3 of the value obtained with Q = QE . We have however
shown [21,22] that the remaining 1/3 comes from the (exchange) interaction of the valence nucleon with the core.

Just to clarify things, the diagonal part of Qr · Qr and the particle-core interaction are the terms that give the
single particle splittings ∆N(ℓ,ℓ′) for different ℓ values in a major shell. In order to get the SU(3) results of Elliott
one must have such a single particle splitting as well as the two-body Q ·Q interaction between the valence nucleons.
The main difference then between QE · QE and Qr · Qr is that with the former all the single particle splitting comes
from the i = j part of QE · QE , whereas with Qr · Qr two thirds comes from the i = j part and one third from the
particle-core interaction. In more detail the expressions for the single particle splitting between Nℓ and Nℓ′ states
are [22]

∆1
N(ℓ,ℓ′) = 2χ̄ [ℓ (ℓ + 1) − ℓ′ (ℓ′ + 1)] ,

∆2
N(ℓ,ℓ′) = χ̄ [ℓ (ℓ + 1) − ℓ′ (ℓ′ + 1)] ,

where the ∆1
N(ℓ,ℓ′) comes from the i = j part of Qr · Qr and ∆2

N(ℓ,ℓ′) comes from the particle-core interaction.

III. I(I+1) VS L(L+1) FOR ROTATIONAL BANDS

In this Section we stay in the valence space and make a comparison of Elliott’s SU(3) results [3–6] with results of
the rotational model [13]. We feel that it has not been sufficiently emphasized that one finds cases where these two
models yield different results for the behavior of rotational bands.

In the rotational model the formula for the energy of a state in a rotational band with total angular momentum I
is given by [13]

EI = E0 +
h̄2

2I
[

I (I + 1) + δK,1/2 (−1)
I+1/2

(I + 1/2)a
]

(12)

where a is the decoupling parameter given by a = −
〈

K = 1/2 |J+|K = 1/2
〉

and where if |K〉 =
∑

j Cj,Kφj,K then
∣

∣K̄
〉

=
∑

j Cj,K (−1)
j+K

φj,−K .

As noted by J.P. Davidson [23] for an odd-odd nucleus with Kn = ±1/2, Kp = ∓1/2, (K = 0), there is an

additional term (−1)I+1 apanδK,0

(

δKp,1/2δKn,−1/2 + δKp,−1/2δKn,1/2

)

(See also a recent review by Jain et al. [24]).
For even-even nuclei, and for odd-even and even-odd nuclei with K 6= 1/2, one gets the familiar I (I + 1) spectrum
[13].

It is generally thought that the Elliott SU(3) model also gives an I (I + 1) spectrum. A careful reading of the
papers however shows that one really gets an L (L + 1) spectrum, where L is the orbital angular momentum [3–6].
In this work we wish to point out that to fully convey the similarities and differences of the Elliott model and the
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rotational model, one should consider not only even-even nuclei, but also even-odd (odd-even) and especially odd-odd
nuclei. The latter are usually not considered in the standard textbooks.

The point we make in this section is that the spectrum in the SU(3) model is indeed L (L + 1) in all of the above
instances. This leads to several cases:

(a) Rotational bands where the spin S is equal to zero. In this case I = L and one gets an I (I + 1)
spectrum.

(b) K = 1/2 bands of even-odd (odd-even) nuclei. Here again the SU(3) spectrum is of L (L + 1) type. The
Elliott formula is the same as the rotational formula [1] including the decoupling term evaluated in the asymptotic
limit. Again, we have consistency between the two approaches.

(c) Odd-odd nuclei. Here again the SU(3) spectrum is L (L + 1). There are some cases here where one gets a
behavior which is not consistent with the rotational formula.

We have performed shell model calculations with all possible configurations in a given major shell using the inter-
action

∑

i<j Q(i) · Q(j) where, in order to get Elliott’s SU(3) results we must, as mentioned in Section II, also add
single-particle splittings. Therefore, in the 1s − 0d shell we have ǫ0d − ǫ1s = 18χ̄ and in the 1p − 0f shell we have
ǫ0f − ǫ1p = 30χ̄ , where χ̄ =

(

5b4/32π
)

χ with b the oscillator length parameter b2 = h̄/mω [21,22].
The same results can of course be obtained from the Elliott SU(3) formula for the energies given in Eq.(4)
One has the further rules [3–6]:
Let λ̄ be the maximum of λ and µ, and µ̄ the minimum. Then KL = µ̄, µ̄ − 2, ..., 1 or 0 and

• L = KL, KL + 1, ..., KL+ λ̄ when KL 6= 0;

• L = λ̄, λ̄ − 2, ..., 1 or 0 when KL = 0.

A. A brief look at K = 1/2 bands

Let us be specific and discuss 19F and 43Sc. We consider in each case three valence nucleons beyond a closed shell.
In 19F the particles are in the 1s−0d shell, whereas in 43Sc they are in the 1p−0f shell. The energy levels of the lowest
bands are given in Table I for the two cases. The results for the two nuclei are striking but different. In 19F, the lowest
state is a I = 1/2+ singlet, and at higher energies we get degenerate pairs (3/2+, 5/2+), (7/2+, 9/2+), (11/2+, 13/2+).
In 43Sc the ground state is degenerate, and the degenerate pairs are (1/2−, 3/2−), (5/2−, 7/2−), ..., (17/2−, 19/2−).

If we look at the rotational formula, we find that these results are consistent with a decoupling parameter a = +1
for 19F and a = −1 for 43Sc. It is easy to show that these are precisely the a−values one obtains with asymptotic
Nilsson wave functions. In both cases the odd particle will be in a Λ = 0, Σ = 1/2 state in the asymptotic limit. From

the definition of K̄, the state
∣

∣

∣
Λ = 0 Σ = 1/2

〉

can be shown to be equal to −(−1)π |Λ = 0 Σ = −1/2〉 , where (−1)π

is (+1) for an even-parity major shell and (-1) for an odd-parity one. Hence:

a = (−1)
π 〈Σ = +1/2 |J+|Σ = −1/2〉 = (−1)

π
(13)

It has long ago been noted by Bohr and Mottelson [13] that a = +1 corresponds to weak coupling of the odd
particle to I = 0+, 2+, 4+, ... states, whereas a = −1 corresponds to weak coupling to I = 1, 3, 5 states. In the context
of the SU(3) model, we would say that the 19F states have an L(L + 1) spectrum with only even L′s allowed, and
that 43Sc has an L(L + 1) spectrum with only odd L′s allowed. It should be emphasized that the purpose of Table
I is to compare the results of the Q · Q interaction with the rotational model. To compare with experiment, more
realistic interactions including in particular spin-orbit may be required. In this respect, the results in Table I can be
considered as the asymptotic limit of large deformation.

At any rate, we have shown that the Q · Q interaction gives the same results for these two K = 1/2 bands as does
the rotational formula with asymptotic Nilsson wave functions.

Although it is not our intention in this work to fit experiment, rather we wish to work out the consequences of our
model, we cannot resist discussing an interesting result for 19F. There is a beautiful example of weak coupling in 19F
corresponding to a = +1, but it is not the positive parity band discussed above but rather a negative parity band
corresponding to a 4-particle 1-hole configuration. This has been discussed by Nazarewicz et al. [25]. In the asymptotic
limit the proton hole would be in the Nilsson orbit [101] 1

2 which would yield a = 0. However, the dominance of the
p1/2 due to spin-orbit interaction causes a to be very close to one. The spectrum looks like the weak coupling of a

p1/2 hole to the states of the ground state rotational band of 20Ne.
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B. Odd-odd nuclei, e.g. 22Na

In Table II we show a fairly detailed list of energy levels for the odd-odd nucleus 22Na obtained with the Q · Q
interaction. We show T = 0 and T = 1 states in separate columns. We use the same parameters as in 19F just to
bring out some similarities. If one is interested in a best fit, one should of course have an A dependence in χ.

An striking feature in this table is that many states with diverse IπT assignments are degenerate. This is due to
the prevailing SU(4) ⊗ SU(3) symmetry. We shall come back to this point at the end of this section but first we
compare with the rotational model.

We have underlined T = 0 and T = 1 rotational bands, and will now discuss them in more detail. Note that the
ground state consists of two degenerate states, one with I = 1+ T = 0 and the other with I = 0+ T = 1. Both states
have L = 0 and the simple spin-independent interaction gives the same energy for S = 0 and S = 1. Let us first look
at the underlined T = 1 states. The ground state is I = 0+, the 2+state is at 1.588, the 4+ is at 5.293, etc. If we
follow the rotational sequence I = 0+, 2+, 4+, ... we see a simple rotational behavior:

E(I) − E
(

0+
1

)

= AI (I + 1) ; with A =
h̄2

2I =
E (2+) − E

(

0+
1

)

6

There is nothing new here.
The excitation energies of the underlined T = 0, I = 1+, 2+, 3+, ..., 10+ states follow the sequence

E∗(I) ≡ E(I) − E(1+
1 ) = AI(I + 1); with A =

E (2+) − E
(

1+
1

)

6

However the rotational model formula (Eq. (12)) would give a different energy level spacing

E∗(I) ≡ E(I) − E(1+
1 ) = A′ [I(I + 1) − 2] ; with A′ =

E (2+) − E
(

1+
1

)

4
,

which is not followed by the above mentioned energy levels in the table. Thus, for the case of T = 0 states in odd-odd
nuclei we get a clear difference between the rotational formula and SU(3).

We gain further insight by examining the degeneracies associated with the T = 0 underlined states in Table II, i.e.,
those with energy AI(I + 1). The even I states up to I = 8 are doubly degenerate whereas the I = 10 and the odd-I
states are singlets. This suggests that there are two bands for which the states with the same I values are degenerate.
One band is a K = 2 band with all values of I from 2 to 10, and there is nothing anomalous about it. The other band
consists of states of angular momentum 1,2,4,6 and 8. For the latter band, the orbital angular momentum of the states
are 0,2,4,6 and 8 respectively, and they all have S = 1. Their energies can be fit to the formula E∗(I) = AL(L + 1)
rather than AI(I + 1), such that only even L contribute.

Let us now discuss on the basis of SU(3) the degeneracy observed in Table II, limiting the discussion to T = 0 and
T = 1 states (similar arguments would follow for higher isospin states). For 22Na we have 3 protons and 3 neutrons
in the N = 2 shell. The ground state will correspond to maximal spatial symmetry in coordinate space, i.e., to the
(λ, µ) = (8, 2) representation of the [f ] = [4, 2] partition. The possible KL, L values are

• KL = 0 : L = 0, 2, 4, 6, 8

• KL = 2 : L = 2, 3, 4, 5, ..., 10

Since the energy does not depend on KL (see Eq.(4)), states with equal L−values and different KL are degenerate.
In addition, antisymmetry in spin-isospin space demands that S = 0 when T = 1, and S = 1 when T = 0. Therefore,
T = 1 states with I = L, and T = 0 states with I = L, L + 1, L − 1 will be degenerate. Thus for the ground state
[4, 2] (8, 2) representation we find with the same excitation energy E∗ [L] = 3χ̄L (L + 1) , the following states:

• For L = 2, 4, 6, 8

– two states, each with T = 0 and I = L, L ± 1, and

– two states, each with T = 1 and I = L,

• For L = 3, 5, 7, 9, 10

– one state with T = 0 and I = L, L ± 1, and

5



– one state with T = 1 and I = L.

This explains why the state with excitation energy 1.588 MeV (i.e., L = 2) appears twice for T = 0 and I = 1, 2, 3
and twice for T = 1 and I = 2. The state with excitation energy 3.176 MeV (i.e., L = 3) appears once with
T = 0, I = 2, 3, 4 and once with T = 1, I = 3. The next state of this representation is at 5.293 MeV (i.e., L = 4), and
according to the above discussion should appear twice for T = 0 and I = 3, 4, 5 and twice for T = 1 and I = 4.

Surprisingly though there are more degeneracies at 5.293 MeV, namely one T = 0 state with I = 3 and three
T = 1 states with I = 2, 3, 4. This is due to an additional degeneracy of [4, 2] (8, 2)L = 4 with the [4, 1, 1] (9, 0)L = 3
state that corresponds to total symmetry in spin-isospin space (i.e., T = 0, S = 0 or T = 1, S = 1). The allowed
KL, L values in this representation are KL = 0, L = 1, 3, 5, 7, 9, and the excitation energy for a given L−value,
E∗ [(90)L]−E∗

GS [0] = χ̄ [24 + 3L (L + 1)] , is shared by states with T = 0, I = L and with T = 1, I = L, L±1. Thus the
states that belong to this representation for L = 1 are the states at 2.647 MeV with T = 0 I = 1 and T = 1 I = 0, 1, 2,
while for L = 3 we get the states at 5.294 MeV previously discussed with T = 0 I = 3 and with T = 1 I = 4, plus
the states T = 1 I = 2, 3. The next states with L = 5 (E∗ = 10.055) appear for T = 0 I = 5, T = 1 I = 4, 5, 6,
and are degenerate with lower angular momentum states corresponding to KL = 1, L = 2 in the (6, 3) representation
(The L = 1 states in this last representation have 9 MeV excitation energy). By the same token one can explain the
remaining energy levels in the table. To the best of our knowledge there has been no discussion previously of these
additional degeneracies corresponding to different values in different representations.

Experimentally the lowest band in 22Na has K = 3. In the Nilsson scheme when we fill the lowest N = 2 K = 1/2
level we reach 20Ne. To form 22Na we put the odd neutron and odd proton into the K = 3/2 level and the Gallagher
Moszkowski rule favors K = 3 over K = 0 for the lowest band [26]. However, with pure Q ·Q as seen in Table II, the
lowest I = 3+ state comes out at 1.588 MeV of excitation. Clearly, the limitations of the SU(3) formula for energy
levels are more apparent when one examines the spectra of odd-even and odd-odd nuclei rather than limiting oneself
to even-even nuclei. The main deficiency is the absence of a spin-orbit interaction in the SU(3) model. For even-even
nuclei the lowest lying levels are dominantly S = 0 states but this is not the case for T = 0 states of odd-odd nuclei.

IV. CONVERGENCE WITH A Q.Q INTERACTION

We now come to the last topic of this work – how to achieve convergence with a Q ·Q interaction. When we remove
the momentum dependent terms from Q ·Q and go back to the r space Qr · Qr, we can mix major shells. Therefore,
this coordinate space interaction combines the advantages of the algebraic Elliott’s model, with the possibility of
studying intruder states and admixtures of higher shells in the ground state.

There is a general belief that if we go to larger and larger spaces the results will diverge. This is because the Qr ·Qr

interaction increases its strength as the distance between two nucleons increases. However, we wish to show in this
work that we can get around this problem. Just as people do all the time in G-matrix calculations, we can modify
the interaction as we change the model space. If we allow up to nh̄ω excitations in the model space we can make the
strength of the Qr · Qr depend on n

V = −χn

2
Qr · Qr .

A simple scheme for getting convergence is to demand that the energy of the I = 2+
1 state in an open shell nucleus

comes out correctly (i.e., agrees with experiment) for each n. We have applied this scheme to the I = 0+, 1+ and 2+

(all T = 0) states in 8Be. These are shown in Tables III, IV, and V, respectively. In each table the results are given
in a 0h̄ω space (n = 0), (0 + 2)h̄ω space (n = 2), and (0 + 2 + 4)h̄ω space (n = 4). In order to get the I = 2+

1 state
to come out correctly we had to steadily decrease χ with increasing n. The values for n = 0, 2, and 4 are respectively
0.5216, 0.4119, and 0.3369 MeV fm−4.

The calculations have been performed using the OXBASH program [27]. In this program the effects of spurious
states are removed using the Gloeckner-Lawson method [28]. In this method the spurious states are pushed up to a
very high energy. This is done by diagonalizing the modified Hamiltonian for a system of A nucleons

H ′ = HSM + λCM

[

P2

2Am
+

1

2
mAω2R2 − 3

2
h̄ω

]

(14)

where HSM is the usual shell model Hamiltonian and P and R are the position vectors for the center of mass. By
making λCM very large, the spurious states corresponding to center of mass motion will be pushed up to a very high
energy. They will be well separated from the lower lying physical states.
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Let us first discuss the calculations up to 2h̄ω, the results of which are given in the tables III, IV and V. These
excitations are of two types, we can either excite one particle through 2 major shells (1p− 1h) or we can excite two
nucleons through one major shell (2p− 2h). The (1p − 1h) excitations can be regarded as giant resonance states built
upon the valence states as have indeed been studied in the context of symplectic symmetry [2]. The giant resonance
states are generally at high excitation energies but their admixtures into the valence states can lead to important
effects. For example, the isoscalar E2 effective charge needed to fit experiments in valence space calculations is
about a factor two larger than the bare charge and this can be understood in terms of small admixtures of the 2h̄ω
(1p − 1h)states into the basis valence states.

We next consider the 2p − 2h states. In some nuclei some states of this type come much lower in energy than the
2h̄ω estimate. They may intertwine with low lying valence states. In such cases these 2p−2h states or more generally,
np − nh states, are called intruder states. In previous calculations [29] we have shown that there are such low lying
intruders in 10Be, 12C and 16O, but actually not in 8Be.

The reason that in some nuclei the intruders come low in energy and in others they do not, can be understood
in the context of the Nilsson model. The optimum way to have a low lying intruder is to lift two nucleons from a
Nilsson orbit whose energy increases with deformation (upgoing level) and to put them into a Nilsson orbit whose
energy decreases with deformation (downgoing level). For 10Be, 12C and 16O we can remove nucleons from upgoing
levels in the 0p−shell, but in the case of 8Be the valence levels are depleted and we would have to remove nucleons
from a downgoing level.

Before discussing the energy levels we will make some comments about the occupancies. It had been previously
noted by Fayache et al. [30] that if one allows only 2h̄ω admixtures with the Q · Q interaction then the shell model
matrix reduces into two parts. First, we have states which are admixtures of valence states (no particles excited to
higher shells) and states in which one nucleon is excited through two major shells, and second we have states in which
two particles are excited through one major shell. There is no mixing in between the (0p − 0h + 1p − 1h) states and
the 2p − 2h states. This is because of the ’parity’ selection rule that Q · Q cannot excite two nucleons from an even
(odd) parity major shell to an odd (even) major shell.

If we look at Tables III, IV, and V under the columns (0 + 2) h̄ω we see several states which have 100% 2h̄ω
configurations. These are precisely the 2p − 2h states which are uncoupled from the rest. When we allow 4h̄ω
admixtures the 2p − 2h states admix with states in which one nucleon is excited through one major shell and the
other through three major shells. We therefore no longer get 100% 2h̄ω for these states, but they are still uncoupled
from states which have mainly valence configurations.

In more detail, for I = 0+ in Table III, in the (0 + 2) h̄ω column the ground state has 21.77% 2h̄ω admixtures.
The next four states have smaller 2h̄ω admixtures, but the state at 30.951 MeV has an 88.89% admixture. This is
clearly a state which is dominantly a 1p− 1h state in which a nucleon has been excited through 2 major shells. This
state can be easily distinguished from the 2p − 2h states at 32.214 MeV and 34.409 MeV. The latter have 100% 2h̄ω
configurations. As mentioned before there is no mixing, at the 2h̄ω level between the (0p − 0h + 1p − 1h) states and
the 2p − 2h states via a Q · Q interaction.

States with 100% occupancy are also seen in Tables IV and V corresponding to I = 1+ and 2+. These all lie in the
energy range 30-35 MeV, and are clearly 2p− 2h states. As mentioned before there are no low lying intruders in 8Be.
These 2p − 2h states are close in energy with the (dominantly) 1p− 1h states for 8Be.

When we go to the (0 + 2 + 4) h̄ω column the results are not so striking – we do not see 100% of any configuration.
But we can still distinguish the (0p − 0h + 1p − 1h) states from the (2p − 2h + 2p − 2h⊗ 1p − 1h) states. For the
latter the sum of the 2h̄ω + 4h̄ω occupancy should be 100%. For the I = 0+ states in Table III this is not the case
for the state at 26.225 MeV (71.5%) but it is the case for states at 32.085 MeV and 34.200 MeV. Similar states can
be found for I = 1+ and 2+, i.e. states where the 2h̄ω + 4h̄ω occupancy is 100%. This confirms that with Q · Q one
gets a separation of different classes of states.

We now discuss the energy levels as a function of n, the number of h̄ω excitations. While there are rather large
deviations in going from n = 0 to n = 2, there is excellent convergence for many states in comparing n = 2 and
n = 4. The percentage deviation for the I = 0+ case for the first 4 states (up to about 20 MeV) are respectively
0.77, 2.22, 2.75, and 3.93%. For the next state, which is at 26.225 MeV in the (0+2+4)h̄ω calculation, the percentage
deviation is large 18.02%. But if we examine this state we see that it is mainly a 2h̄ω excitation state, not present
in the 0h̄ω calculation. It corresponds to a 1p− 1h excitation through 2 major shells, as opposed to many other 2h̄ω
states which correspond to two nucleons being excited through one major shell.

We see that the convergence between (0 + 2) h̄ω and (0 + 2 + 4) h̄ω holds to surprisingly high energies. For example
for I = 1+ at the (0 + 2) h̄ω energy level there are five consecutive 2p − 2h states between 30.722 MeV and 34.503
MeV. The % deviations in the energies relative to the (0 + 2 + 4) h̄ω calculations are respectively 10.13, 9.19, 4.84,
2.01 and 1.87%.
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Table I. Energy levels (MeV) of excited states corresponding to the K = 1/2 ground state bands in 19F and 43Sc
with the −χQ · Q interaction.

19F a 43Sc b

Iπ E∗ Iπ E∗

(1/2)+ 0 (1/2)− 0

(3/2)+ 1.588 (3/2)− 0

(5/2)+ 1.588 (5/2)− 0.679

(7/2)+ 5.295 (7/2)− 0.679

(9/2)+ 5.295 (9/2)− 1.900

(11/2)+ 11.118 (11/2)− 1.900

(13/2)+ 11.118 (13/2)− 3.664

(15/2)− 3.664

(17/2)− 5.971

(19/2)− 5.971

a For 19F we use χ = 0.1841 (χ̄ = 0.0882)
b For 43Sc we use χ = 0.0294 (χ̄ = 0.0218)
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Table II. T = 0 and T = 1 energy levels (MeV) of 22Na calculated with the −χQ ·Q interaction a. Only the first six
levels for each Iπ are shown.

Iπ T = 0 states T = 1 states Iπ T = 0 states T = 1 states

0+ 8.999 0.000 6+ 7.941 10.059
12.176 2.647 11.117 11.117
12.176 8.999 11.117 11.118
13.235 9.000 14.824 16.412
16.410 12.176 16.411 16.412
16.411 12.176 16.411 16.412

1+ 0.000 2.647 7+ 11.117 14.823
1.588 8.999 11.117 16.940
1.588 8.999 14.823 19.587
2.647 10.059 16.941 19.587
9.000 10.059 19.058 19.587
9.000 10.059 19.059 19.587

2+ 1.588 1.588 8+ 14.823 16.941
1.588 1.588 19.058 19.058
3.176 2.647 19.059 19.059
8.999 5.294 22.763 22.767
10.059 9.000 23.292 23.293
10.059 9.000 23.293 23.293

3+ 1.588 3.176 9+ 19.058 23.822
1.588 5.293 19.058 25.939
3.177 10.058 23.822 26.470
5.294 10.058 25.940 27.527
5.294 11.646 26.469 27.527
5.294 11.646 27.528 29.644

4+ 3.176 5.293 10+ 23.823 25.942
5.293 5.293 29.117 29.117
5.293 5.293 30.705 30.706
7.941 10.059 32.293 32.294
11.647 11.647 33.881 32.294
11.647 11.647 33.882

5+ 5.294 7.941
5.294 10.059
7.941 13.763
10.059 13.763
11.118 13.763
11.118 13.763

a In this table and in the following tables, the same value of χ (and of χ̄) was used for 22Na as for 19F.
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Table III. The energies E∗ (MeV) and percentages of 2h̄ω and 4h̄ω occupancies of the J = 0+ T = 0 states in 8Be in
three different model spaces. The last column gives the % energy deviation between the (0 + 2) h̄ω and (0 + 2 + 4) h̄ω
calculations.

0 h̄ω (0 + 2) h̄ω (0 + 2 + 4) h̄ω % deviation

χ = 0.5216 χ = 0.4119 χ = 0.3369
E∗ E∗ %2h̄ω E∗ %2h̄ω %4h̄ω

0.00 0.000 21.77 0.000 24.60 10.74
9.12 11.458 10.28 11.370 10.90 5.69 0.77
12.16 16.231 1.91 15.879 2.07 3.55 2.22
15.20 18.352 2.96 17.860 2.53 3.16 2.75
17.23 20.147 2.62 19.385 2.10 2.98 3.93

30.951 88.89 26.225 50.93 20.56 18.02
32.214 100.00 29.701 77.30 19.41 8.46
32.396 92.36 32.085 86.13 13.87 0.97
34.409 100.00 34.200 86.82 13.18 0.61
38.702 91.66 35.928 70.75 15.45 7.72
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Table IV. Same as Table III but for the J = 1+ states.

0 h̄ω (0 + 2) h̄ω (0 + 2 + 4) h̄ω % deviation

χ = 0.5216 χ = 0.4119 χ = 0.3369
E∗ E∗ %2h̄ω E∗ %2h̄ω %4h̄ω

9.12 11.458 10.28 11.371 10.90 5.69 0.77
11.15 13.734 8.85 13.587 8.92 4.87 1.08
15.20 18.353 2.96 17.861 2.53 3.16 2.75
17.23 20.148 2.62 19.385 2.10 2.98 3.94

30.722 100.00 27.896 78.69 21.31 10.13
32.992 100.00 30.215 79.30 20.70 9.19
33.294 100.00 31.756 82.55 17.45 4.84
34.409 100.00 33.731 86.28 13.72 2.01
34.503 100.00 33.869 83.31 16.59 1.87
35.357 99.84 34.200 86.81 13.19 3.38
37.666 92.98 35.707 74.99 14.33 5.49
38.702 91.65 35.927 70.75 15.44 7.72
40.174 100.00 38.724 85.12 14.80 3.74
40.485 99.97 39.313 86.37 13.63 2.98
40.706 100.00 39.331 86.38 13.63 3.50
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Table V. Same as Table III but for the J = 2+ states.

0 h̄ω (0 + 2) h̄ω (0 + 2 + 4) h̄ω % deviation

χ = 0.5216 χ = 0.4119 χ = 0.3369
E∗ E∗ %2h̄ω E∗ %2h̄ω %4h̄ω

3.04 3.042 21.42 3.038 23.81 9.94 0.13
9.12 11.458 10.28 11.370 10.90 5.69 0.77
11.15 13.734 8.85 13.586 8.92 4.87 1.09
12.15 16.197 8.99 15.880 2.07 3.55 2.00
14.18 16.231 1.91 15.949 8.31 4.21 1.77
15.20 18.353 2.96 17.859 2.53 3.16 2.77
17.23 20.148 2.62 19.385 2.10 2.98 3.94

31.711 82.81 27.146 51.37 20.15 16.82
32.214 100.00 30.215 79.30 20.70 6.62
32.992 100.00 31.714 80.12 18.91 4.03
33.962 99.68 32.085 86.13 13.87 5.85
34.410 100.00 33.869 83.31 16.60 1.60
35.357 99.84 34.201 86.81 13.19 3.38
37.668 92.98 35.707 75.00 14.33 5.49
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