
Supplementary Material

1. Conservation equations

The evolution of a mixed-gas system is governed by the �ow dynamics, the chemical reactions and

the turbulence modeling. The set of transport equations represent the conservation of mass, momentum,

energy and chemical species. These governing equations are brie�y described in this section. For more

in-depth scienti�c detail, the reader may consult for example [1].

The conservation equation for a generic variable φ (velocity components, enthalpy, energy, mass

fractions...) that governs the �uid �ow is

∂(ρφ)

∂t
+∇ · (ρφ~v)−∇ · (Γφ∇φ) = Sφ , (1)

where ∇ is a vector di�erential operator ( ∂
∂x ,

∂
∂y ,

∂
∂z ), ρ is the �uid density, ~v = (u, v, w) is the velocity

vector, Γφ the di�usion coe�cient and Sφ the source term. Both the �uid density and the di�usion

coe�cient are �uid properties. This conservation equation is also known as the transport equation.

Hence, the �rst term is the temporal variation of φ, the second one is the convective term and the third

one is the di�usive term.

1.1. Navier-Stokes equations

Mass and momentum conservation are described by the well-known Navier-Stokes equations. The

PDE of the mass conservation is the so-called continuity equation,

∂ρ

∂t
+∇ · (ρ~v) = 0 , (2)

where ρ and ~v are the density and the velocity vector of the mixture respectively. Usually, in most of

the combustion problems, the density is calculated using the ideal gas law as

ρ =
PM

RT
, (3)

with R being the universal gas constant, P the total pressure, T the temperature and M the average

molecular weight of the mixture, de�ned as

M =

(
Nα∑
α=1

Yα
Mα

)−1
, (4)

where Yα and Mα are the mass fraction and the molecular weight of the species α respectively.



On the other hand, the momentum conservation is derived from the Newton's Second Law, and it is

described by

∂

∂t
(ρ~v) +∇ · (ρ~v~v) = −∇P +∇ · τ + ρf , (5)

where f are the body forces acting on the �uid and τ is the viscous stress tensor related with the

surface forces. In this type of problems, gravitational acceleration (g) is the only body force that has to

be taken into account.

Since the mixture of gases can be considered as a Newtonian �uid, the stress tensor is expressed as

τ = µ (∇~v + (∇~v)′)− 2

3
µ(∇ · ~v)I , (6)

with µ being the dynamic viscosity and I the identity tensor.

1.2. Chemical species conservation

In a mixture of Nα species, the mass fraction of a single chemical species is de�ned by

Yα =
mα

mT
, (7)

where mα is the mass of the species α and mT is the total mass of the mixture. In terms of the mass

fraction, the species conservation for a single species is described by

∂

∂t
(ρYα) +∇ · (ρ~vYα) = −∇ · Jα + Sα, α = 1, ..., Nα , (8)

where Jα and Sα are the di�usive �ux and the net formation rate of the species α respectively.

The di�usive �ux, Jα, has three components: the gradient of species, the gradient of temperature (Soret

e�ect), and the gradient of pressure. The e�ect of temperature and pressure gradients is usually neglected

in combustion �uxes [2]. Therefore, Jα only considers the mass di�usion due to the gradient of species,

according to the Fick's Law. In terms of the Schmidt number, Sc, the di�usive �ux of a species can be

written as

Jα = −Γα∇Yα = − µ

Scα
∇Yα , (9)

where the Schmidt number of the species α, Scα , is de�ned by

Scα =
µ

Dαρ
, (10)

being Dα the di�usion coe�cient of the species α.



1.3. Energy conservation

Total energy in a �uid volume is, in general, the sum of internal energy u, kinetic energy k, and

potential energy p:

e = u+ k + p . (11)

By introducing the relationship between internal energy u and enthalpy H, described as

u =
H + PV

mT
, (12)

where V is the total volume of the mixture, the conservation equation for the energy can be described

with the following enthalpy transport equation:

∂

∂t
(ρh) +∇ · (ρvh) =

∂P

∂t
+ v · ∇P −∇ · Jh + Φv + Sh . (13)

Enthalpy h can be de�ned in terms of the speci�c enthalpy hα of each species α, as:

h =

Nα∑
α=1

Yαhα (14)

hα = h0α +

∫ T

T0

Cp,α(T )dT , (15)

where Cp,α is the speci�c heat at constant pressure of species α and h0α the speci�c enthalpy of

formation at the reference temperature, T0.

Pressure terms in Eq. 13 can be neglected in the context of this thesis because they are only relevant

when large pressure gradients are present (e.g. detonation problems [2]). Besides, the term Φv, which

represents the viscous dissipation, can be also neglected. Hence, Eq. 13 is simpli�ed as:

∂

∂t
(ρh) +∇ · (ρ~vh) = −∇ · Jh + Sh , (16)

where Jh represents the heat di�usive �ux and Sh accounts for any additional volumetric source term

of enthalpy. The heat di�usive �ux, Jh, has also three components: the gradient of temperature (Fourier's

Law), the gradient of concentrations (Dufour e�ect) and the last one related with the di�usive �ux of the

chemical species. In combustion problems, the last two terms are often neglected [2]. Thus, the term Jh

is expressed by the Fourier's Law as

Jh = −κ∇T , (17)

being κ the thermal conductivity of the mixture.



2. Passive transported scalar

The de�nition of a passive transported scalar in a CFD code can be used to track any stream that

enters the system. This marker physically follows the �ow coming from the corresponding inlet boundary

condition by solving an additional transport equation similar to Eq. 1. This equation captures all the

phenomena (unsteadiness, convection, and di�usion) of a scalar φ, which stands for the concentration of a

generic species. The so-called 'passive' term implies that it does not undergo any creation or destruction

process in the �ow, so the source terms (Sφ) are null. The procedure can be summarized in the following

steps:

1. Enable a generic transport equation (Eq. 1) for the whole �uid zone.

2. Specify the boundary conditions of the scalar (φ) as:

� primary stream (in this case, partially premixed air-fuel inlet) → Scalar marker φ = 1,

� secondary air stream (air co�ow) → Scalar marker φ = 0.

3. De�ne the e�ective di�usivity of the scalar φ as

Γφ = Γ + Γt, (18)

which takes into account both the molecular (Γ) and the turbulent (Γt, if applicable) contribution.

Both di�usion terms can be estimated by invoking the Schmidt number Sc de�nition as in Eqs. 9

and 10.

4. Solve the transport equation, enabling the location of the spatial distribution of primary and

secondary air:

� φ = 1 → 100% primary air, 0% secondary air.

� φ = 0 → 0% primary air, 100% secondary air.

5. Given the local mass fraction of oxygen (YO2), obtain the corresponding fractions that come from

either the primary or the secondary streams:

� (YO2)prim = YO2 ∗ φ

� (YO2)sec = YO2 ∗ (1− φ)
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