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The core microbiota of plants exerts key effects on plant performance and

resilience to stress. The aim of this study was to identify the core endophytic

mycobiome in U. minor stems and disentangle associations between its

composition and the resistance to Dutch elm disease (DED). We also defined

its spatial variation within the tree and among distant tree populations. Stem

samples were taken i) from different heights of the crown of a 168-year-old elm

tree, ii) from adult elm trees growing in a common garden and representing a

gradient of resistance to DED, and iii) from trees growing in two distant natural

populations, one of them with varying degrees of vitality. Endophyte

composition was profiled by high throughput sequencing of the first internal

transcribed spacer region (ITS1) of the ribosomal DNA. Three families of yeasts

(Buckleyzymaceae, Trichomeriaceae and Bulleraceae) were associated to DED-

resistant hosts. A small proportion (10%) of endophytic OTUs was almost

ubiquitous throughout the crown while tree colonization by most fungal taxa

followed stochastic patterns. A clear distinction in endophyte composition was

found between geographical locations. By combining all surveys, we found

evidence of a U. minor core mycobiome, pervasive within the tree and

ubiquitous across locations, genotypes and health status.

KEYWORDS

fungal endophytes, metabarcoding, plant-fungal interactions, Dutch elm disease, core
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1 Introduction

The endophytic assembly in deciduous plant tissues (e.g. annual plants, and deciduous

leaves) is largely configured each season through horizontal transmission, when priority

effects appear to be crucial (Toju et al., 2018b; Ridout et al., 2019; Debray et al., 2022).

However, the assembly of endophytes in perennial organs (e.g. tree stems) is likely more

complex (Saikkonen, 2007). Studies in crop plants and forest trees have reported consistent
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co-occurrence of endophytic assemblages known as core

microbiomes, i.e., assemblages of microbes that constantly reside

in the plant and are shared among conspecific hosts (Shade and

Handelsman, 2012; Thomas et al., 2019; Noble et al., 2020). These

core microbes are part of functional networks that positively or

negatively affect host performance (Bonito et al., 2019). However,

little is understood about core microbes of perennial organs and the

extent to which their assembly is shaped by random colonization,

environmental cues or active host recruiting factors (Müller et al.,

2016). Perhaps because sampling in large tree crowns presents

methodological difficulties, the diversity and spatial distribution

of endophytes in long-lived trees remain largely unexplored.

Numerous environmental factors can potentially affect plant

colonization by endophytes, including age, light availability, spatial

distance from soil, and microclimate within the crown (Johnson

and Whitney, 1989; Helander et al., 1993; Bahram et al., 2022). The

endophytic composition can be also affected by host geographical

location and host vitality (Agostinelli et al., 2018). Indeed, some

endophytes that colonize long-lived trees are facultative

saprotrophs or necrotrophs living in a cryptic phase (Carroll,

1988; Baum et al., 2003). Through environmental filtering, local

climatic conditions (e.g. temperature, humidity and rainfall) can

strongly influence the production and release of microbial

propagules with potential to invade tree tissues (Zimmerman and

Vitousek, 2012; Giauque et al., 2019). Furthermore, host-specific

traits can drive an active recruitment of microbes (Cregger et al.,

2018; Gallart et al., 2018). For instance, a genotype-dependent

production of defense compounds against pathogens was shown

to alter endophyte community assembly in maize (Saunders and

Kohn, 2009). As a consequence of host and environmental effects

on microbiomes, the composition of the surrounding vegetation

and changes in land use can alter endophyte community at stand

level (Li et al., 2019). In sum, endophyte assembly is conditioned by

complex interactions among plants, microbes and the environment.

The current pandemic of Dutch elm disease (DED) is caused by

Ophiostoma novo-ulmi. Since the beginning of the past century,

DED has caused massive loss of elm trees native to Europe and

North America (Martıń et al., 2019b). The disease is vectored by

elm bark beetles in the genera Scolytus and Hylurgopinus, or

transmitted through root contacts. After inoculation, the fungus

establishes in internal plant tissues, where it sporulates and spreads

systemically, causing massive occlusion and embolism of xylem

vessels. In most cases, infection ultimately leads to a wilt syndrome

and tree death (Ouellette and Rioux, 1992), although some

individuals are able to survive as recruiting trees through disease-

resprouting cycles (Brasier and Webber, 2019). The composition of

endophytic fungi in elms remains largely unexplored. A previous

study showed that endophyte diversity in elms was influenced by

host location and genotype (Martıń et al., 2013), and that the

diversity of the mycobiome in the xylem (but not in leaves or bark)

of elm trees susceptible to DED was higher than in resistant trees.

However, this study addressed only the culturable fraction of

endophytes, which account for less than 5% of the total fungal

richness within a tree (authors, personal observation).

Elm resistance to DED is affected by multiple factors, including

the genetic make-up of hosts and pathogens, and their interaction
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with the environment (Martıń et al., 2021). The role of microbiome

in tree resistance remains poorly understood, although in ash

dieback complex associations between endophytes and host

genotypes seem to condition the outcome of disease (Griffiths

et al., 2020). It is becoming clearer that certain endophytic

infections trigger systemic responses in plants (Mejıá et al., 2014)

in certain cases priming plant defense against pathogens, as was

recently evidenced in the case of the elm-O. novo-ulmi pathosystem

(Martıńez-Arias et al., 2021a). Some endophytes may also produce

antimicrobial metabolites, enzymes, hormones and other bioactive

compounds, enhancing host resistance (Hardoim et al., 2015; Busby

et al., 2016; Martıńez-Arias et al., 2021c). In particular, the core

microbiome of a plant seems to exert key effects on plant

performance and resistance to various stressors (Shade and

Handelsman, 2012; Toju et al., 2018a). Following this concept,

core taxa associated with elms probably perform essential functions,

including protection against disease.

The general aim of this study was to identify the core

endophytic mycobiome in U. minor stems as a first step to

unravelling the ecology of elm microbial consortia. To address

this aim we studied: i) the spatial variation of endophyte

composition within the aerial part of a mature tree and between

distant geographical locations; ii) the endophyte composition of ten

U. minor trees showing a gradient of resistance level to O. novo-

ulmi; and iii) the fungal composition of six large U. minor trees

showing different vitality levels but growing in the same location.
2 Materials and methods

2.1 Plant material

To determine how tree stem fungal microbiome is structured,

we sampled wood tissue from twigs (1-2 cm diameter) and trunks

(5-cm cores at breast height) from trees at four locations in Spain in

the spring of 2012. We focused on stem endobiome because it is a

perennial tissue, in which microbiome interactions have time to

evolve and mature, and because the agent responsible for DED is a

vascular pathogen and therefore mostly interacts with the xylem

microbiome. To prevent inclusion of epiphytic flora, the external

layer of the bark (periderm) was manually extirpated after the

collection. The stem tissues analyzed were xylem and the

remaining phloem.

2.1.1 Within-tree mycobiome variation
Ten spots were sampled within the crown and on the stem of a

landmark Ulmus minor tree (Somontes, Madrid, Spain; Figure 1;

‘landmark tree’). The samples comprised eight twigs from the

crown at four heights (3, 8, 13 and 18 m) and two orientations

(north and south), and two trunk cores (same orientations). Cores

were extracted using a sterilized core drill. The 25-m tree was a

lingering monumental elm. Common garden tests on clones

generated from its cuttings showed that the tree was not

genetically resistant to DED (data not shown), and in 2014 it died

after an exceptionally harmful DED outbreak.
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2.1.2 Wood mycobiome and elm DED resistance
The second sampling was at the elm clonal bank (common

garden setup) at the Puerta de Hierro Forest Breeding Centre

(Madrid; Figure 1), the headquarters of the Spanish elm breeding

program. The clonal bank has around 250 genotypes from Spain,

including seven DED-resistant genotypes (Martıń et al., 2015). Four

twigs were collected from scaffold branches in 10 trees

(Supplementary Table 1) catalogued as resistant (n=3; V-AD2;

M-RT1.5; M-DV5), intermediately susceptible (n=4; CR-RD2;

GR-HL2; J-CA2; MA-PD2), or susceptible (n=3; GR-DF3; M-

DV1; TO-PB1). Samples were collected at four spots per tree to

ensure accurate representation of the endophyte composition and

mitigate any effect of local infections (see below). All twigs were

collected from the lower half of the crown, to a height of 4 m.

The level of resistance to DED of the 10 U. minor clones

sampled at the clonal bank was determined during screening tests

at the Spanish elm breeding program at Puerta de Hierro Forest

Breeding Centre (Madrid, Spain) (Supplementary Table 1,

Supplementary Text). The 10 trees sampled have been never

artificially inoculated with the DED pathogen.

2.1.3 Variation in trees differing
in vitality phenotype

Following the same protocol as in the clonal bank, twigs from

six trees were collected from a natural U. minor stand in the

municipality of Rivas-Vaciamadrid (Rivas population; ‘Madrid

province’; Figure 1). This population lacks genetically resistant

clones (tested in a common garden) but has not been eradicated

by DED. The reasons behind this elusion are unclear but could be

due to phenotypic avoidance due to the effect of biotic or abiotic

factors. The stand is nonetheless showing clear signs of dieback, in

part because of DED infections but various other undetermined

causes might be playing a role. Most trees in this stand belong to the
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susceptible U. minor var. vulgaris. This taxon presents very low

genetic variability, because it originated from a single U. minor tree,

the Atinian elm (Gil et al., 2004). Indeed, these trees are genetically

similar to the clone TO-PB1, another U. minor var. vulgaris

specimen held at the Breeding Centre (and included in the clonal

bank collection). We collected samples from trees ranging various

health statuses (Supplementary Figure 1). Those health statuses

(named RIV1 to RIV6) were scored visually from 1 (no symptoms)

to 6 (profuse dieback symptoms).

2.1.4 Variation among geographical locations
Using the same protocol as in the clonal bank, three trees from a

small, natural stand in the province of Burgos (approximately 150

km north of the other locations; Figure 1) were sampled to provide a

background reference of endophyte diversity and composition of

the populations in Madrid province.
2.2 DNA isolation, amplification and NGS

After the collection, samples were sterilized, peeled, frozen and

ground. All these steps were carried out in a laminar flow cabinet to

minimize contaminations. The four twig samples taken from each

individual tree at the clonal bank, Rivas and Burgos populations were

combined and milled together, resulting in one pool of wood powder

per sampled tree. DNA was isolated from the powder after enzymatic

digestion to improve recovery of fungal DNA. Zirconium oxide beads

were added during vortexing to increase cell wall lysis. Endophyte

composition was profiled by high throughput sequencing of the first

internal transcribed spacer region (ITS1) of the ribosomal DNA.

Sequencing effort was uneven among experiments, prioritizing the

landmark tree samples, which were also the first to be processed to

determine the level of resolution needed in subsequent experiments.

The clonal bank experiment followed in sequencing effort, to attain

accurate values of endophyte abundance for identifying potential

associations with DED resistance. The Burgos population was only

shallowly sequenced since, as an outgroup, was only intended to test for

ubiquity of microbiome elements detected in the other populations.

DNA amplification was performed in two steps: (1) to cover the target

region with oligonucleotides that contained the specific fungal primer

ITS1-F (Gardes and Bruns, 1993) or the non-specific primer ITS2

(White et al., 1990); (2) to attach the adaptors for the sequencing

platform. After the second PCR, the product of all the samples was

quantified, pooled equimolarly and pyrosequenced in a 454 GS FLX

Titanium platform (Roche, Basel, Switzerland). A negative control

sample was created by autoclaving collected twigs three times and then

applying to them the same protocols previously described. A more

detailed description of these methods is available in the

Supplementary Text.
2.3 Bioinformatic pipeline

The bioinformatic treatment of pyrosequencing output was

performed following the guidelines of Lindahl et al. (2013).
FIGURE 1

Geographical location of the four collection sites.
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Demultiplexing, denoising, dereplication, dechimerization and

sequence truncation processes were carried out using the default

values of the RunTitanium script developed in AmpliconNoise

v1.29 (Quince et al., 2011; Supplementary Text). The ITS1 region

was then extracted from the sequences using FungalITSextractor

(Nilsson et al., 2010).

Although AmpliconNoise creates OTUs (Operational

Taxonomic Units) by collapsing identical sequences, we further

clustered them with the grammar-based software GramCluster 1.3

(Russell et al., 2010) in greedy mode to build new OTUs,

allowing higher variation among sequences. This program was

run on the whole dataset (i.e. pooling the output of all samples)

to build OTUs across all samples, allowing subsequent among-

sample comparisons.
2.4 Taxonomic assignment

Taxonomic composition was investigated using the naïve

Bayesian classifier method implemented in R package dada2 v.

1.22.0 (Wang et al., 2007; Callahan et al., 2016). We used the last

available UNITE release (16/10/2022) (Kõljalg et al., 2005; Nilsson

et al., 2019; Kõljalg et al., 2020) as the reference curated database.

For OTUs of special interest, we carried out BLAST searches on the

NCBI database to double-check the assignment provided by dada2

using the UNITE database.
2.5 Diversity estimates and
hypothesis contrasts

Commonly used diversity indices were estimated for each

sample collected, using the counts per OTU as taxonomic

information. Shannon’s H and Simpson’s l indices, and species

richness on counts rarefacted to 500, were calculated using R

package “vegan” v. 2.6.4 (Oksanen et al., 2015). Statistical

analyses were performed taking into account that count data in

these types of studies follow a negative binomial distribution as in

RNA-seq experiments (McMurdie and Holmes, 2014). As suggested

by these authors, R package DESeq2 v. 1.34.0 (Love et al., 2014),

which is designed to construct negative binomial models, was used

to examine the data and test for associations between taxonomic

group abundance and resistance to DED. In order to explore the

structure of the samples, DESeq2 was used to perform a variance-

stabilizing transformation of the OTU counts to conduct a standard

Principal Components Analysis. Tests for associations were run on

the clonal bank samples, setting crown wilting percentage (as a

proxy of resistance) as the only explanatory variable. Significance

was calculated with a Wald test and adjusted for multi-testing using

the default DESeq2 approach that estimates False Discovery Rate

adjusted P-values (more details in Supplementary Text). Given the

unreliable taxonomic certainty of OTU formation through

clustering and the possible redundancy in ecological function of

closely related species and genera, we decided to focus on the higher

taxonomic levels (such as family and order).
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2.6 Core microbiome demarcation

The distributions of number of samples in which each OTU was

present (OTU incidence distribution) were used to determine which

OTUs were putatively from the core microbiome, following the

concept of Shade and Handelsman (2012). The expected pattern of

incidence of OTUs, if their occurrence probability is low and mostly

based on randomness (i.e. local infections rather than core

microbiome), must agree with a Poisson or negative binomial

distribution. Therefore, if the OTU incidence distribution departs

from that hypothesized behaviour, it can be assumed that non-local

infections are occurring. Consequently, we selected more than seven

samples as the threshold value in both the landmark tree and the

clonal bank because it was where the distributions clearly diverged

from Poisson distributions (see Results). Thus, OTUs present in

more than seven spots of the landmark tree or in more than seven

trees of the clonal bank, and also present in at least two out of the

four locations, were considered core members.
3 Results

3.1 Sampling effort and saturation

After running the bioinformatic pipeline, we obtained 106,047

informative reads (considered counts). These were grouped by

GramCluster into 435 clusters (considered OTUs henceforth).

Out of these, 74 were singletons, 40 doubletons and 23 tripletons.

A further 263 OTUs were represented by more than five reads. Five

OTUs belonged to kingdoms other than fungi. Those OTUs plus

the ones represented by singletons or doubletons were discarded for

further analyses. To ensure a more accurate OTU richness

comparison, we rarefied the count data to 500 reads per sample.

The mean values (± s.e.) of rarefied OTUs ranged from 64.4 ± 3.3 in

one of the lower resprouted branches of the Somontes tree to 15.6 ±

2.1 in one sample from the Rivas stand (RIV2, with advanced

dieback). Rarefaction curves supported the figures observed by the

rarefaction to 500 reads and indicated that the sampling effort was

sufficient to capture the richness trends of each sample

(Supplementary Figures 2, 3). Principal Component Analysis

showed a separation between sites (Figure 2).

Across the total sample set, 103 families, 48 orders, 17 classes

and 3 phyla were detected. Out of the 317 OTUs not discarded, 293

were assigned to a phylum, 267 to a class, 256 to an order and 228 to

a family. Genus was provided for 203 OTUs, and species for 131.

However, both genus and species assignments cannot be considered

reliable due to the reduced taxonomic resolution of the ITS1.
3.2 Within-tree distribution of endophytes

The Somontes tree had 68,612 reads passing filtering, clustered

into 231 OTUs (8 singletons, 2 doubletons and 14 tripletons, just

considering the landmark tree counts). Regarding incidence, 11

OTUs were present in all the in-tree spots sampled and 22 were
frontiersin.org
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present in at least eight (Table 1, Figure 3A). A further 80 OTUs

were present in just one spot and 58 were present in two

(Figure 3A). The number of OTUs at higher abundance in the

tree did not follow a purely rare event distribution such as the

Poisson or negative binomial distribution, as seen in the smooth but

distinguishable peak at the end of the distribution (Figure 3A).

Three phyla, 15 classes, 41 orders and 81 families were detected

within the tree (Figure 4). Across the tree, the levels of diversity

(measured as Shannon’sH, Simpson’s l and rarefied OTU richness)

were generally high, with the following deviations: (i) the two lowest

branches, produced from resprouts from the trunk, displayed

remarkably higher levels of diversity; (ii) one sample from the

trunk and one from the middle crown exhibited low values of both

H and l.
3.3 Endophyte diversity in relation
to DED resistance

High-throughput sequencing on the 10 trees of varying levels of

resistance to DED from the clonal bank at Puerta de Hierro

breeding center produced 20,534 sequences after filtering. The

sequences were clustered into 173 OTUs: 20 singletons, 11

doubletons and 19 tripletons. Similar to the results in the

Somontes tree, most OTUs were present in just one sample (67),

two samples (27) or three samples (17). However, the counts did not

drop at a rate consistent with a Poisson process, and reached a

stable level beyond five samples (Figure 3B). In total, two phyla, 15

classes, 34 orders and 68 families were detected (Figures 5A, C).

Clone TO-PB1 (susceptible) displayed the lowest levels of

diversity (H = 1.03). Conversely, the resistant clone M-RT1.5

showed the highest overall diversity estimates (H = 2.94). GR-

HL2 (susceptible) and MA-PD2 (moderately resistant) also

displayed high diversity values. Wilting after DED inoculation
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(used as a proxy of susceptibility) was not significantly correlated

with any of the diversity estimates, indicating the absence of a

strong correlation between diversity estimates and resistance to

DED. However, the limited sample size (n = 10) may have

prevented detection of a more subtle correlation.

The tests of association between wilting and taxa abundance

produced unambiguous hits (Table 2). Three families and three

orders were significantly associated with resistance and one family

and order was associated with susceptibility. The family with the

highest association was Buckleyzymaceae (Figure 6A), a

Basidiomycota of the Cystobasidiomycetes class and undefined

order (Incertae sedis). It had lower support at OTU level,

represented by the genus Buckleyzyma (OTU_71). The next most

significant hit was from the family Trichomeriaceae, Ascomycota

(Figure 6B), a recently circumscribed family in the order

Chaetothyriales, excised from family Herpotrichiellaceae. It was

also supported, but to a lesser degree, by the hit at OTU level, in

OTU_41 assigned to the genus Knufia. The next and least

significant hit at family level was Bulleraceae (Figure 6C), echoing

at order level as Tremellales (Basidiomycota). Two OTUs (OTU_70

and OTU_55) were significant and belonged to the genera

Genolevuria (based on UNITE) or the related Cryptococcus (based

on NCBI). All these taxa were negatively associated with

susceptibility (proxied as wilting). Family Diatrypaceae was

positively associated with susceptibility, and this result was

reproduced with stronger support at order level (Xylariales) and

at class level (Sordariomycetes). Also, OTU_1 and OTU_19

(Sordariomycetes) were posit ively associated to DED

susceptibility, being the former assigned by dada2 to the genus

Anthostoma and by BLAST into NCBI’s GenBank to Lopadostoma

but both with suboptimal identity (< 95%, due to a 11-bp indel), and

the latter assigned via dada2 only at order level (Hypocreales), but

via BLAST into NCBI’s GenBank to Annulohypoxylon multiforme,

Xylariales (>99% identity). These findings hint at a general

relationship between the Sordariomycetes and susceptibility.
3.4 Endophytic mycobiome in trees
representing a gradient of vitality

The six samples collected in the natural riparian stand at Rivas-

Vaciamadrid municipality from trees at varying stages of dieback

produced 13,408 reads, clustered into 92 OTUs: 16 singletons and

11 doubletons. Forty-eight were represented by more than five

reads. Only six OTUs were present in all trees and 10 were present

in five samples (Figure 3C). The secondary peak found in the OTU

incidence distribution was not in the total number of samples (n =

6) but in n = 5.

None of these OTUs was identified as genus Ophiostoma or

order Ophiostomatales, even though the UNITE database included

several accessions for both O. ulmi and O. novo-ulmi, and it was

undoubtedly detected as singleton in two trees of the clonal bank

(GR-DF3 and V-AD2). The most affected tree (RIV2) and two trees

with moderate dieback (RIV1 and RIV4) were dominated by

Sordariomycetes: RIV1 was rich in Diatrypaceae and RIV2 in

Bionectriaceae (Figures 5B, C). Both RIV4 (moderate dieback)
FIGURE 2

First two axes from the Principal Component Analyses performed on
the OTU counts after variance stabilizing transformation.
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and RIV6 (incipient dieback) had Nectriaceae as the most abundant

family, although it was also abundant in the healthy RIV3. The two

healthy trees (RIV3 and RIV5) were more infected than the other

trees by Dothideomycetes and Eurotiomycetes. For diversity, RIV5

exhibited the highest values in all three indices calculated

(Shannon’s H, Simpson’s l and rarefied OTU richness). The
Frontiers in Plant Science 06
affected RIV1 and RIV6 displayed high values of H and richness,

and RIV3 (healthy) and RIV6 had high values of l. The tree with
lowest vitality (RIV2) had the lowest diversity values.

The healthiest tree (RIV5) displayed a clearly distinct pattern

that was much richer in Basidiomycota (Figure 5B).

Trichomeriaceae was the most common family in this tree,
TABLE 1 OTUs present in at least eight samples of the landmark tree or the clonal bank.

OTU id Phylum Order Class Family Genus NL NC NT Npop

OTU_0 Ascomycota Dothideomycetes Myriangiales NA NA 7 9 21 4

OTU_2 Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 8 7 23 4

OTU_6 Ascomycota Dothideomycetes Dothideales Saccotheciaceae Aureobasidium 7 10 26 4

OTU_7 Ascomycota Dothideomycetes Myriangiales Endosporiaceae Endosporium 10 10 26 4

OTU_8 Ascomycota Dothideomycetes Pleosporales Cucurbitariaceae NA* 2 9 19 4

OTU_10 Ascomycota Dothideomycetes Pleosporales Didymellaceae NA 10 10 29 4

OTU_13 Ascomycota Orbiliomycetes Orbiliales Orbiliaceae Retiarius 6 8 15 3

OTU_14 Ascomycota Dothideomycetes Mycosphaerellales Teratosphaeriaceae Lapidomyces 3 8 11 2

OTU_15 Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Filobasidium 10 9 25 4

OTU_16 Ascomycota Dothideomycetes Mycosphaerellales Extremaceae Petrophila 4 8 13 3

OTU_18 Ascomycota Sordariomycetes Hypocreales Incertae sedis Trichothecium 0 10 16 3

OTU_21 Ascomycota NA NA NA NA 8 8 19 4

OTU_23 Ascomycota NA NA NA NA 10 7 17 2

OTU_24 Ascomycota Leotiomycetes Thelebolales Pseudeurotiaceae NA* 10 9 23 4

OTU_25 Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium 10 5 17 4

OTU_27 Ascomycota Lecanoromycetes Caliciales Physciaceae Rinodina 10 10 21 3

OTU_29 Ascomycota Dothideomycetes NA NA NA 9 8 20 3

OTU_32 Ascomycota Dothideomycetes Mycosphaerellales NA NA 2 8 11 3

OTU_33 Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium 10 10 28 4

OTU_34 Ascomycota Sordariomycetes Xylariales Leptosilliaceae* Leptosillia* 8 3 13 3

OTU_35 Ascomycota Dothideomycetes Botryosphaeriales Botryosphaeriaceae Neofusicoccum 9 7 16 2

OTU_38 Ascomycota Sordariomycetes Xylariales Xylariaceae Entoleuca* 0 9 15 3

OTU_40 Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae NA 9 9 18 2

OTU_41 Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae Knufia 10 10 29 4

OTU_46 Ascomycota NA NA NA NA 10 9 26 4

OTU_51 Ascomycota NA* NA* NA* NA* 6 8 17 4

OTU_65 Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma 9 6 23 4

OTU_66 Ascomycota Dothideomycetes Pleosporales Didymellaceae NA 10 7 25 4

OTU_71 Basidiomycota Cystobasidiomycetes Incertae sedis Buckleyzymaceae Buckleyzyma 9 8 22 4

OTU_80 Ascomycota Eurotiomycetes Chaetothyriales NA* NA* 9 5 22 4

OTU_102 Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 8 2 11 3

OTU_178 Ascomycota NA NA NA NA 8 1 9 2
frontie
Taxonomic assignment is based on ITS1 DNA similarity with UNITE database. Star (*) indicates assignment change after check in the NCBI database. The final columns show the number of
samples in the landmark tree (NL), the clonal bank (NC) and the total sample set (NT) and the number of geographical locations (Npop) where the OTUs were detected. Bold numbers indicate
presence in eight or more collected samples. NA indicates Not Assigned
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followed by Saccotheciaceae. The microbiome of RIV2, a tree with

low vitality, was dominated by Bionectriaceae (OTU_147, identified

as genus Geosmithia both in UNITE and NCBI; 100% of identity).

This OTU was virtually absent in the other samples, except in the

healthiest (RIV5), where it was not abundant but had a

significant presence.

Regarding the taxa significantly associated with DED resistance,

Buckleyzymaceae (represented mostly by OTU_71) was virtually
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absent from the population. Trichomeriaceae (represented mostly

by OTU_41) was present in all trees but was much more abundant

in RIV1 (dieback) and RIV5 (very healthy). Bulleraceae was slightly

present in the healthiest tree RIV5. The single OTU associated with

increased DED susceptibility (OTU_1; Diatrypaceae) was very

abundant in RIV1 (dieback).
3.5 Patterns across the four sites – core
fungal endobiome of U. minor

To assess the extent of ubiquity of the most common OTUs, we

examined the patterns of OTU incidence pooling the global sample

set (n = 29). Of the 317 OTUs passing filtering, 88 were present in

only one sample, 64 in two samples and 34 in three samples.

Distribution then reached a local maximum at six samples. Two

clusters were present in all 29 samples (OTU_10, Didymellaceae,

Dothideomycetes; and OTU_41, Trichomeriaceae, Eurotiomycetes,

associated with DED resistance, see above), one was present in all

but one (OTU_33, Cladosporiaceae, Dothideomycetes), and three

others were present in all but two (Table 1). Beyond the category of

“presence in nine samples” distribution was effectively flat. In other

words, the number of OTUs present in 10 to 29 samples always

ranged from 1 to 5. Note that not all samples were taken under the

same conditions (single twig vs. pooled twigs).

To detect core mycobiome members, we used the independent

distributions of each experiment presented in previous sections, and

the incidence across all of collection sites. In that regard, 37 OTUs were

found in the four sampled populations, 44 in three, 88 in two, and 153

were private to a single population. Both the pooled samples and the

across-sites distributions concur with the distributions of OTUs in the

clonal bank and, to a lesser extent, with that of the OTUs in the

landmark tree. The OTUs present more frequently in our sampling

than could be expected by chance are very likely members of the core

microbiome (see Discussion). In total, 32 OTUs passed the criteria for

core microbiome membership: 29 belonging to Ascomycota and three

to Basidiomycota.
4 Discussion

4.1 Within-tree variation in species richness
and diversity

Analyses on the landmark tree endophytic mycobiome did not

reveal a clear structure, but allowed to draw some interesting

conclusions: (i) although most of the samples collected displayed

a similar taxonomic composition, some were remarkably different.

For instance, a southern mid-height branch (H1S) was massively

infected by a single OTU (Figure 4). (ii) The two lowest branches,

resprouts from the trunk (epicormic shoots) aged a few years old,

displayed higher taxonomic richness than any other branches, with

a relatively higher representation of Basidiomycota. (iii) Finally,

samples from the trunk showed a richness comparable to that of the

crown branches. Taking this into consideration, when sampling

trees to characterize their overall stem endophytic flora and to avoid
A

B

C

FIGURE 3

OTU frequency spectra for (A) landmark tree, (B) clonal bank and (C)
Rivas population.
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considerable biases due to abnormally high local infections, we

recommend pooling tissue from at least two branches. However,

mixing samples from epicormic and crown branches should be

avoided, because they are likely to represent different endobiome

compositions. The greater richness found in the lower branches

supports previous research (Andrews et al., 1980; Johnson and

Whitney, 1989) and could be partly attributed to the high density of

inoculum in the ground with ability of entering into the stems

through roots, bark surface and stomata in leaves (Bahram et al.,
Frontiers in Plant Science 08
2022). Similarly, as a substrate for fungi, epicormic shoots may

differ in anatomy and vigor from proleptic shoots (Negrón

et al., 2013).
4.2 Endobiome and resistance to DED

The abundance of three distinct fungal endophytic taxa was

associated with higher host resistance to DED (Table 2).
FIGURE 4

Taxonomic composition in the landmark tree. Only the most relevant taxa are shown. Colored bars represent the frequency of taxa at the levels of
phylum, class, order and family (top to bottom). Numbers next to the bars indicate the Shannon (italics) and Simpson (bold) indices and the OTU
richness rarefacted to 500 reads (with standard error). (Background image source: Tree Silhouette copy by Bob G in flickr, licensed under CC BY-
NC-SA 2.0).
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Interestingly, the two highest associations at family level

(Buckleyzymaceae, in Cystobasidiomycetes; Trichomeriaceae, in

Eurotiomycetes) were mostly driven by OTUs considered to be

members of the core microbiome (OTU_71 and OTU_41,

respectively). Moreover, a trait of two out of the three taxa

(Buckleyzymaceae and Bulleraceae) is that they grow, or are able

to grow, as yeasts. Yeasts have the ability to systemically colonize

plants and produce phytohormones and siderophores that promote

plant growth and alleviate stress (Joubert and Doty, 2018; Martıńez-

Arias et al., 2021c). The greater abundance of these yeasts in

resistant trees could improve tree resilience to DED infection,

promoting resistance mechanisms to the physiological disorders

caused by the pathogen. O. novo-ulmi also spreads systemically
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through the plant’s vascular system in a yeast-like phase (Nigg et al.,

2015) (blastospores), even in resistant trees (Martıń et al., 2019a),

inducing vessel embolism. Our results suggest that resistant trees

benefit from harboring a high proportion of two fungi from the core

endobiome (OTU_71 and OTU_41), which have the capacity to

extensively colonize the plant. Extensive or systemic spread of an

endophyte could allow higher interaction with the pathogen

throughout the plant, and possibly a higher level of interaction

with the plant’s physiological functions.

The first endophyte was assigned to Buckleyzyma aurantiaca,

based on the sequence similarity to the accessions in the database

UNITE. When the ITS sequence of this OTU was run against

Genbank, equal hits were returned for several accessions identified
A

B C

FIGURE 5

Taxonomic composition in (A) clonal bank and (B) Rivas population. Only the most relevant taxa are shown. Colored bars represent the frequency of
taxa at the levels of phylum, class, order and family (top to bottom), following legend color code (C). Numbers next to the bars indicate the Shannon
(italics) and Simpson (bold) indices and the OTU richness rarefacted to 500 reads (with standard error). (Tree icon sources: minimal tree simple SVG
Silh, licensed under CC0 1.0 and tree-304418 by Clker-Free-Vector-Images in pixabay under Pixabay licence).
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as Buckleyzyma and Rhodotorula, both cultured and uncultured, but

with a level of identity of 97.22% (140/144 bp). This OTU is likely to

be an undescribed species. Cystobasidiomycetes is a group of

basidiomycetous yeasts with unclear systematics that includes

strains previously isolated from plants (Oberwinkler, 2017), soils

and waters (Jones, 2011; Duarte et al., 2015; Jones et al., 2015). An

elm endophytic yeast from Cystobasidiomycetes was shown to

reduce O. novo-ulmi growth in vitro, partly due to the release of

volatiles (Martıńez-Arias et al., 2021c). Furthermore, its inoculation

into elm plantlets in tandem with a Chaetothyrial yeast, favored

root development, photosynthesis and survival against abiotic stress

(Martıńez-Arias et al., 2021b).

The second endophyte (OTU_41) was assigned to Knufia by

our pipeline. In Genbank, it did not retrieve perfect identities,

obtaining a maximum identity of 97.55% (196/201 bp) and three

gaps to Knufia but also to genus Exophiala. Most accessions were

derived from uncultured strains, and some from molecular studies

in soils and plants. This OTU could therefore also belong to an

undescribed species. The Trichomeriaceae (Chaetotyriales) were

formerly part of the Herpotrichiellaceae, which have been reported

to grow in the sexual phase in dead plants and wood (Geiser et al.,
Frontiers in Plant Science 10
2006). Members of Chaetotyriales can be classified as dark septate

endophytes, which can provide important benefits to their hosts as

reducers of biotic or abiotic damages (Punja and Utkhede, 2003; de

Tenório et al., 2019).

The third associated taxon was represented by two OTUs

(OTU_70 and OTU_55) of the genus Cryptococcus (via BLAST to

NCBI; 100% and 97% of identity, respectively) or Genolevuria (via

dada2 to UNITE), both Tremellal yeasts frequently found in plants

and water (Jones et al., 2015). Albrectsen et al. (2018) found

Cryptococcus as an endophyte in beetle-damaged Populus tremula

leaves. In addition, Cryptococcus apparently outcompetes the

Rosaceae pathogen Botrytis cinerea due to niche occupancy

(Zambell and White, 2017).
4.3 Phenotypic vitality and
wood mycobiome

The study of the natural population with varying degrees of

dieback brought out some notable taxa. Firstly, Geosmithia spp. was

extremely abundant in the declining tree RIV2. Concurringly, it was
TABLE 2 Taxa with significant positive or negative associations (padj < 0.1; p-value < 0.05 for OTUs) with resistance to DED.

Taxon baseMean log2FC lfcSE stat p-value padj Family Order

Class

Cystobasidiomycetes 24.343 -2.038 0.475 -4.292 0.00002 0.00027

Sordariomycetes 762.750 2.178 0.538 4.051 0.00005 0.00038

Eurotiomycetes 71.577 -0.979 0.327 -2.994 0.00275 0.01375

Order

Xylariales 676.281 2.719 0.560 4.852 0.00000 0.00004

Cystobasidiomycetes incertae sedis 19.118 -1.896 0.488 -3.886 0.00010 0.00153

Chaetothyriales 59.560 -0.881 0.365 -2.410 0.01595 0.15951

Tremellales 64.275 -0.977 0.426 -2.294 0.02180 0.16351

Family

Buckleyzymaceae 11.154 -2.128 0.572 -3.723 0.00020 0.01102

Diatrypaceae 784.043 5.423 1.557 3.484 0.00049 0.01385

Trichomeriaceae 49.146 -1.170 0.362 -3.233 0.00123 0.02288

Bulleraceae 32.251 -2.889 0.982 -2.943 0.00325 0.04551

OTU

OTU_1 762.255 5.413 1.552 3.488 0.00049 0.05298 Diatrypaceae Xylariales

OTU_70 19.432 -3.625 1.171 -3.097 0.00196 0.09598 Bulleraceae Tremellales

OTU_71 13.338 -2.251 0.751 -2.998 0.00272 0.09598 Buckleyzymaceae Incertae sedis

OTU_19 4.591 2.510 0.878 2.860 0.00424 0.09598 Hypocreales

OTU_55 20.021 -3.811 1.338 -2.848 0.00440 0.09598 Bulleraceae Tremellales

OTU_41 49.449 -1.475 0.567 -2.602 0.00928 0.16857 Trichomeriaceae Chaetothyriales
The test of association was performed by a Wald test. Column baseMean shows the mean of normalized counts; log2FC: estimate of the effect size scaled to the log2 of fold change; lfcSE: standard
error of this estimate; stat: value of the Wald test statistic; and p-value and padj: respectively, the raw and the adjusted (for multiple tests) probabilities that the observed statistic is part of the null
distribution. These columns correspond to the output of the function DESeq from R package DESeq2. A positive fold change indicates association with susceptibility to DED.
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FIGURE 6

Relation between susceptibility to DED (measured as leaf wilting
percentage) of the ten clonal bank genotypes and the normalized
counts detected from reads of endophytic fungal families (A)
Buckleyzymaceae, (B) Trichomeriaceae and (C) Bulleraceae.
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identified as the dominant fungi in a U. minor tree with extensive

dieback symptoms in the absence of DED pathogens (Hänzi et al.,

2016). CertainGeosmithia fungi could therefore act as opportunistic

or latent pathogens in elms, as previously reported by Hänzi et al.

(2016). The presence of this genus in the healthy tree (RIV5)

suggests that it is able to live as an endophyte in latent

pathogenicity. Pepori et al. (2018) found that elms inoculated
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with Geosmithia fungi remained largely asymptomatic, and joint

inoculation of Geosmithia and O. novo-ulmi reduced wilting

symptoms compared to inoculation with O. novo-ulmi only. They

also found parasitic behaviour of Geosmithia towards O. novo-ulmi.

In elms, Geosmithia was frequently found in DED-infected trees

(Pepori et al., 2015), most likely carried there by the beetles that are

also the vectors of DED pathogens. Further research is needed into

the potential contribution of Geosmithia to tree dieback in Rivas or,

in contrast, the potential role of this taxon in the phenotypic

avoidance of DED found in this elm stand.

Secondly, two other trees with dieback symptoms (RIV6 and

RIV4) were dominated by Nectriaceae (especially RIV4). OTU_92

(Fusarium) was responsible for this signature and was also very

abundant in the healthy RIV3. The family Nectriaceae

(Sordariomycetes) includes facultative parasites that cause stem

cankers, and saprobes. In elms, dieback symptoms have been

associated with colonization by Nectria sp. (Heybroek, 1993; Plante

and Bernier, 1997).
4.4 Core microbiome and
among-site variation

Sampling from different spots in a single tree and from genetically

different trees enabled the detection of robust signatures of a core

microbiome. Out of the 231 OTUs found in the landmark tree, 11 were

present in all samples (10) and 22 in more than seven samples

(Table 1). In the clonal bank, eight OTUs were present in eight trees,

seven were present in nine trees and another seven were in all trees

(10). In the landmark tree and the clonal bank, the number of OTUs

did not decrease following the pattern expected by randomness. The

number of OTUs reached a tableau beyond five samples in both

distributions (Figures 3A,B), and a relative maximum at the end of the

distribution in the landmark tree (Figure 3A). Therefore, the

probability that a given sample would contain a specific OTU

depended on the OTU in question. Thus, not all OTUs can be

considered rare events (i.e. events that would display Poisson

distributions). Others with high probabilities of occurrence displayed

different distributions (Poisson distributions, but with “absence of

OTU” as rare event). Although not appreciable, perhaps due to their

low numbers, other OTUs may have behaved as “medium frequency

events”, retrieving binomial distributions. Thus, the lack of agreement

between the observed distributions and the expected monotonic

decrease, characteristic of pure Poisson processes, shows that OTU

occurrences range from rare to highly frequent. OTUs that follow a

pattern of occurrence consistent with a Poisson distribution could be

considered local infections with arguably different but low likelihoods

of infecting a stem. Highly frequent OTUs, on the other hand, are likely

to be members of the core microbiome. It is unclear why this latter

group of endophytes is pervasive, but it could be explained by a high

infective capacity (Griffin and Carson, 2018) (e.g. through insect

vectors, rain and wind) and/or systemic propagation within the

plant, as occurs in some endophytic yeasts (Joubert and Doty, 2018).

Shallower sampling may not have allowed us to distinguish between

the two trends in OTU occurrence, because the distributions would

have overlapped, obscuring the underlying pattern. The most
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commonly found fungal taxa both in the landmark tree and the clonal

bank were the ascomycetous classes Dothideomycetes, Eurotiomycetes,

Sordariomycetes, Leotiomycetes and Lecanoromycetes, and the

basidiomycetous classes Tremellomycetes and Cystobasidiomycetes.

We identified 32 core OTUs by defining the coremicrobiome as the

OTUs that are present in at least eight out of 10 samples in either the

landmark tree or the clonal bank, and present in at least two

populations. Although most of them were present in most samples

across the four populations, some were abundant in the clonal bank but

rare or absent in the landmark tree (e.g. OTU_18 and OTU_38).

Considering that the clonal bank includes trees from various

provenances across Spain (Supplementary Table 1) and a few are

from the same provenance as the landmark tree, it is conceivable that

these OTUs are controlled mostly by environmental cues (Zimmerman

and Vitousek, 2012). Conversely, a few OTUs were widespread in the

landmark tree, but rarer in the clonal bank (e.g. OTU_66, OTU_80 and

OTU_102). OTU_66 andOTU_80were present in the four populations

and most of the samples but surprisingly lacking in some trees from the

clonal bank. This pattern hints at an implication of host genotype (see

Bálint et al. (2013)). However, physiological status and microscale

environmental variation could also explain this pattern. The clear

separation of samples by site shown in the Principal Component

Analysis (Figure 2) indicates the important role of geographical

location in shaping fungal endobiome communities. New targeted

experiments are needed to confirm or refute these hypotheses.
5 Concluding remarks

We found clear evidence of the existence of a core endophytic

mycobiome in elm stems, which account for circa 10% of the total

endophyte richness. Our study strongly suggests that some core

endophytes are associated to DED resistant genotypes. Recent works

have shown the beneficial role of some endophytic yeasts in U. minor

resilience against stress and in priming defenses against O. novo-ulmi

(Martıńez-Arias et al., 2021a). Therefore, resistant trees could not only

display inherent genetic mechanisms of resistance, such as narrow

earlywood vessels (Martıń et al., 2021) or an early molecular response

against the pathogen (Sherif et al., 2016), but could also benefit from

mechanisms of resistance provided by their symbiotic microbiome. If

this microbiome were heritable, new possibilities for elm breeding

could arise directed to improve microbial functioning. Otherwise, the

possibility of transplanting beneficial microbiomes could open new

prospects for the fight against the disease.
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Martıńez-Arias, C., Sobrino-Plata, J., Medel, D., Gil, L., Martıń, J. A., and Rodrıǵuez-
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