
• Model Validation 
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Poleward undercurrents are well known features in Eastern Boundary systems. In the California Current Eastern Boundary 
upwelling system (CalCEBS) the California poleward undercurrent (CalUC) has been widely reported, and it has been demon-
strated that it transports nutrients from the equator waters to the northern limit of the subtropical gyre. However, in the 
Canary Current Eastern Boundary upwelling system (CanCEBS), the Canary deep poleward undercurrent (CdPU) has not 
been properly characterized. In this study, we use trajectories of Argo floats and model simulations to properly characterize 
the CdPU, including its seasonal variability, and the driving mechanism. The Argo observations show that the CdPU flows 
from 26ºN, near cape Bojador, to approximately 44ºN, near cape Finisterre in the northwest Spanish’s coast. The CdPU flows 
deeper than the CalUC. The CdPU shows a marked seasonal variability, with it maximum strength in fall, and the minimum 
winter.
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Abstract

Material and Methods 

Results

Oceanic model Wind forcing Available temporal data General features 

OFES 
NCEP Jan1950-Dec2013 Low resolution (2.5º), smooth winds 

QS Jan1999-Dec2006 High resolution (0.25º), realistic winds

Table 1. Main features of the numerical simulations employed. Using the same ocean 
model with different winds forced QS and NCEP (Masumoto et al., 2004).
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Figure 1. Selected Argo floats trajectories. The parking depth of the floats 
was 1000dbar. For reference, the 1000m isobaths is presented as a black 
line. (a) The different colored arrows represent individual selected trajecto-
ries, while grey arrows represent the trajectories of all Argo floats in the Can-
CEBS.  (b) The same before, but any trajectory was seleccted in CalCEBS. • The CdPU flow continuosly from 3ºN to 43ºN  (Fig. 1.a). It shows that is coherent with the model average circula-

tion at 800m of depth (Fig. 3.a). 
• In the CalCEBS it is different, there are not any poleward trajectory onshore at 800m as long as in the CanCEBS 
(Fig.1) due to the CalUC is upper than the CdPU. The CalUC is found at 400m of depth approximately (Thomson et 
al., 2010; Connolly et al., 2014). 
• The CdPU advects different kinds of water masses (Fig. 2). As occur with the CalUC, which transports Pacific Equa-
torial Water (PEW) to the North of CalCEBS and is losing PEW concentration with increasing latitude (Thomson et al., 
2010). In CanCEBS it wasn’t known, it was though the CdPU carried the same water on all the way.
•How it is shown in the OFES model, inside the CanCEBS it can be stated that the CdPU is continuous. Beginning 
from 20ºN in January and June at 800m of depth, and it becomes shallower as latitude increases (until 44ºN) in both 
cases (Fig. 4).  
•Therefore we can affirm that the CdPU and the CalUC are not equals. Given that the core of the CalUC doesn’t vary 
a lot (Connolly et al., 2014; Thomson et al., 2010), while the CdPU is created two times per year (Fig. 4) and both rise 
up near the surface.
•There are to have in account the exchanges of water masses both South to North and opposite (Fig. 4). Associated 
to the CdPU and the other equatorward current at 800-1000m of depth. Which carry the properties of the different 
water masses coming from each zone (MOW, AAIW, NACW, etc). And exchanges properties with the other water 
masses close to it as occur in CalCEBS (Thomson et al., 2010). These properties are very interesting from the bio-
chemical point of view. As it’s shown in several studies about the deep poleward copepods transport alongshore in 
the CanCEBS (John et al., 1997; Stöhr et al., 1997). In these studies the copepods can be used like tracers of the 
CdPU.
•It had never studied the possible physical phenomenon as well as we have done in this study despite there are not 
enough direct observations. With the results obtained using the realistic oceanic model, it appears that the main re-
sponsible of this undercurrent is the APF (Fig. 6). And moreover the wind stress is not one of the principal factors to 
produce it (Fig. 3.b), as it can be happen in CalCEBS because is shallower. It appears that the CalUC and the CdPU de-
spite are similar, are not equal and have not the same forcing mechanisms. 

Figure 2. Four trajectories 
of the 23 available in the 
CanCEBS are shown in 
this figure. And it is 
shown their TS diagrams. 
Each one has a color 
arrow located in the 
bottom right corner, 
which represents its tra-
jectory in the map. It’s 
shown the typical water 
masses in the region in 
grey areas. The black dots 
represent the value at 
1000dbar. The grey dots 
represent the climatology 
in the region. And the 
grey lines the isopycnals.

• Direct Observations: 

(a)
(b)

Figure 3. (a) Represents the average velocities between August and September in 
the CanCEBS at 800m of depth. The light (dark) blue arrows represent velocities be-
tween 1-2 cm/s (>2cm/s). The grey (red) line represents the 1000m isobath (ideal 
CdPU way). Red triangle indicates mooring location. (b) Shows the vertical distribu-
tion of current-meters (that actually used is colored in red). (c) Represents the 
annual average velocities given by OFES (QS and NCEP) with the real obsvervations 
by the mooring in the LP, all of them at 800m of depth.

(b)

• Seasonal Variability: 

Figure 4. Represents the average velocities 
(cm/s) alongshore on the red trajectory 
shown in the Fig. 3.a. Using the OFES-QS 
data at 800 m.

Figure 6.  (a) Fynamic height (cm) at 800m of depth from the OFES-QS data. (b) 
Pressure (equivalent to m) anomaly alongshore on the red trajectory shown in 
the Fig. 3.a from the  OFES-QS data.

(b)(a)

• Forcing Mechanisms for the CdPU: 
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• There are 20 floats into the CanCEBS that driftted more than 20 days poleward of a total of 157 (Fig. 1.a). In contrast, in 
the CalCEBS (Fig. 1.b) any float drifted polward during 20 days.
• That there are not any floats south of 25ºN (Fig. 1.a) is becasue the the strong westward superficial current associated to 
the trade winds in this zone that displace the floats at the surface offshore when rise to send the data up.
• In the four TS diagrams (Fig. 2) it canbe observed that the CdPU  advects different kinds of water masses, changing with 
latitude. From less temperature and salinity to more temperature and salinity due to the output of the MOW.
• In the Fig. 1.a it can see the same flow to the North in the 20 floats of a total of 157 in the region. These floats show a con-
tinuous flow from 25ºN to 44ºN like shows the model too (Fig. 3.a). Moreover, the velocity data of the mooring (Fig. 3.b) 
were compared with the data obtained by OFES in the same places and depth (Fig. 3.c). Both data were rotated 51.2º 
clockwise. The results of this comparison show us that the magnitude of the velocity values from the OFES model is very 
similar with the observational mooring values. Moreover the average variability is almost equal that the real dynamic in 
the region (Fig. 3.c). Therefore OFES model is reliable to use in CanCEBS.
• Inside the CanCEBS the CdPU demonstrates a continuous and biannual flow (Fig. 4). Both begin in the months of January 
and June at 20ºN and a depth of 800-1000m.
• The intensity of the CdPU varies by year, not always remains the same (Fig. 5). And it turns varying seasonally.
• The dynamic height (Fig. 6.a) corresponds perfectly with the velocities (Fig. 3.a) by the geostrophy.
• Probably the pressure gradients are the responsible to occur the CdPU. The APF is one of them, which can force to create 
this undercurrent. These pressure gradients (Fig. 6) are created by a density gradient offshore, which in a geostrophic fluid 
generates a flow to coast. This flow comes to coast and due to the potential vorticity conservation law creates a poleward 
flow. This phenomenon has a seasonal variability. And it does not depend of the wind stress. Part of the CalUC is also gen-
erates by the APF (Connolly et al., 2014).
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Figure 5. Interannual variability of the av-
erage velocity calculated for the CdPU 
inside the LP at 800-1000m of depth 
(cm/s). Using the OFES-QS data.

• To realise this study we used direct measures and numeric simulations.
• For the Direct Measures we used: 

- Argo float velocity data from the YoMaHa database (Lebedev et al., 2007). All Argo floats selected drifted at 
1000dbar (Fig. 1)
- The mooring data (EBC4) at 800m of depth located in the Lanzarote Passage (LP) (Fig. 3.a).

• For the Numeric Simulations we used numerical simulations from the OFES couple ocean atmosphere model, with two 
different forcings:
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