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A 1D shallow-flow model for two-layer flows based

on FORCE scheme with wet–dry treatment

S. Martínez-Aranda, A. Ramos-Pérez and P. García-Navarro
ABSTRACT
The two-layer problem is defined as the coexistence of two immiscible fluids, separated by an

interface surface. Under the shallow-flow hypothesis, 1D models are based on a four equations

system accounting for the mass and momentum conservation in each fluid layer. Mathematically, the

system of conservation laws modelling 1D two-layer flows has the important drawback of loss of

hyperbolicity, causing that numerical schemes based on the eigenvalues of the Jacobian become

unstable. In this work, well-balanced FORCE scheme is proposed for 1D two-layer shallow flows.

The FORCE scheme combines the first-order Lax–Friedrichs flux and the second-order Lax–Wendroff

flux. The scheme is supplemented with a hydrostatic reconstruction procedure in order to ensure the

well-balanced behaviour of the model for steady flows even under wet–dry conditions. Additionally, a

method to obtain high-accuracy numerical solutions for two-layer steady flows including friction

dissipation is proposed to design reference benchmark tests for model validation. The enhanced

FORCE scheme is faced to lake-at-rest benchmarking tests and steady flow cases including friction,

demonstrating its well-balanced character. Furthermore, the numerical results obtained for highly

unsteady two-layer dambreaks are used to analyse the robustness and accuracy of the model under

a wide range of flow conditions.

Key words | high-accuracy two-layer steady solutions, hydrostatic reconstruction, two-layer shallow

flows, well-balanced FORCE scheme, wet–dry treatment
HIGHLIGHTS

• In this work, a new 1D well-balanced FORCE scheme is proposed able to deal with steady and

highly unsteady two-layer shallow flows, including wet–dry fronts.

• The enhanced FORCE scheme is supplemented with a new hydrostatic reconstruction

procedure, based on the definition of a virtual free surface and a virtual pressure surface for

each layer, in order to ensure the well-balanced behaviour at the intercell edges for steady flows.

• The proper treatment of the wet–dry fronts in both the upper and the lower layer is ensured by

the correct balance between the convective fluxes and the integrated source terms at the wet–

dry intercell edges.

• Additionally, a method to obtain high-accuracy numerical solutions for two-layer steady flows

including friction dissipation is also proposed in order to design reference benchmark tests for

two-layer models validation.

• The numerical results obtained with the well-balanced FORCE scheme for steady and highly

unsteady two-layer benchmark tests are used to analyse the robustness and accuracy of the

proposed model under a wide range of flow conditions.
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INTRODUCTION
Some natural geophysical flows can be modelled as a layered

system consisting of two shallow fluids of distinct densities.

The density ratio between the lighter upper layer and the

heavier lower layer can be close to unity, as in stratified

marine currents with different salinity, or extremely large

as in the case of mine tailing dams. Under the hypothesis

of two immiscible fluids where the vertical characteristic

dimension of the flow is much smaller than their horizontal

extension, these kinds of geophysical flows have been often

modelled using the depth-averaged shallow-flow equations

in both layers and involving a free surface (Kurganov &

Petrova ; Castro-Díaz et al. ; Spinewine et al. ).

When considering flow per unit width, the 1D two-layer

shallow-flow problem, from the mathematical point of view,

consists of a system of four conservation laws involving

mass and momentum conservation for each layer. It has

been studied by a large number of researchers (Ardron

; Armi ; Chen & Peng ; Bouchut & de Luna

), not only because of its applications but also because

of the mathematical challenge itself. The two-layer system

is conditionally hyperbolic and stable. Both layers interact

by means of the hydrostatic pressure terms caused by the

slope of both the free surface and the internal interface sep-

arating the two fluids, as well as by the momentum exchange

at the interface due to friction.

One of the main features of the two-layer shallow-flow

system is the loss of hyperbolicity which arises under a

wide range of flow conditions (Ardron ; Armi ).

The appearance of this complex behaviour is related to the

density ratio between fluids and the velocity difference

between layers (Spinewine et al. ). This conditionally

non-hyperbolic character of the two-layer shallow-flow

system has given rise to an extensive list of proposed sol-

utions in order to avoid the appearance of numerical

instabilities (Chen & Peng ; Bouchut & de Luna ;

Kurganov & Petrova ; Abgrall & Karni ; Castro-

Díaz et al. ; Mandli ; Chiapolino & Saurel ).

Traditionally, numerical schemes based on the computation

of the two-layer system eigenvalues, such as the HLLC or

the A-Roe schemes, have failed in the treatment of the loss

of hyperbolicity and avoiding the appearance of numerical
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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instabilities. Furthermore, many of the reported numerical

schemes for two-layer or multi-layer systems are complex

to implement as the numerical scheme usually includes a

specific method to deal with those instabilities. For instance,

Chiapolino & Saurel () solves the problem by introdu-

cing a term associated with the fluid compressibility which

manages the instabilities changing the density of the

layers; in addition, an interface artificial turbulence is

added to increase diffusivity. The use of an entropy satisfying

scheme (Bouchut & de Luna ) or an optimal amount of

friction in a corrector step (Castro-Díaz et al. ) which

keeps the flow inside the hyperbolic region has also been

proposed.

The list of authors who have addressed the problem

from the analytical point of view is much shorter (Schijf &

Schönfled ; Farmer & Armi ). In the case of

Farmer & Armi (), the solutions are restricted to the

rigid-lid assumption (a uniform free surface) to a similar den-

sity of both layers, smooth bed functions and frictionless

conditions. Up to now, the validation of new two-layer

numerical schemes relies on a few analytic solutions for

specific cases which, in general, do not include friction. In

Krvavica et al. (), a two-layer shallow-flow model

based on Roe-scheme including friction terms is validated

using a salt-wedge case with a steady reference solution

obtained from the ODE system previously proposed by

Balloffet & Borah ().

This article presents a new 1D FORCE scheme (Toro

) for the two-layer shallow-flow equations, including

friction source terms. A hydrostatic reconstruction pro-

cedure is also proposed to ensure the well-balanced

behaviour of the scheme under steady flow conditions invol-

ving source terms. Furthermore, in order to design reference

benchmark tests for two-layer model validation, a method to

obtain high-accuracy numerical solutions for two-layer

steady flows including friction dissipation is also proposed,

based on the single-layer method reported by MacDonald

(). The proposed scheme is faced with lake-at-rest,

steady and transient flow benchmarking tests, proving its

well-balanced character, robustness and accuracy under a

wide range of fluid characteristic and flow conditions.
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The text is organised as follows: in section ‘Mathemat-

ical model and governing equations’, the two-layer

governing equations are stated, including the coupling

pressure terms between layers and the friction source

terms; section ‘Force numerical method for two-layer

systems with source terms’ is devoted to the proposed

well-balanced FORCE scheme supplemented with the

hydrostatic reconstruction; in section ‘Reference solutions

for two-layer steady flow’, the new procedure to obtain

high-accuracy numerical solutions for two-layer steady pro-

blems is presented. The numerical results obtained with

the proposed scheme for different steady and transient

benchmarking tests are presented in section ‘Numerical

results’. Finally, the conclusion of this work has been

drawn in the last section.
MATHEMATICAL MODEL AND GOVERNING
EQUATIONS

The one-dimensional two-layer shallow water equations

result from depth integration of the 3D incompressible

Navier–Stokes mass and momentum equations, according

to the scheme shown in Figure 1. The lower layer, referred

to as layer 2, is integrated between the bed surface zb and

the interphase surface zω, whereas the upper layer, referred

to as layer 1, is integrated between the interphase surface

zω and the free surface zs. Considering a density ratio

r ¼ ρ1=ρ2, being ρ1 the density of the lighter upper layer 1

and ρ2 the density of the heavier lower layer 2, the following

system of partial differential equations can be obtained for
Figure 1 | Scheme for 1D two-layer shallow-flow problem.

://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
the two-layer flow per unit width:
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where g [LT�2] is the acceleration of gravity, h1, h2 [L]

are the layer depths, u1, u2 [LT�1] are the depth-averaged

velocities of each layer in the x direction and zb [L] is the

fixed bottom level. The boundary shear stresses

τω [ML�1T�2] and τb [ML�1T�2] are those acting at the

interface surface between fluid layers and at the fixed

bottom. The pressure coupling terms P1 [L2T�2] and

P2 [L2T�2] between both layers are expressed as:

Upper layer: P1 ¼ gh1
@h2

@x

Lower layer: P2 ¼ rgh2
@h1

@x

(2)

and they appear as a result of the vertical averaging of the

three-dimensional problem (Toro ), transforming the

system in a non-homogeneous problem even in cases over

frictionless surfaces and flat bottom. Those terms character-

ise the two-layer flow equations as they describe the pressure

momentum exchange between layers, i.e. P2 accounts for

the hydrostatic pressure of the upper layer 1 on the lower

layer 2 and P1 considers the interface surface slope, which

is equivalent to a bed slope term for the upper layer 1.

There is a formal analogy with the 1D single-layer shal-

low water flow (Bouchut & de Luna ). The main

difference is that the coupling terms, P2 and P1, are not

fixed but are also time-dependent. These source terms

make the double-layer shallow water a complex flow to

simulate numerically. It can easily lead to strong instabilities

associated with physical phenomena as layer mixing and

shear flows (Abgrall & Karni ).

The boundary shear stress between the lower layer and

the fixed bed τb, assuming a turbulent flow for the lower
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layer, is defined with the squared flow velocity (Naef et al.

):

τb ¼ ρ2 g h2 Cfb u2 ju2j (3)

being Cfb the friction turbulent factor, according to the Man-

ning’s law (Manning ) it is defined as Cfb ¼ n2
b=h

4=3
2 ,

where nb is the bed roughness coefficient. The interface

friction term is Chézy-type (Swartenbroekx et al. ),

depending on the square of the relative velocity between

the upper and the lower layer:

τω ¼ ρ1 g Cfω,1 (u1 � u2) ju1 � u2j
¼ ρ2 g Cfω,2 (u1 � u2) ju1 � u2j (4)

being Cfω,2 ¼ r Cfω,1 and Cfω,1 the interface friction coeffi-

cients for the lower layer and the upper layers, respectively.

The 1D system (1) can be reordered in vector form as:

@U
@t

þ @F (U )
@x

¼ S(U ) (5)

where U is the conserved variables vector and F (U ) is the

convective flux vector:

U ¼
h1

h1u1

h2

h2u2

0
BB@

1
CCA F (U ) ¼

h1u1

h1u2
1 þ

1
2
gh2

1

h2u2

h2u2
2 þ

1
2
gh2

2

0
BBBBB@

1
CCCCCA (6)

The source vector S(U ) includes the bottom slope, the

friction stress terms at the fixed bed surface, the boundary

shear stress at the interface boundary, as well as the pressure

coupling terms P1 and P2 between both layers:

S(U ) ¼

0

�gh1
@zb
@x

� P1 � τω
ρ1

0

�gh2
@zb
@x

� P2 þ τω
ρ2

� τb
ρ2

0
BBBBBB@

1
CCCCCCA

(7)

This kind of formulation for the two-layer problem is

referred to as the uncoupled formulation, since all the
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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coupling terms between layers, i.e. P2 and P1, are included

in the source vector S (Spinewine et al. ). The Jacobian

matrix of the convective fluxes is defined as J (U ) ¼ @F
@U

lead-

ing to the following quasi-lineal partial derivative system:

@U
@t

þ J (U )
@U
@x

¼ S(U ) (8)

with:

J (U ) ¼
0 1 0 0

c21 � u2
1 2u1 0 0

0 0 0 1
0 0 c22 � u2

2 2u2

0
BB@

1
CCA (9)

being c1 ¼
ffiffiffiffiffiffiffiffi
gh1

p
and c2 ¼

ffiffiffiffiffiffiffiffi
gh2

p
the infinitesimal wave

celerity in the upper and lower layer, respectively. The

Jacobian matrix J (U ) has four different real eigenvalues:

λI ¼ u1 � c1
λII ¼ u1 þ c1
λIII ¼ u2 � c2
λIV ¼ u2 þ c2

(10)

The eigenvalues, λI and λII in Equation (10) are related

to the upper layer whereas λIII and λIV are associated with

the bottom layer. They are considered to control the numeri-

cal stability of explicit schemes through the CFL condition.

If the convective fluxes vector F (U ) is defined including the

coupling terms P2 and P1, leading to the coupled formu-

lation of the two-layer problem, the eigenvalues of the

Jacobian are not explicit (Abgrall & Karni ; Castro-

Díaz et al. ) and can only be approximated when the

density ratio r ¼ ρ1=ρ2 ≈ 1. Closed-form solutions for eigen-

values of the coupled Jacobian matrix have been recently

presented in Krvavica et al. () and tested in Krvavica

(). Furthermore, this coupled formulation which

includes the pressure terms P2 and P1 into the convective

fluxes, in order to concentrate in the Jacobian of the

system all the relevant information, might lead to the loss

of the hyperbolic character of the system (5) in a wide

range of flow regimes (Spinewine et al. ).



1019 S. Martínez-Aranda et al. | A 1D well-balanced FORCE scheme for two-layer flows with wet–dry treatment Journal of Hydroinformatics | 22.5 | 2020

Downloaded from http
by guest
on 15 June 2023
FORCE NUMERICAL METHOD FOR TWO-LAYER
SYSTEMS WITH SOURCE TERMS

The FORCE scheme (Toro ; Toro & Billett ; Toro

et al. ; Dumbser et al. ) is an explicit-centred finite

volume method (FVM) with proven numerical stability

and robustness. For the sake of simplicity, a uniform spatial

Δx and variable temporal Δt discretisation (Figure 2) is

applied to solve the two-layer shallow water flow equations

(Equation (1)), which are integrated spatially and temporally

as follows:

ðxiþ1
2

xi�1
2

[U (x, tnþ1)� U (x, tn)]dx ¼
ðtnþ1

tn

F i�1
2
� F iþ1

2

� �
dt

þ
ðtnþ1

tn

ðxiþ1
2

xi�1
2

S(U (x, t))dxdt (11)

where the convective fluxes F i�1
2
and F i�1

2
are defined as:

F i�1
2
¼ F U xi�1

2
, t

� �� �
F iþ1

2
¼ F U xiþ1

2
, t

� �� � (12)

Assuming a piecewise constant representation for

the conserved variables U n
i at the i cell for the time level

n as:

U n
i ¼ 1

Δx

ðxiþ1
2

x
i�1

2

U (x, tn)dx (13)
Figure 2 | FVM sketch for two-layer FORCE scheme.

://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
it is possible to define the numerical flux F �
iþ1

2
at the iþ 1

2
intercell edge separating cells i and iþ 1 as:

F �
iþ1

2
¼ 1

Δt

ðtnþ1

tn

F U xiþ1
2
, t

� �� �
dt (14)

Therefore, the 1D scheme for the conserved variables

updating at the i cell can be expressed as:

U nþ1
i ¼ U n

i �
Δt
Δx

F �
iþ1

2
� F �

i�1
2

� �
þ Δt
Δx

S�
i (15)

where Δt is the time step and Δx is the cell size. The source

contribution, including bed slope, pressure and shear stress

components, is approximated using a spatially integrated

term S�
i defined as follows:

ΔtS�
i ≈ Δt

ðxiþ1
2

xi�1
2

S(U (x, tn)) dx ≈
ðtnþ1

tn

ðxiþ1
2

xi�1
2

S(U (x, t)) dx dt (16)

The FORCE numerical flux at the intercell edges is for-

mulated in a single step as a combination of the Lax–

Friedrichs (first order and highly diffusive) (Lax ) and

the Lax–Wendroff (second order and conditionally oscil-

latory) (Lax & Wendroff ) fluxes:

F �
iþ1

2
¼ αFLF

iþ1
2
þ (1� α)FLW

iþ12 (17)

where 0 � α � 1 is a weighting parameter, FLF
iþ1

2
is the

Lax–Friedrichs flux at the intercell edge iþ 1
2
, computed as:

FLF
iþ1

2
¼ 1

2
F U�

iþ1
2

� �
þ F Uþ

iþ1
2

� �h i
� 1
2
Δx
Δt
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iþ1

2
� U�

iþ1
2

� �
(18)

and FLW
iþ1

2
is the Lax–Wendroff numerical fluxes at the inter-

cell edge iþ 1
2
, computed as:

FLW
iþ1

2
¼ F U LW

iþ1
2

� �

U LW
iþ1

2
¼ 1
2

U�
iþ1

2
þUþ

iþ1
2

� �
�1
2
Δt
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F Uþ
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2

� �
�F U�
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2
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being U�
iþ1

2
and Uþ

iþ1
2
the set of conserved variables provided

by the hydrostatic reconstruction (see section ‘Well-

balanced hydrostatic reconstruction’) at the left and right

side of the intercell edge iþ 1
2
, respectively.

The spatial integration of the source terms vector at the

cell i, S�
i , is approximated as:

S�
i ¼

0

�~Sp1 �
~Tω

ρ1
0

�~Sp2 þ
~Tω

ρ2
�

~Tb

ρ2

0
BBBBBB@

1
CCCCCCA

i

(20)

where ~Sp1,i and ~Sp2,i account for the integrated pressure

forces at the upper and lower layers of cell i, respectively;

and ~Tb,i ¼ τb(U
n
i ) Δx and ~Tω,i ¼ τω(U n

i ) Δx are the integrated

friction forces at the bed and interface surfaces along cell i,

respectively. The terms ~Sp1,i and ~Sp2,i are computed as:

~Sp1,i ¼ (g~h1 Δzb þ ~P1Δx)i ¼ (g~h1 Δ(zb þ h2) )i ¼ (g~h1 Δξ1 )i

~Sp1,i ¼ (g~h2 Δzb þ ~P2Δx)i ¼ (g~h2 Δ(zb þ rh1) )i ¼ (g~h2 Δξ2 )i
(21)

defining the virtual pressure surface for the upper and lower

layers, ξ1 and ξ2 respectively, as:

ξ1 ¼ zb þ h2 ξ2 ¼ zb þ rh1 (22)

The values for the virtual pressure surface variation Δξ1,i
and Δξ2,i, and the averaged layer depth ~h1,i and ~hi,2 at cell i

are provided by the hydrostatic reconstruction for the upper

and lower layers. This reconstruction has been designed to

ensure a well-balanced equilibrium of the fluxes at the inter-

cell edges under static equilibrium conditions, as well as the

correct treatment of the wet–dry fronts for both layers (see

section ‘Well-balanced hydrostatic reconstruction’).

Furthermore, the explicit FORCE scheme requires a

time step Δt limitation to ensure the numerical stability of

the method:

Δt ¼ CFL
Δx
λmax
k

(23)
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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being the eigenvalue λmax
k the maximum of all the eigenvalues

over the domain at every time and CFL � 1 the Courant–

Friedrichs–Lewy (Kubrusly & de Moura ) condition.
Well-balanced hydrostatic reconstruction

The original FORCE scheme (Toro ) was proposed for

homogeneous systems, but including source terms into an

enhanced formulation requires a careful treatment in order

to ensure the well-balanced property of the numerical

scheme when dealing with flow steady states. The well-

balanced FORCE version proposed here, which balances

the source terms integral with the intercell numerical

fluxes, uses the hydrostatic reconstruction method (Audusse

et al. ; Mahdavi & Talebbeydokhti ) as well as a

correct treatment of the wet–dry front for both layers.

The main idea is to formulate the discrete source term at

cell i and the numerical fluxes at the intercell edges i� 1
2
and

iþ 1
2
to achieve the balance between the convective fluxes

and the source terms during the time step:

F �
iþ1

2
� F �

i�1
2
� S�

i ¼ 0 (24)
The condition (24) requires to reconstruct the discrete

values of the set of conserved variables at the left and

right sides of the iþ 1
2
intercell edge, U�

iþ1
2
and Uþ

iþ1
2
, respect-

ively. Moreover, it is necessary to define the degrees of

freedom on the integrated source term S�
i (Equation (20)),

i.e. the virtual pressure surface variations (Δξ1,i,Δξ2,i) and

the averaged depth (~h1,i and ~hi,2).

There exist two different conditions which require the

maintenance of the static equilibrium state. First, under

null velocity and horizontal free surface level conditions,

zs,i ¼ zs,iþ1, the solution must remain in equilibrium if the

density of both layers is equal, i.e. r ¼ 1=1, regardless of

the position of the interface surface zω (Figure 3(a)).

Second, under null velocity and horizontal free and inter-

face surfaces, zs,i ¼ zs,iþ1 and zω,i ¼ zω,iþ1, the static

equilibrium must remain unaltered for any value of the

density ratio r (Figure 3(b)). The proposed hydrostatic

reconstruction method is based on the proper definition of

the virtual pressure surfaces ξ1 and ξ2, as well as the virtual



Figure 3 | Hydrostatic equilibrium conditions: (a) static equilibrium with density ratio r ¼ 1=1 and (b) static equilibrium with horizontal free and interface surfaces.
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free surfaces η1 and η2, for both the upper and the lower

layers respectively.

For the upper layer, the virtual pressure surface ξ1 at

cells i and iþ 1 is defined as:

ξ1,i ¼ zb,i þ h2,i

ξ1,iþ1 ¼ zb,iþ1 þ h2,iþ1

(25)

and the virtual free surface η1 at cells i and iþ 1 can be

expressed as:

η1,i ¼ ξ1,i þ h1,i

η1,iþ1 ¼ ξ1,iþ1 þ h1,iþ1

(26)

which agree with the physical interface surface zω and the

physical free surface zs, respectively (Figure 4). The average
Figure 4 | Hydrostatic reconstruction of the upper layer under equilibrium condition.

://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
value of the virtual pressure surface for the upper layer at the

edge ξ1,iþ1
2
can be computed as:

ξ1,iþ1
2
¼ 1

2
(ξ1,i þ ξ1,iþ1) (27)

The first component of the reconstructed conserved vari-

ables U�
iþ1

2
and Uþ

iþ1
2
, i.e. the upper layer depth, is defined as:

h�
1,iþ1

2
¼ η1,i � ξ1,iþ1

2

hþ
1,iþ1

2
¼ η1,iþ1 � ξ1,iþ1

2

(28)

From this, the second component of the reconstructed

conserved variables at the intercell edge iþ 1
2
, associated

with the upper layer discharge, is defined as:

(hu)�1,iþ1
2
¼ h�

1,iþ1
2
u1,i

(hu)þ1,iþ1
2
¼ hþ

1,iþ1
2
u1,iþ1

(29)

being u1,i and u1,iþ1 the upper layer velocities at cells i

and iþ 1, respectively. Under hydrostatic equilibrium,

(hu)�1,iþ1
2
¼ (hu)þ1,iþ1

2
¼ 0 and there exists a constant free

surface η1,i ¼ η1,iþ1 for both configurations depicted in

Figure 3. Therefore, in this case h�
1,iþ1

2
¼ hþ

1,iþ1
2
. Replacing in

Equation (24), the homogeneous numerical fluxes balance

at cell i for the upper layer can be expressed as:

F �
1,iþ1

2
� F �

1,i�1
2
¼

0
1
2
g h�

1,iþ1
2

� �2
� hþ

1,i�1
2

� �2� �0
@

1
A (30)
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Therefore, to ensure the static equilibrium, the averaged

depth ~h1,i and the virtual pressure surface variation Δξ1,i pre-

sent in the pressure force term ~Sp1,i for the upper layer at cell

i (21) should be defined as:

~h1,i ¼ 1
2

h�
1,iþ1

2
þ hþ

1,i�1
2

� �
Δξ1,i ¼ ξ1,iþ1

2
� ξ1,i�1

2
¼ hþ

1,i�1
2
� h�

1,iþ1
2

(31)

and hence F �
1,iþ1

2
� F �

1,i�1
2
¼ S�

1,i.

Analogously, for the lower layer, the virtual pressure

surface ξ2 at cells i and iþ 1 is:

ξ2,i ¼ zb,i þ rh1,i

ξ2,iþ1 ¼ zb,iþ1 þ rh1,iþ1

(32)

and the virtual free surface η2 at cells i and iþ 1 is:

η2,i ¼ ξ2,i þ h2,i

η2,iþ1 ¼ ξ2,iþ1 þ h2,iþ1

(33)

The reconstruction scheme focusing on the lower layer

is depicted in Figure 5. Note that the effect of the upper

layer is included in the virtual pressure surface. The average

value of the virtual pressure surface for the lower layer at the
Figure 5 | Hydrostatic reconstruction of the lower layer under equilibrium condition.

om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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edge ξ2,iþ1
2
can be computed as:

ξ2,iþ1
2
¼ 1

2
(ξ2,i þ ξ2,iþ1) (34)

The third component of the reconstructed conserved

variables U�
iþ1

2
and Uþ

iþ1
2
, the lower layer depth, is defined as:

h�
2,iþ1

2
¼ η2,i � ξ2,iþ1

2

hþ
2,iþ1

2
¼ η2,iþ1 � ξ2,iþ1

2

(35)

From this, the fourth component of the reconstructed

conserved variables at the intercell edge iþ 1
2
, associated

with the lower layer discharge, is:

(hu)�2,iþ1
2
¼ h�

2,iþ1
2
u2,i

(hu)þ2,iþ1
2
¼ hþ

2,iþ1
2
u2,iþ1

(36)

being u2,i and u2,iþ1 the lower layer velocities at cells i

and iþ 1, respectively. Under hydrostatic equilibrium,

(hu)�2,iþ1
2
¼ (hu)þ2,iþ1

2
¼ 0 and the virtual free surface for the

lower layer is constant η2,i ¼ η2,iþ1 for both equilibrium con-

figurations depicted in Figure 3, hence also for the lower

layer h�
2,iþ1

2
¼ hþ

2,iþ1
2
.

Following the same procedure as for the upper layer, the

averaged depth ~h2,i and the virtual pressure surface variation

Δξ2,i present in the pressure force term ~Sp2,i for the lower

layer at cell i Equation (21) should be defined as:

~h2,i ¼ 1
2

h�
2,iþ1

2
þ hþ

2,i�1
2

� �
Δξ2,i ¼ ξ2,iþ1

2
� ξ2,i�1

2
¼ hþ

2,i�1
2
� h�

2,iþ1
2

(37)

and hence F �
2,iþ1

2
� F �

2,i�1
2
¼ S�

2,i.
Wet–dry fronts treatment

In order to ensure a correct treatment of the wet–dry fronts

in both layers, the pressure force source term ~Sp1,i and ~Sp2,i

at the upper and lower layer Equation (21), respectively, can
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be decomposed as:

~Sp1,i¼ ~S
þ
p1,i�1

2
þ~S

�
p1,iþ1

2
¼ 1

2
g hþ

1,i�1
2

� �2� �
þ �1

2
g h�

1,iþ1
2

� �2� �

~Sp2,i¼ ~S
þ
p2,i�1

2
þ~S

�
p2,iþ1

2
¼ 1

2
g hþ

2,i�1
2

� �2� �
þ �1

2
g h�

2,iþ1
2

� �2� �
(38)

and hence Equation (24) can be rewritten as:

F �
iþ1

2
� S��

iþ1
2

� �
� F �

i�1
2
þ S�þ

i�1
2

� �
¼ 0 (39)

Therefore, considering a wet–dry configuration for the

upper layer at the intercell edge iþ 1
2
defined as:

h1,i ≠ 0 h1,iþ1 ¼ 0

zb,i þ h2,i þ h1,i < zb,iþ1
(40)

in order to guarantee that the well-balanced property of the

numerical scheme is maintained for the upper layer even at

wet–dry conditions, it is enough to ensure that:

F �
1,iþ1

2
� S��

1,iþ1
2
¼ 0 (41)

independently of the values of h2,i and h2,iþ1.

Similarly, considering a wet–dry configuration for the

lower layer at the intercell edge iþ 1
2
defined as:

h2,i ≠ 0 h2,iþ1 ¼ 0

zb,i þ h2,i < zb,iþ1
(42)

ensuring the well-balanced property for the lower layer

requires that:

F �
2,iþ1

2
� S��

2,iþ1
2
¼ 0 (43)

independently of the values of h1,i and h1,iþ1.

The terms S��
1,iþ1

2
and S��

2,iþ1
2
in Equations (41) and (43) are

the integrated source term at the intercell edge iþ 1
2

for

the upper and lower layers, respectively, which can be
://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
expressed as:

S��
iþ1

2
¼

S��
1,iþ1

2

S��
2,iþ1

2

 !
¼

0
�~S

�
p1,iþ1

2
� ~S

�
τ1,iþ1

2

0
�~S

�
p2,iþ1

2
� ~S

�
τ2,iþ1

2

0
BBB@

1
CCCA (44)

being ~S
�
p1,iþ1

2
and ~S

�
p2,iþ1

2
the integrated pressure terms

Equation (38); and ~S
�
τ1,iþ1

2
and ~S

�
τ2,iþ1

2
the integrated friction

term at the left side of the intercell edge iþ 1
2
for the upper

and lower layers, respectively, which can be expressed as:

~S
�
τ1,iþ1

2
¼ 1

2

~Tω

ρ1

 !
i

~S
�
τ2,iþ1

2
¼ � 1

2

~Tω

ρ2

 !
i

þ 1
2

~Tb

ρ2

 !
i

(45)
REFERENCE SOLUTIONS FOR TWO-LAYER STEADY
FLOW

A simple method, based on the procedure reported by

MacDonald () for steady single-layer flows, is presented

in this section to obtain high-accuracy numerical solutions

for 1D steady two-layer flow cases. In order to validate the

proposed model, reference solutions obtained with this

method for different steady flows are going to be compared

with the numerical results obtained for the same flows with

the well-balanced FORCE scheme.

Following MacDonald (), in steady states
@( � )
@t

¼ 0,

therefore system (1) can be simplified to:

dq1
dx

¼ 0

d
dx

q21
h1

þ 1
2
h2
1

� �
¼ �gh1

dzb
dx

� gh1
dh2

@x
� τω
ρ1

dq2
dx

¼ 0

d
dx

q22
h2

þ g
1
2
h2
2

� �
¼ �gh2

dzb
dx

� gh2r
dh1

dx
þ τω
ρ2

� τb
ρ2

(46)

being q1 and q2 the flow discharge per unit width of the

channel at the upper and lower layers, respectively,



Figure 6 | Scheme for the two-layer exact steady solution method.
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q1 ¼ h1u1 and q2 ¼ h2u2. Defining the dimensionless

Froude number as Fr1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(q21)=gh

3
1

q
for the upper layer and

Fr2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(q22)=gh

3
2

q
for the lower layer, system (46) can be sim-

plified to:

dh1

dx
(1� Fr21) ¼ � dzb

dx
þ dh2

dx

� �
� τω
gh1ρ1

dh2

dx
(1� Fr22) ¼ � dzb

dx
þ r

dh1

dx

� �
þ τω
gh2ρ2

� τb
gh2ρ2

(47)
Energy equations for both layers can also be obtained

with a spatial integration of (47):

dE1

dx
¼ � τω

h1ρ1

dE2

dx
¼ þ τω

h2ρ2
� τb
h2ρ2

(48)

with:

E1 ¼ 1
2
u2
1 þ g(zb þ h2 þ h1)

E2 ¼ 1
2
u2
2 þ g(zb þ rh1 þ h2)

(49)

Starting from an arbitrary function of the upper layer

depth h1(x), in order to obtain reference solutions for the

lower layer depth h2(x) and the bed elevation zb(x), system

(47) is solved using an ODE-solver. In this work, the

solver ode45 implemented in Matlab was used to obtain

all the exact two-layer steady solutions. It is worth noting

that the reference solutions obtained for h2(x) and zb(x)

using this method represent high-accuracy numerical

approximations to those exact solutions.

The necessary input flow features for each layer are the

densities ρ1 and ρ2, the unit flow discharges q1 and q2, the

inlet boundary values for the lower layer depth h2(x ¼ 0)

and bed elevation zb(x ¼ 0), the friction coefficient at the

interface surface Cfω and the Manning roughness coefficient

nb at the bed surface. The method is summarised on

Figure 6.

Three steady two-layer flow cases are presented with

different density ratios, flow regimes at upper and lower

layers and friction coefficients with the purpose of showing

cases of interest whose high-accuracy numerical solution

has been obtained with the method proposed. All of them
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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consider the spatial domain 0 m< x< 150 m. The upper

layer depth function h1(x) used in all the cases was similar

to the one proposed by MacDonald () for the single-

layer analytical case:

h1(x) ¼ 0:8þ 0:25e�33:75 x
150 � 1

2

	 
2
(m) (50)
The required input values for each two-layer steady flow

case are shown in Table 1. Case 1 consists of two layers with

nearly equal densities (r ¼ 1=1:5), with the lower layer under

supercritical conditions and the upper layer under subcriti-

cal flow regime. Case 2 consists of a two-layer steady flow

with both layers under subcritical flow regime and density

ratio r ¼ 1=3. Both cases 1 and 2 are frictionless at the inter-

face and the bed surfaces. Finally, Case 3 includes a density

ratio r ¼ 1=3 and frictional momentum exchange at the

interface and bed surface. The reference solutions obtained

for each hypothetical case have been shown and compared

with the numerical results in section ‘Two-layer steady state

tests’.
NUMERICAL RESULTS

In this section, the proposed numerical scheme for the two-

layer system is used to solve a set of different problems.

Three different conditions are considered in order to vali-

date the numerical behaviour of the proposed scheme: the

lake-at-rest benchmarking test, steady flows and highly tran-

sient dam-break flows.

Two-layer lake-at-rest tests

This benchmarking test aims to demonstrate the well-

balanced character of the FORCE scheme supplemented

with the proposed hydrostatic reconstruction, even



Table 1 | Input values for the two-layer steady cases considered

ρ2 ρ1 q2 q1 zb(0) h2(0) Cfω nb

Case (kg/m3) (kg/m3) (m2=s) (m2=s) (m) (m) (s2=m2) (s=m1=3)

1 1,150 1,000 1.0 1.0 1.0 0.4 0.0 0.0

2 3,000 1,000 0.8 1.2 1.0 0.4 0.0 0.0

3 3,000 1,000 0.4 1.0 1.5 0.4 0.01 0.04
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including the presence of wet–dry fronts in both layers. Any

numerical method is said to be well balanced if under lake-

at-rest conditions, i.e. horizontal free surface and null vel-

ocity, no instabilities appear and the static equilibrium is

preserved. The hydrostatic reconstruction (3.1) included in

FORCE allows the method to fulfil this condition for any

value of the parameter α (17) or density ratio r.

A spatial domain 0 m< x< 100 m is considered with

Δx ¼ 1 m. Both the bed level zb and the interface level

zb þ h2 are arbitrarily defined as shown in Figure 7, includ-

ing different wet–dry configurations in both layers. The

weighting parameter α is set to 0:5, the CFL and the final

simulation time are 0.5 and 2.0 s, respectively. Frictionless

conditions were also set at the bed and interface surfaces.

Two cases are considered with different density ratio r

between upper and lower layer. First, r ¼ 1=1 is set, i.e.

two layers of equal density. Figure 8 shows the layer levels

and discharges for t ¼ 2:0 s. Under this condition, the hydro-

static pressure P2 of the upper layer on the lower layer is

exactly balanced by the term P1 accounting for the variation

of the upper layer depth. Therefore, the numerical scheme is
Figure 7 | Lake-at-rest initial conditions.

://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
able to hold the static equilibrium state without suffering

from any perturbation and preserving the initial interface

surface unaltered with a horizontal upper layer free surface,

as well as null velocities in both layers.

Second, the density ratio between both layers is set to

r ¼ 1=3, i.e. an upper light fluid over a dense fluid. Under

this condition, the hydrostatic pressure P2 of the upper

layer on the lower layer does not balance exactly the

upper layer depth variation term P1, and hence the initial

static equilibrium is lost at the first simulation stages. How-

ever, as time progresses, a new static equilibrium state is

reached and maintained with horizontal interface levels.

Figure 9 (top) shows the interface and free surface temporal

evolution. For the final simulation time t ¼ 2000 s, the inter-

face and free surfaces are horizontal, and the discharge is

null in both layers (Figure 9 (bottom)).

Two-layer steady state tests

In this section, the two-layer steady state cases with refer-

ence solution described in section ‘Reference solutions for



Figure 8 | Lake-at-rest with density ratio r ¼ 1=1: (left) layer levels at t ¼ 2000 s and (right) layer discharges at t ¼ 2000 s.

Figure 9 | Lake-at-rest with density ratio r ¼ 1=3: (left) layer levels temporal evolution and (right) layer discharges temporal evolution.
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two-layer steady flow’ are simulated using the proposed well-

balanced FORCE scheme. Case 1 and 2 are frictionless with

density ratio r ¼ 1=1:15 and r ¼ 1=3, respectively. Case 3

considers a density ratio r ¼ 1=3 and involves friction

momentum exchange terms at both the bed surface and

the interface surface. The set-up parameters for each two-

layer steady state case have been reported in Table 1.

A spatial domain 0 m< x< 150 m is considered with

Δx ¼ 1 m. The chosen CFL is 0:5 for all the simulations

and the weighted parameter α is set to 0:5. At the left bound-

ary cell x ¼ 0 m, a constant discharge is set at both layers,

whereas at the right boundary cell x ¼ 150 m, constant

values for the layer depths and energies are also imposed.

Each simulation is stopped once steady flow regimes are

reached at both layers.

Figure 10 shows the initial condition for Case 1, together

with the bed profile and the reference solution for the two-

layer steady flow calculated in section ‘Reference solutions

for two-layer steady flow’. An initial constant elevation is
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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imposed for the interface, as well as for the free surface. Con-

stant discharges q2 ¼ 1:0 m2=s and q1 ¼ 1:0 m2=s are also

imposed at the initial time along the whole spatial domain.

The interface friction coefficient Cfω is set null, as well as the

Manning’s roughness coefficient nb at the bed surface.

For the two-layer steady flow Case 1, numerical instabil-

ities do not appear using the proposed well-balanced

FORCE scheme. Figure 11 (left) depicts the steady numeri-

cal interface and free surfaces elevation compared to the

reference solution. Although a reasonable agreement is

observed for the interface and free surface elevation, some

differences appear for the flow velocities (see Figure 11

(right)), especially in the lower layer.

In order to identify the influence of the mesh discretisa-

tion, a more refined mesh with Δx ¼ 0:1 m is also tested.

Table 2 shows the root mean square error (RMSE) for the

numerical depth (h1,h2) and velocities (u1,u2) of both

layers compared with the reference solution. The increase

in the mesh refinement leads to slightly lower errors in all



Figure 10 | Case 1: Initial condition for the interface and free surfaces, bed profile and reference solution for the two-layer steady flow.

Figure 11 | Case 1: comparison of numerical and reference solution for (left) interface and free surface elevations and (right) upper and lower layer velocities.

Table 2 | Root mean square errors (RMSE) for Case 1: influence of the mesh discretisation

and the weighting parameter α

Case 1
h1 h2 u1 u2

(m) (m) (m=s) (m=s)

Δx ¼ 1 m 4:9 � 10�3 4:9 � 10�3 6:0 � 10�3 2:99 � 10�2

α ¼ 0:5

Δx ¼ 0:1 m 3:7 � 10�3 4:9 � 10�3 3:9 � 10�3 3:09 � 10�2

α ¼ 0:5

Δx ¼ 1 m 4:3 � 10�3 4:8 � 10�3 4:6 � 10�3 3:06 � 10�2

α ¼ 0:1
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the considered variables, with exception of the lower layer

velocity u2. Furthermore, the influence of the weighting

parameter α is also assessed. The reduction of α ¼ 0:1, main-

taining Δx ¼ 1 m, reduces the diffusivity of the scheme and
://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
also leads to slightly lower errors in all the considered vari-

ables, with exception of the lower layer velocity u2.

However, the mesh refinement is not able to avoid the differ-

ences in the lower layer velocity between the numerical and

the reference solutions, nor the reduction of the weighting

parameter α.

Figure 12 shows the initial condition, bed profile and

reference solution for the two-layer steady flow Case 2. Con-

stant elevations are again imposed for both the interface and

the free surfaces. Constant discharges q2 ¼ 0:8 m2=s and

q1 ¼ 1:2 m2=s are also imposed at the initial time along

the whole spatial domain. The interface friction coefficient

Cfω and the Manning’s roughness coefficient nb at the bed

surface are null.

Figure 13 (left) depicts the steady numerical interface

and free surfaces elevation compared to the reference



Figure 12 | Case 2: Initial condition for the interface and free surfaces, bed profile and reference solution for the two-layer steady flow.

Figure 13 | Case 2: comparison of numerical and reference solution for (left) interface and free surface elevations and (right) upper and lower layer velocities.
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solution. As in the previous case, although a good agreement

is observed for the interface and free surface elevation (see

Table 3) between the numerical results obtained with the

well-balanced FORCE scheme and the high-accuracy sol-

ution obtained with the ODE-solver, marked differences

appears again in the lower layer flow velocity (see Figure 13

(right)).
Table 3 | Root mean square errors (RMSE) for Case 2 and Case 3 with Δx ¼ 1 m and

α ¼ 0:5

Test
h1 h2 u1 u2

(m) (m) (m=s) (m=s)

Case 2 1:41 � 10�2 1:11 � 10�2 1:99 � 10�2 5:96 � 10�2

Case 3 5:50 � 10�3 1:02 � 10�2 7:2 � 10�3 1:03 � 10�2

om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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Figure 14 shows the initial condition, bed profile and

reference solution for the two-layer steady flow Case 3. As

in the previous cases, constant elevations are imposed for

both the interface and the free surfaces. Constant discharges

q2 ¼ 0:4 m2=s and q1 ¼ 1:0 m2=s at the initial time are also

imposed. The interface friction coefficient Cfω is set to

0:01, whereas the Manning’s roughness coefficient nb at

the bed surface is 0:04 ms�1=3.

For this two-layer steady flow Case 3, numerical instabil-

ities do not appear either using the proposed well-balanced

FORCE scheme, despite friction terms being included.

Figure 15 (left) shows the steady numerical interface and

free surfaces elevation compared to the high-accuracy sol-

ution obtained with the ODE-solver, whereas Figure 15

(right) depicts the flow velocities at both layers. A good



Figure 14 | Case 3: Initial condition for the interface and free surfaces, bed profile and reference solution for the two-layer steady flow.

Figure 15 | Case 3: comparison of numerical and reference solution for (left) interface and free surface elevations and (right) upper and lower layer velocities.
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agreement is observed for both the interface and free surface

elevation, as well as for the flow velocities (see Table 3).

Finally, Table 3 shows the RMSE in Case 2 and Case 3

with Δx ¼ 1 m and α ¼ 0:5 for the main variables of both

layers. The highest errors occurs for Case 2, specially for

the layer averaged velocity u2. Case 3 shows lower errors

despite it including the friction dissipation terms.
Two-layer dam-break test

In this section, the proposed well-balanced FORCE scheme

for two-layer flows is faced to a theoretical dam-break case.

Dambreak is a highly transient benchmarking test widely

used for the validation of shallow water numerical methods.

In order to be able to use the single-layer analytical solution

for comparison, the density ratio r is set to 1=1:15, i.e. both
://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
fluids with approximately the same density. A spatial

domain �100 m< x< 100 m is considered with Δx ¼ 1 m.

The final simulation time is 15 s, the CFL condition is set

to 0:5 and the parameter α is equal to 0:25. Friction terms

are null at the bed and interface surfaces. Both layers are

set initially at rest, with a sharp discontinuity at x ¼ 0 m

for the upper layer depth:

h1(x) ¼ 1:5 m if x � 0:0 m
0:5 m if x> 0:0 m

�

h2(x) ¼ 0:5 m if x � 0:0 m
0:5 m if x> 0:0 m

� (51)

Figure 16 shows the numerical results for the interface

and free surface levels at t ¼ 5 s, t ¼ 10 s and t ¼ 15 s. The

exact solution for the single-layer free surface level has also



Figure 16 | Dam-break temporal evolution with r ¼ 1=1:15 and α ¼ 0:25: (top) t ¼ 5 s, (centre) t ¼ 10 s and (bottom) t ¼ 15 s.
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been plotted. As the densities of the upper and lower fluids

are approximately equal, the free surface level evolution

agrees with the exact single-layer solution, despite a marked
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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change appearing at the interface surface. The dam-break

shock wave going to the right direction moves with the

same velocity as the single-layer exact solution. Furthermore,
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also the rarefaction wave going to the left direction agrees in

height and velocity with the exact solution.

In order to analyse the effects of the density ratio vari-

ations, the idealised dam-break test case is also simulated

considering r ¼ 1=1, i.e. both fluid with exactly the same

density, and r ¼ 1=3 accounting for a light fluid over a

dense layer. Figure 17 shows the numerical results for the

interface and free surface levels at t ¼ 5 s, t ¼ 10 s and

t ¼ 15 s. On one hand, for r ¼ 1=1, numerical instabilities

appear at the initial discontinuity region in the interface

between both layers and they propagate as the dambreak

progresses. These instabilities do not disappear when redu-

cing the CFL as they are a consequence of the loss of the

hyperbolic character of the mathematical system (Castro-

Díaz et al. ). However, as the density of both fluids is

equal, these oscillations do not affect the free surface,

which agrees with the exact single-layer solution. On the

other hand, when the density ratio between layers is

r ¼ 1=3, the level changes in the interface are less marked

as the pressure term of the upper layer over the lower

layer P2 is reduced. In this case, the numerical solution is

more stable. The free surface evolution cannot be compared

with the exact solution for the single-layer problem in this

case.

In order to analyse the effects of the weighted parameter

α on the stability and accuracy of the proposed numerical

scheme, the same dam-break test case is simulated consider-

ing r ¼ 1=3 and varying α ¼ 0:5, α ¼ 0:1 and α ¼ 0. As shown

in Figure 18, values of α near to 0:5 lead to diffusive sol-

utions, as the first-order Lax–Friedrich flux dominates the

numerical flux computation. When α is reduced to 0:1, the

Lax–Wendroff formulation, which is second order in time

and space, has a more marked influence on composed

numerical FORCE flux and hence the solution becomes

less diffusive. Nevertheless, when α is exactly 0, a predictable

oscillatory behaviour was observed in the solution, derived

from the pure second-order Lax–Wendroff formulation.

Finally, to demonstrate the capability of the well-

balanced FORCE scheme to deal with two-layer flow con-

figuration which causes loss of hyperbolicity of the

coupled system, the idealised dambreak with r ¼ 1=1 is ana-

lysed. This case shows complex eigenvalues of the coupled

Jacobian matrix (Krvavica et al. ), which make difficult

the computation of the problem based on the coupled
://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
Jacobian. With the well-balanced FORCE scheme, numeri-

cal oscillations appear at the interface since the beginning

and remain afterward (see Figure 17), but the scheme

remains stable for the free-surface computation without

showing a dramatic crash.

Furthermore, although it is not possible to totally avoid

these oscillations, their amplitude can be controlled by

increasing the diffusivity of the scheme. The most effective

way to increase the numerical diffusivity is to decrease the

CFL. The undesirable effects of lower CFL numbers on

the solution accuracy can be partially corrected by tuning

the weighting parameter α. Figure 19 shows the dam-break

temporal evolution with r ¼ 1=1, CFL¼ 0.1 and α ¼ 0:05

on the left. Also the eigenvalues of the coupled Jacobian

matrix have been plotted on the right to show that this

case corresponds to a situation in which the loss of hyperbo-

licity exits. Comparison with Figure 17 shows that the

numerical oscillation amplitude is reduced at the interface

and the free surface is accurately predicted.

Experimental dam-break over movable bed

The proposed scheme is tested against a laboratory case

consisting of a water dambreak over a flat movable bed.

This experimental test (Spinewine & Zech ) consists

of an idealised dam-break flow over a sediment flat bed

made of sand with grain diameter 1:82 mm, density

ρ ¼ 2,683 kg=m3 and porosity p ¼ 0:47. The experiment

was carried out in a 6 m long and 0:25 m wide flume. The

thickness of the sand layer was 5 cm over the flume floor.

Breaking of the dam was reproduced by the downward

movement of a pneumatically actuated thin gate placed at

the middle of the flume. The initial water level was 0:35 m

upstream the gate and nil downstream. The temporal evol-

ution of the free surface and bed surface were reported

experimentally until 1:5 s after the gate opening each 0:25 s.

The simulations have been performed with a cell size

Δx ¼ 0:01 m, CFL ¼ 0:1 and α ¼ 0:5. The turbulent friction

term at the interface between the upper layer (water) and

the lower layer (sand bed) is approximated using a variable

friction coefficient Cfω ¼ n2
ω=h

1=3
1 , being nω ¼ 0:018 ms�1=3 a

Manning-type roughness coefficient. The friction term

between the sand layer and the flume floor is computed

using a Chézy-type formulation, τb ¼ ρ2 g Cfb u2 ju2j, being



Figure 17 | Dam-break temporal evolution for r ¼ 1=1 and r ¼ 1=3, with α ¼ 0:25: (top) t ¼ 5 s, (centre) t ¼ 10 s and (bottom) t ¼ 15 s.
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Cfb ¼ 0:1 s2=m. The upper layer density was ρ1 ¼
1, 000 kg=m3, whereas the bulk density of the sand layer is

estimated as ρ2 ¼ 1, 892 kg=m3.
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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Figure 20 (left) shows the numerical results for the tem-

poral evolution of the water free surface and bed level. The

experimental results have been also plotted for comparison.



Figure 18 | Dam-break temporal evolution with r ¼ 1=3 and α ¼ 0:5, α ¼ 0:1, α ¼ 0: (top) t ¼ 5 s, (centre) t ¼ 10 s and (bottom) t ¼ 15 s.
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In general, a good agreement with measured data can be

found for all the times reported. The free water surface

and the bed level are well predicted and the propagation
://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
velocity of the dam-break wave is accurately captured. Fur-

thermore, the temporal evolution of the velocity in both

layers has been also plotted in Figure 20 (right). The upper



Figure 19 | Dam-break temporal evolution with r ¼ 1=1, CFL¼ 0.1 and α ¼ 0:05: (left column) free surface and interface evolution, (right column) eigenvalues of the coupled Jacobian

matrix.
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layer velocity maximum increases progressively as the dam-

break wave progressed downstream the flume, whereas the

lower layer averaged velocity remains stable along the

dam-break flow.
CONCLUSIONS

This work demonstrates the possibility of simulating two-

layer shallow flows with well-balanced FORCE schemes.

In order to ensure this property, a new hydrostatic recon-

struction procedure has also been proposed which ensures

a correct balance between the homogeneous fluxes and
om http://iwaponline.com/jh/article-pdf/22/5/1015/760758/jh0221015.pdf
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the source terms at the intercell edges even under wet–dry

conditions. Furthermore, in order to obtain new benchmark-

ing tests for steady two-layer flows, a pioneering method to

obtain high-accuracy reference solutions has been reported.

This method allows to consider in the reference solution the

dissipation terms caused by the frictional effects at both the

interface separating fluid layers and the bed surface.

The numerical scheme has been tested against steady

and transient two-layer cases. First, the FORCE scheme sup-

plemented with the hydrostatic reconstruction has been

faced to the lake-at-rest test considering different density

ratios r between fluids and wet–dry configurations in both

layers. The model is able to reach equilibrium states



Figure 20 | Experimental dambreak over movable bed: (left) free surface and bed levels and (right) upper and lower layer velocities. From top to bottom, t ¼ 0:25 s, t ¼ 0:50 s, t ¼ 0:75 s,

t ¼ 1 s, t ¼ 1:25 s and t ¼ 1:5 s.
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regardless of the value of r imposed, proving the well-

balanced property of the scheme. Then, the FORCE model

has been tested against three different two-layer steady

flow cases with reference solution, which have been

obtained by means of the proposed high-accuracy numerical

procedure and including different flow regimes, density

ratios and friction terms. The numerical results show good

agreement with the reference solutions for the three steady

cases and avoiding the appearance of numerical instabilities.

The numerical scheme has also been applied to a two-layer

dam-break test, considering different density ratios. The sen-

sitivity of the FORCE scheme to the value of r has been

analysed. Generally, the model becomes more stable as the

density ratio decreases, i.e. as the lower layer increases its

density respect to that of the upper layer. When the density

ratio between layers is r ¼ 1=1, the mathematical two-layer

coupled system loses its hyperbolic character. However,

this method is able to deal with the instabilities associated

by increasing the numerical viscosity. The effects of the

weighting parameter α, balancing the first-order Lax–Frie-

drichs flux and the second-order Lax–Wendroff flux at the

cell edges, have also been studied. Results demonstrate

that values of α smaller than the typical value α ¼ 0:5 are

enough to avoid the oscillatory character of the pure Lax–

Wendroff formulation and to reduce the excessive numeri-

cal diffusion associated with the Lax–Friedrichs scheme.

Finally, the proposed scheme has been tested against an

experimental dam-break over movable flat bed case, invol-

ving the advance of a wet–dry front. The scheme is able to

predict with reasonable accuracy the free surface evolution

and the movable bed changes. The obtained results show

the big potential of FORCE scheme, supplemented with

the proposed hydrostatic reconstruction method, to be

used as modelled tool on real two-layer shallow-flow

applications.
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