Curva de tendencia, diversidad taxonómica y curva de rarefacción en hidracnelas (Acari, Parasitengona).

Antonio G.—Valdecasas

Ana Isabel Camacho

RESUMEN

Se discute la aplicación de las curvas de tendencia, la diversidad taxonómica y la curva de rarefacción a las listas faunísticas.

SUMMARY

Trend lines, taxonomic diversity and rarefaction curves are applied to faunal lists.

El presente trabajo es una indagación teórica sobre el contenido informativo de listas faunísticas en áreas geográficas concretas. Como se justifica en otro lugar (G.—VALDECASAS, ms), el estudio taxonómico que conduce al descubrimiento de nuevas especies, la identificación de taxones ya descritos y la elaboración de listas faunísticas, ofrecen una perspectiva de análisis muy útiles e interesantes desde el punto de vista de la Biología general y establece puentes entre la Taxonomía considerada como ciencia y otras ramas como la Biogeografía, Ecología y la Teoría de la Evolución.

En última instancia, la justificación de trabajos como el presente
deriva de la hipótesis previa de la existencia de pautas no aleatorias a
diversos niveles del mundo vivo, uno de los cuales trata de reflejar la
labor taxonómica. Estas pautas pueden ser puestas de manifiesto con útiles
matemáticos sencillos, como la elaboración de curvas de tendencia, el uso
de índices de diversidad o la aplicación de curvas de rarefacción.

En este trabajo se ofrece un resumen de estas tres técnicas y se dan
algunos ejemplos de su aplicación en hidracinelas.

CURVAS DE TENDENCIA

Las curvas de tendencia ("trend line" o "trend curve" de los autores
anglosajones) fueron introducidas en el campo de la Biología por STEYSKAL
(1965) para evaluar el número final de especies en diversos grupos
animales. Estas estimas, pueden tomar en consideración el número total de
un grupo, o sólo el conjunto de especies pertenecientes a un área
geográfica dada. De esta manera no sólo se pueden hacer comparaciones entre
grupos diferentes, sino que cabe hacer estimas para un mismo grupo en áreas
geográficas distintas.

La técnica de STEYSKAL (op.cit.) ha sido usada por diferentes
autores para hacer la estima del número final de especies en diferentes
familias de coleópteros (WHITE, 1975; FRANK & CURTIS, 1979; O'BRIEN &
WIBMER, 1979). La técnica consiste en la elaboración de una curva
acumulativa de especies descritas, tomando como punto de partida 1758, y
disponiendo éstas en intervalos de 10 años. Existen dos posibles
alternativas, al menos, una vez establecida la curva acumulativa, para el
tratamiento de la misma. STEYSKAL (1965) y WHITE (1975) dan una solución
gráfica que no por ello tiene que ser inexacta, mientras que FRANK & CURTIS
(1979) y O'BRIEN & WIBMER (1979) tratan de ajustar la curva acumulativa a
alguna función que se asemeje (ver la crítica de WHITE,1979, a estos dos
últimos trabajos). El ajuste mayor o menor de una curva empírica a una
teórica, no implica necesariamente que los condicionamientos matemáticos de
la segunda sean recíprocos o tengan razón de ser para la primera. Aún más,
algunas de estas funciones, en las que se hacen intervenir varias
constantes para facilitar el ajuste, complican la interpretación, requiriendo
esfuerzo allí donde no tiene porqué residir una explicación
biológica. En nuestro caso la sencillez del método y los resultados con
ellos obtenidos han sido decisivos al realizar la curva de tendencia para
hidracinelas. Hemos elegido el método de STEYSKAL (op. cit.) ya que las
funciones probadas por los otros autores, una regresión cúbica, una
cuadrática logarítmica y una logística, no dieron en ningún caso, resultados satisfactorios.

Hemos realizado dos curvas de tendencia para las hidracnelas descritas en el mundo (hasta 1954) y las descritas en Europa (hasta 1976). La bibliografía básica de la que nos hemos servido ha sido VIETS (1956) y VIETS (1967, 1978). Los supuestos en que se basa este tipo de análisis se encuentran tratados en STEYKAL (1965) y FRANK & CURTIS (1979). En cuanto al método, se dispone en ordenadas el tiempo, en intervalos de 10 años, y en abscisas el número de especies. Si la zona y grupo han sido bien estudiados, existe una tendencia muy fuerte a que este tipo de curvas presente la mitad inferior semejante a la superior, lo que permite rotar aquella a fin de estimar la forma de ésta.

En las figs. 1, 2 se exponen los resultados para las hidracnelas del mundo y de Europa.

Se pueden observar marcadas diferencias entre ambas curvas. La curva que hace referencia a todo el mundo está todavía en su fase ascendente, lo que impide una estima adecuada de cual puede ser el punto de inflexión, imposibilitando la localización del punto medio de la misma y operar la rotación que pudiera dar la estima final de especies. Aunque no se ha podido hacer un recuento total hasta la actualidad, el resultado de esta curva parece correcto, si tenemos en cuenta el número de especies de hidracnelas que han sido incorporadas una vez estudiadas áreas como la India, Nigeria y América Central. Todavía quedan grandes áreas por estudiar, por lo que es difícil predecir con seguridad en que momento la curva iniciará su inflexión final.

La curva de Europa (fig. 1) refleja, sin embargo, un área relativamente bien estudiada, en la que ya se ha iniciado la inflexión asintótica en la descripción de especies. La rotación de la mitad inferior de la curva, permite una estima de 1050 especies para todo el área europea. La diferencia con el número actualmente conocido, es de 119 especies. Este número oscilará por arriba o por abajo, debido al carácter aproximado del método de estima. Este número de especies serán nuevas para toda la región europea (y en gran medida, cabe esperar, que nuevas para la Ciencia). Muchas de ellas aparecerán en aquellas áreas donde el esfuerzo de muestreo ha sido pobre, como es el caso de la Península Ibérica. Sin embargo, este método, no da una idea del reparto final de las especies dentro del área estudiada. Es decir, para la Península Ibérica nos interesa saber, no sólo el número de taxones que son nuevos para toda Europa, sino también aquellos
fig. 1- Curva de tendencia Europea.
Fig. 2- Curva de tendencia mundial.
que, siendo conocidos en Europa pueden ser nuevos en ella y que pueden alterar la idea que tenemos de sus relaciones faunísticas. Para ello habría que realizar una curva de tendencia específica para este área. Sin embargo, la irregularidad del esfuerzo aplicado en esta, hace que su aplicación sea más insegura.

DIVERSIDAD TAXONOMICA

Las listas faunísticas ofrecen una información en la que muchas veces está ausente el número de individuos, contabilizándose exclusivamente el número de especies. El estudio del reparto de individuos en especies, constituye un capítulo propio de la Ecología. Sin embargo, la ausencia de información sobre individuos, no hace desechables las listas faunísticas en lo que se refiere a su diversidad. El reparto de especies en géneros, si presentase alguna regularidad, podría servir para poner de manifiesto relaciones, que de momento pasan desapercibidas.

Se puede decir que el desarrollo de un índice de diversidad con interés taxonómico está poco estudiado. El índice de diversidad jerárquico (PIELLOU,1975) que toma en cuenta el reparto de individuos por especies, géneros y familias, es una posibilidad que conviene explorar. También podría ser revelador la aplicación del índice de diversidad basado en la teoría de la información, donde los individuos se sustituyen por las especies, y estas por los géneros. En cualquier caso, el único índice de diversidad taxonómica aceptado hoy en día es el Indice de Diversidad Genérica (D.G.) de SIMPSON (ver DEN BOER,1980 y referencias allí). Este índice, que es independiente de la distribución de los datos, viene expresado por el siguiente algoritmo:

\[
D.G. = \frac{N(N-1)}{\sum n_i(n_i-1)}
\]

donde \(N = n^2 \) total de especies y \(n_i = n^2 \) de especies en el género \(i \)

Este índice ha sido usado, entre otras, para probar una hipótesis de exclusión o coexistencia ecológica (DEN BOER, op. cit.). Otras aplicaciones pueden verse en WILLIAMS (1964). Nosotros hemos aplicado el índice a la lista faunística de las hidracneas europeas tal y como aparecen en la última edición del Limnofauna Europea de ILLIES (1978). En la tabla 1 se indica el número de la región tal y como viene en Limnofauna, la diversidad de especies en cada subregión, el número de géneros, la diversidad gnerica y la proporción especies/género (S/G) para cada una de ellas.
Como puede verse en la tabla 1 la mayor diversidad genérica no coincide con las subregiones con mayor número de especies, lo que parece indicar, que tras un óptimo, el aumento del número de especies no contribuye a la diversidad, sino que produce redundancia.

<table>
<thead>
<tr>
<th>REGION</th>
<th>N° SPP</th>
<th>Nº GEN</th>
<th>D.G.</th>
<th>S/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>262</td>
<td>52</td>
<td>17'7</td>
<td>5'0</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
<td>40</td>
<td>13'7</td>
<td>3'6</td>
</tr>
<tr>
<td>3</td>
<td>177</td>
<td>55</td>
<td>20'3</td>
<td>3'2</td>
</tr>
<tr>
<td>4</td>
<td>382</td>
<td>68</td>
<td>15'8</td>
<td>5'6</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>44</td>
<td>19'3</td>
<td>3'2</td>
</tr>
<tr>
<td>6</td>
<td>131</td>
<td>41</td>
<td>16'9</td>
<td>3'2</td>
</tr>
<tr>
<td>7</td>
<td>154</td>
<td>50</td>
<td>24'1</td>
<td>3'1</td>
</tr>
<tr>
<td>8</td>
<td>311</td>
<td>58</td>
<td>20'2</td>
<td>5'3</td>
</tr>
<tr>
<td>9</td>
<td>410</td>
<td>71</td>
<td>18'8</td>
<td>5'7</td>
</tr>
<tr>
<td>10</td>
<td>306</td>
<td>62</td>
<td>17'0</td>
<td>4'9</td>
</tr>
<tr>
<td>11</td>
<td>196</td>
<td>44</td>
<td>16'7</td>
<td>4'5</td>
</tr>
<tr>
<td>12</td>
<td>127</td>
<td>38</td>
<td>14'5</td>
<td>3'3</td>
</tr>
<tr>
<td>13</td>
<td>293</td>
<td>58</td>
<td>15'6</td>
<td>5'1</td>
</tr>
<tr>
<td>14</td>
<td>359</td>
<td>59</td>
<td>13'3</td>
<td>6'1</td>
</tr>
<tr>
<td>15</td>
<td>245</td>
<td>47</td>
<td>13'4</td>
<td>5'2</td>
</tr>
<tr>
<td>16</td>
<td>264</td>
<td>45</td>
<td>10'8</td>
<td>5'9</td>
</tr>
<tr>
<td>17</td>
<td>214</td>
<td>47</td>
<td>17'3</td>
<td>4'6</td>
</tr>
<tr>
<td>18</td>
<td>230</td>
<td>59</td>
<td>14'3</td>
<td>3'9</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>5</td>
<td>7'2</td>
<td>1'8</td>
</tr>
<tr>
<td>20</td>
<td>144</td>
<td>43</td>
<td>17'6</td>
<td>3'3</td>
</tr>
<tr>
<td>21</td>
<td>39</td>
<td>19</td>
<td>13'2</td>
<td>2'1</td>
</tr>
<tr>
<td>22</td>
<td>165</td>
<td>51</td>
<td>15'8</td>
<td>3'2</td>
</tr>
<tr>
<td>23</td>
<td>179</td>
<td>40</td>
<td>15'4</td>
<td>4'4</td>
</tr>
<tr>
<td>24</td>
<td>75</td>
<td>22</td>
<td>13'4</td>
<td>3'4</td>
</tr>
<tr>
<td>25</td>
<td>42</td>
<td>15</td>
<td>12'1</td>
<td>2'8</td>
</tr>
</tbody>
</table>

El número de especies y el número de géneros guarda una relación positiva, r=0,90 (p 0,001), mientras que el índice de diversidad genérica se mantiene independiente del número de especies, r=0,3136 (p no significativa). Así pues, ambos parecen reflejar (número de especies y diversidad genérica) dos informaciones implícitas en las listas faunísticas e independientes entre sí.

CURVA DE RAREFACCION

Una alternativa al uso de los índices de diversidad, reside en la técnica de rarefacción, iniciada por SANDERS (1968) y que ha encontrado un
cierto auge especialmente en Paleoecología (ver, por ej. RAUP, 1972, 1975,-
1977). Una perspectiva matemática puede encontrarse en SIEGEL & GERMAN
(1982) y discusión de aspectos con interés ecológico en HULBERT (1971) y
HECK y cols. (1975).

No podemos extendernos aquí, por falta de espacio, en esta técnica.
Su aplicación a un colectivo taxonómico vendría dada por el siguiente
algoritmo (HULBERT, 1971):

\[E(G) = \sum_{i=1}^{N} \left[1 - \frac{N-N_i}{n} \right] \]

donde \(E(G) \) es el número de géneros esperados para un número de especies \(n \)
de un colectivo con \(N \) especies en total, de las cuales \(N_i \) están en el
género \(i \).

A modo de ejemplo, hemos aplicado el algoritmo a la subregión 19 de
Limnofauna (ver Tabla 1) dando un valor de \(E(G)=0,09, \) bastante alejado de
los 5 géneros presentes en este área. La presencia de estos géneros en
Islandia (región 19) parece ser que tiene poco que ver con el azar.

Pero donde las curvas de rarefacción cobran todo su valor es en la
aplicación a series de estimas, de las que además puede calcularse el valor
de la varianza (HECK y cols., 1975).

BIBLIOGRAFÍA

DEN BOER, P.J. 1980. Exclusion or coexistence and the taxonomic or ecological
FRANK, J.H. 1979. Trend lines and the number of species of Staphilinidae.
The Coleopterists Bull. 33(2): 133-149.
G. VALDECASAS, A. A new look to Taxonomy (ms).
HECK, K.L., Jr. VAN BELLE, G.& SIMBERLOFF, D.S. 1975. Explicit calculations of
the rarefaction diversity measurement and the determination of sufficient
HULBERT, S.H. 1971. The nonconcept of species diversity: A critique an
O'BRIEN, C.W. & G.J. WEMMER. 1979. The use of trend curves of rate of species
descriptions: examples from the Curculionidae (Coleoptera). The Coleopte-
ritists Bull. 33(2): 151-166.
RAUP, D.M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiolo-
ogy 1: 333-342.