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Abstract
Analysis of long-term trends in abundance of animal populations provides insights 
into population dynamics. Population growth rates are the emergent interplay of 
inter alia fertility, survival, and dispersal. However, the density feedbacks operating 
on some vital rates (“component feedback”) can be decoupled from density feed-
backs on population growth rates estimated using abundance time series (“ensem-
ble feedback”). Many of the mechanisms responsible for this decoupling are poorly 
understood, thereby questioning the validity of using logistic-growth models versus 
vital rates to infer long-term population trends. To examine which conditions lead to 
decoupling, we simulated age-structured populations of long-lived vertebrates expe-
riencing component density feedbacks on survival. We then quantified how imposed 
stochasticity in survival rates, density-independent mortality (catastrophes, harvest-
like removal of individuals) and variation in carrying capacity modified the ensemble 
feedback in abundance time series simulated from age-structured populations. The 
statistical detection of ensemble density feedback from census data was largely unaf-
fected by density-independent processes. Long-term population decline caused from 
density-independent mortality was the main mechanism decoupling the strength of 
component versus ensemble density feedbacks. Our study supports the use of simple 
logistic-growth models to capture long-term population trends, mediated by changes 
in population abundance, when survival rates are stochastic, carrying capacity fluctu-
ates, and populations experience moderate catastrophic mortality over time.
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1  |  INTRODUC TION

Compensatory density feedback describes a population's ability to 
return to the environment's carrying capacity in response to an in-
crease in population size (sensu Herrando-Pérez et al., 2012b)—see 
the full glossary of terms in Table 1. Density feedback is a phenom-
enon driven by adjustments to individual fitness imposed by vari-
ation in per-capita resource availability, dispersal, and associated 
trophic and social interactions, including competition, predation, 
and parasitism (Eberhardt et al., 2008; Herrando-Pérez et al., 2012a; 
Matthysen, 2005). As survival and fertility rates ebb and flow over 
time, it is theoretically possible to detect the presence, and quan-
tify the strength, of density feedbacks in population growth rates 
using abundance time series. Such “census data” results from pop-
ulations monitored at semiregular intervals over a sufficient period 
relative to the generation length of the species under investigation 
(Brook & Bradshaw, 2006; Herrando-Pérez et al., 2012a). There is 
now considerable evidence that survival and reproduction track 
population trends in many vertebrate (Eberhardt, 2002; Morrison 
et al., 2021; Owen-Smith & Mason, 2005; Paradis et al., 2002; Pardo 
et al., 2017) and invertebrate (Bonsall & Benmayor, 2005; Ma, 2021; 
Marini et al.,  2016; McGeoch & Price,  2005) species. Therefore, 
given the irreplaceable importance of long-term monitoring of 
population size in applied ecology and conservation (Bonebrake 
et al.,  2010; Di Fonzo et al., 2016; Herrando-Pérez et al., 2012a; 
Micheli et al., 2020), assessing the strength of compensatory sig-
nals in censuses of population abundance remains an essential tool 
in the ecologist's toolbox (Hostetler & Chandler,  2015; Johnson 
et al.,  2022; Ponciano et al.,  2018; Rueda-Cediel et al.,  2015; 
Thibaut & Connolly, 2020).

The family of self-limiting population-growth models includ-
ing logistic growth curves (“phenomenological models” hereafter) 
(Eberhardt et al., 2008) use census data to quantify the net effect 
of population size N on the per capita rate of exponential population 
change r (Berryman & Turchin, 2001). Expressed as a proportional 
change in N between two time (t) steps (e.g., years or generations), the 
assumption is that the discrete-time metric rt = loge(Nt + 1/Nt) summa-
rizes the combination or “ensemble” (Herrando-Pérez et al., 2012a) 
of all “component” density feedbacks operating on survival, fertility, 
and dispersal (Münster-Swendsen & Berryman, 2005). The problem 
is that population growth rates can be insensitive to variation in par-
ticular demographic rates (Battaile & Trites, 2013; Bürgi et al., 2015; 
Kolb et al., 2010). Thus, across 109 observed censuses of bird and 
mammal populations, the strength of “component density feedback” 
(on demographic rates) explained only <10% of the strength of “en-
semble density feedback” (on population growth rate) using logistic 
models after controlling for time-series length and species' body 
size (Herrando-Pérez et al., 2012a). The potential reasons for such 
decoupling include observation error (Abadi et al., 2012; Knape & 
de Valpine, 2012), fluctuating age structure (Hoy et al., 2020), un-
equal contribution to density feedbacks by age-structured individu-
als (Gamelon et al., 2016), shifting nonstationarity among vital rates 
(Layton-Matthews et al.,  2019), immigration (Lieury et al.,  2015), 

spatial heterogeneity (Thorson et al., 2015), and environmental state 
shifts (Turchin, 2003; Wu et al., 2007).

Determining the partial effects of different underlying mecha-
nisms responsible for the decoupling of component and ensemble 
density feedbacks is virtually impossible for population censuses of 
real species. This limitation occurs for two main reasons: (1) the mul-
tiple, density-dependent and -independent mechanisms generating 
population fluctuations change themselves through time—a condi-
tion known as “nonstationarity” (sensu Turchin,  2003), and (2) the 
full set of those mechanisms is often unknown and/or not measured 
in wild populations. To build a fully controlled simulation environ-
ment that incorporated most mechanisms a priori determined to 
affect component-ensemble decoupling, we built stochastic, age-
structured population models with known, component density feed-
backs on survival. We imposed nonstationarity to population size 
via multiple demographic scenarios emulating density-independent 
mortality and temporal variation in carrying capacity. We then sim-
ulated multiannual time series of abundance from those populations 
and used them to estimate the strength of ensemble density feed-
backs by means of discrete-time logistic-growth models. Based on 
previous findings from censuses of real populations (Herrando-Pérez 
et al., 2012a), our hypothesis is that certain types and magnitudes of 
nonstationarity should erode the ability of logistic models to capture 
the strength of, and evidence for, ensemble density feedbacks when 
component density feedbacks are operating.

Specifically, we simulated the dynamics of 21 long-lived verte-
brates from a range of taxonomic/functional groups and body sizes, 
adjusting component feedbacks in each case to elicit initially stable 
dynamics. Theoretically, the strength of the ensemble signal (den-
sity feedback on population growth rate) must track the strength of 
the component signal (density feedback on survival), if survival has a 
demographic impact, mediated by population size, on the long-term 
population trends. To test our hypothesis, we then imposed nonsta-
tionarity to each time series in the form of two density-independent 
processes (catastrophic and harvest-like mortality; fluctuating car-
rying capacity) to assess the extent by which those processes mask 
the effect of the component signal on the ensemble signal.

2  |  METHODS

Our overarching aim was to simulate populations of long-lived spe-
cies and their time series of abundance with known component feed-
back in survival (as well as in fertility in some cases to assess whether 
two component feedbacks altered our conclusions—they do not; 
see Appendix S1) and various sources of nonstationarity. Below, we 
describe the set of test species (Section 2.1), the simulation of the 
base population models for each species (Section  2.2) and of the 
component density feedbacks on survival within the base population 
models (Section 2.3), how we imposed (Section 2.4) and measured 
(Section 2.5) nonstationarity in the resultant time series of popula-
tion abundance, how we simulated the abundance time series from 
the base population models (Section 2.6), the demographic scenarios 
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    |  3 of 18BRADSHAW and HERRANDO-­PÉREZ

TA B L E  1 Glossary of terms used in the paper. Italicized, boldface terms in the definition column indicate terms defined elsewhere in the 
table.

Term Definition References

Carrying capacity Maximum population density (commonly denoted K) a given environment 
can sustain indefinitely, so describing the equilibrium population density 
as determined by available resources. K can be exceeded, but only 
temporarily. Mathematically, K equates to the long-term mean population 
density where the per capita rate of exponential population change (r) 
approaches zero

Berryman and Turchin (2001); 
Berryman (1999)

Cohort Group of individuals that were born at the same time. Used to assign 
individuals to the same age class within a Leslie matrix including specific 
demographic rates

Gotelli (2008)

Compensation (compensatory) A density feedback whereby population density is negatively correlated 
with population growth, fertility, survival or dispersal. Population density 
declines when the carrying capacity is exceeded and vice versa

Neave (1953)

Component density feedback Density feedback compensating or depensating single demographic rates Herrando-Pérez et al. (2012b)

Demographic rate A measurable aspect of individual fitness expressed as a probability or a rate 
over a defined time period, including survival (probability of an individual 
surviving from time t to t + 1), fertility (number of offspring per female 
produced per unit time), and dispersal (number of individuals leaving a 
defined population per unit time)

Levin et al. (2008)

Density feedback (~density 
dependencea)

When social and trophic interactions modify demographic rates and the 
resulting change in demographic rates alters population density, “feeding” 
back to modify the intensity of those interactions

Berryman (1989); Berryman 
et al. (2002)

Density-feedback strength The degree to which a demographic rate or population rate of change varies 
with increasing or decreasing population density. In the Ricker logistic 
model, this is measured as the slope of the compensatory (negative) 
relationship between the per capita rate of exponential population change 
and population density

Brook and Bradshaw (2006); 
Doncaster (2008)

Density independence Present or past population density not affecting per-capita population 
growth rate and/or demographic rates

Herrando-Pérez et al. (2012b); 
Smith (1935)

Depensation (depensatory) A density feedback whereby population density is positively correlated with 
population growth, fertility, survival, or dispersal. It typically occurs at 
low population density far from carrying capacity, often referred to as an 
“Allee effect”

Courchamp et al. (1999); 
Neave (1953)

Ensemble density feedback Compensation or depensation acting on a population's overall growth rate, 
representing the sum of all component density feedbacks

Herrando-Pérez et al. (2012a); 
Münster-Swendsen and 
Berryman (2005)

Gompertz logistic Linear (compensatory), discrete-time relationship between the per capita 
rate of exponential population change (r) and the natural logarithm of 
population density

Doncaster (2008); 
Medawar (1940); 
Nelder (1961)

Leslie matrix Also known as a population demographic matrix, it represents the probability 
of transitioning from one age class to the next (survival), and producing 
new individuals in the first age class (fertility)

Caswell (2001)

Nonstationarity 
(nonstationary)

Occurs when density-dependent and -independent mechanisms generating 
fluctuations in population density themselves change through time

Dennis and Taper (1994); 
Turchin (2003)

Per capita rate of exponential 
population change

Often denoted r, this is the rate of population change calculated as the 
natural logarithm of the ratio of population densities at time t + 1 to t, 
where r = loge(Nt + 1/Nt). When r = 0, the population is stable; when r < 0, it 
declines; when r > 1, the population is increasing

Turchin (2003)

Phenomenological Model describing the long-term dynamics of population density (cycles, 
stability, instability) resulting from demographic processes

Herrando-Pérez et al. (2012b)

Population density Often denoted N, this is the number of individuals in a population per unit 
area; when the area under consideration does not shift through time, 
population size can replace density per se in dynamical models

Berryman (1999)

Return time Time required for a population to return to carrying capacity following a 
disturbance

Berryman (1999)

(Continues)
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we considered to examine which conditions led to a decoupling of 
component and ensemble feedbacks (Section 2.7), the logistic models 
we used to quantify ensemble density feedbacks from the projected 
time series of abundance (Section 2.8), and how we compared the 
strength of the component and ensemble density-feedback signals 
(Section 2.9). See Figure 1 for a detailed schematic of the process.

2.1  |  Test species

Because the variability in population growth rates is driven primarily 
by variation in survival rates for species with slower life histories such 
as mammals (Oli & Dobson, 2003) and birds (Sæther & Bakke, 2000), 
we parameterised the simulated population dynamics of 21 long-lived 

Term Definition References

Ricker logistic Linear (compensatory), discrete-time relationship between the per capita rate 
of exponential population change (r) and population density

Doncaster (2008); 
Ricker (1958)

Stationarity (stationary) Opposite of nonstationarity; a dynamical system where the mechanisms 
generating fluctuations in population size do not change with time

Dennis and Taper (1994); 
Turchin (2003)

Stochastic Property of models estimating the probability of various outcomes while 
allowing for uncertainty in one or more parameters. In stable (stationary) 
systems, stochasticity is due to environmental factors; in chaotic systems, 
variability is caused by both internal (components of population structure 
like density feedbacks) and environmental factors

Sinclair and Pech (1996)

Time series Estimates of population abundance monitored at semi-regular intervals (e.g., 
years), collectively known as “census”

Knape and de Valpine (2012)

Vital rate See demographic rate

aDensity feedback should replace density dependence because, while used synonymously, the former abates conceptual and terminological confusion 
(Herrando-Pérez et al., 2012b).

TA B L E  1 (Continued)

F I G U R E  1 Scheme of the main elements of how density feedback operates in population dynamics (see Table 1 for a full glossary of 
terms indicated in italicized boldface). (i) a component density feedback can operate on survival probability (shown here as compensation) 
where survival declines as population size increases. (ii) Another common component density feedback operates on fertility, where the 
number of offspring per female decreases with increasing population size. (iii) A time series of abundance estimates (“census data”) for a 
population captures an ensemble density feedback on the per capita rate of exponential population change (r) resulting from all component 
density feedbacks. In systems demonstrating stationarity, the underlying mechanisms (e.g., carrying capacity K) driving change in population 
size do not themselves shift over time. (iv) Plotting the rate of population change (r = Nt + 1/Nt) against population size (Nt) provides a way 
to measure the evidence for, and strength of, ensemble density feedback. In this representation, a Ricker logistic model estimates the 
linear slope between r and Nt (a negative slope here indicates compensation, but a positive slope would indicate depensation). Where r = 0 
intersects the linear Ricker logistic fit, the long-term mean carrying capacity (K) can be estimated if not trending upward or downward. The 
black arrows indicate that, under compensatory dynamics, a population tends to grow towards K when r > 0 (i.e., low N) and to decline from K 
when r < 0 (i.e., high N). (v) In this example, the system is in a state of nonstationarity because the K is declining over time.
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species of extant (n = 8) and extinct (n = 13) Australian vertebrates 
from five taxonomic/functional groups (herbivore vombatiformes 
[wombat suborder] and macropodiformes [kangaroo suborder], large 
omnivore birds, carnivores, and invertivore monotremes [echidnas]), 
spanning mean adult body masses of 1.7–2786 kg and generation 
lengths of 2.3–21 years (Bradshaw et al., 2021; Table 2). These spe-
cies differ in their resilience to environmental change, and represent 
the slow end of the slow-fast continuum of life histories (Herrando-
Pérez et al., 2012c). Here, high survival rates make it possible that 
reproductive efforts are dispersed over the lifetime of individuals 
(Gaillard et al., 1989). We chose this suite of species to cover a range 
of demographic types—it is the relative structure of the population 
and the particulars of the life histories that matter here, not the spe-
cifics of species A or B, or whether they are extant or extinct or 
live(d) in Australia or elsewhere. A full justification of the selection of 
our test species can be found in Bradshaw et al. (2021).

2.2  |  Base (age-structured) population model

We developed the base population model for each test species as 
a stochastic (i.e., parameters resampled within their uncertainty 
bounds) Leslie transition matrix (M) following a prebreeding design 
(Caswell,  2001; Table  1). The Leslie transition matrix M has ω + 1 

(i) × ω + 1 ( j) elements (ages from 0 to ω years) for females only, where 
ω = maximum longevity. Fertility (mx) occupied the first row of the 
matrix, survival probabilities (Sx) occupied the subdiagonal, and the 
final diagonal transition probability (Mi,j) was Sω for all species―ex-
cept Vombatus ursinus (VU; common wombat), Thylacinus cynocepha-
lus (TC; thylacine), and Sarcophilus harrisii (SH; devil), for which we 
set Sω = 0 to limit unrealistically high proportions of old individuals 
in the population given the evidence for catastrophic mortality at 
ω for the latter two species (Cockburn, 1997; Holz & Little, 1995; 
Oakwood et al.,  2001). Multiplying M by a population vector n 
estimates total population size (Σn) at each forecasted time step 
(Caswell, 2001). We parameterised the base model with n0 = ADMw 
for a closed population (dispersal = 0), where w is the right eigenvec-
tor of M (stable stage distribution), and A is the surface area of the 
study zone (A = 250,000 km2), so that the species with the lowest n0 
would have an initial population of at least several thousand individ-
uals at the start of the simulations. Based on theoretical equilibrium 
densities (D, km−2) calculated for each taxon (Bradshaw et al., 2021), 
we set the species-specific carrying capacity K = DA.

We ran projections of the base model to 40 generations (40⌊G⌉; 
see Section 2.6) per simulated population such that:

(1)G =
log

((
vTM

)
1

)

�1

TA B L E  2 Taxonomy and life-history characteristics of the 21 test species (all native to Australia) used to simulate age-structured 
populations and time series of population abundance (Bradshaw et al., 2021).

Taxonomic/functional group Species Abb M GL q Status

Herbivore vombatiformes Diprotodon optatum DP 2786 18.1 724 Extinct

Palorchestes azael PA 1000 15.1 604 Extinct

Zygomaturus trilobus ZT 500 13.2 528 Extinct

Phascolonus gigas PH 200 10.7 428 Extinct

Vombatus ursinus VU 25 10.0 400 Extant

Herbivore macropodiformes Procoptodon goliah PG 250 8.3 332 Extinct

Sthenurus stirlingi SS 150 8.1 324 Extinct

Protemnodon anak PT 130 7.8 312 Extinct

Simosthenurus occidentalis SO 120 7.8 312 Extinct

Metasthenurus newtonae MN 55 6.0 240 Extinct

Osphranter rufus OR 25 5.5 220 Extant

Notamacropus rufogriseus NR 14 6.3 252 Extant

Omnivore birds Genyornis newtoni GN 200 20.0 800 Extinct

Dromaius novaehollandiae DN 55 5.9 236 Extant

Alectura lathami AL 2.2 6.8 272 Extant

Carnivores Thylacoleo carnifex TC 110 9.1 364 Extinct

Thylacinus cynocephalus TH 20 5.2 208 Extinct

Sarcophilus harrisii SH 6.1 3.1 124 Extanta

Dasyurus maculatus DM 2 2.3 92 Extant

Invertivore monotremes Megalibgwilia ramsayi MR 11 16.4 656 Extant

Tachyglossus aculeatus TA 4 14.1 564 Extant

Abbreviations: GL, generation length (years); M, body mass (kg), q, projection length (years) of simulated populations given the species' GL.
aExtant in Tasmania, currently extinct in mainland Australia.
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where (vTM)1 is the dominant eigenvalue of the reproductive matrix 
R derived from M, and v is the left eigenvector of M (Caswell, 2001).

2.3  |  Component density feedback on survival

2.3.1  |  Setting the survival modifier

We simulated a component compensatory density-feedback func-
tion by forcing a reduction modifier (Sred) of the age-specific survival 
(Sx) vector in M according to total population size Σn:

where the a, b, and c constants for each species are adjusted to produce 
a stable population on average over 40 generations (40⌊G⌉; see above) 
(Brook et al., 2006; Traill et al., 2010). This formulation avoids expo-
nentially increasing populations and optimizes transition matrices to 
produce parameter values as close as possible to the maximum poten-
tial rates of population increase (rm), therefore ensuring that long-term 
population dynamics are approximately stable at the species-specific 
carrying capacity.

The total projection length in years (q) varied across the 21 test 
species given their different generation lengths, from 92 (Dasyurus 
maculatus; DM; spot-tailed quoll) to 800 (Genyornis newtoni; GN; mi-
hirung) years (median = 324 years, with 95% interquartiles of 108–
762 years; Table 2), with one value of abundance simulated per year 
representing a typical census interval (Knape & de Valpine, 2012).

2.3.2  |  Varying uncertainty in survival

In each projection and annual time step, the survival vector Sx was 
resampled following a β distribution assuming a 5% standard devia-
tion of each Sx and a Gaussian-resampled fertility vector mx. We 
tested that increasing the standard deviation on juvenile survival 
(Barraquand & Yoccoz, 2013; Hilde et al., 2020) had no effect on our 
conclusions (see Appendix 2 and Section 3).

2.3.3  |  Catastrophe function

For each species, we added a catastrophic (density-independent) 
mortality function to the transition matrix M and scaled it to genera-
tion length among vertebrates (Reed et al., 2003):

where pC = probability of catastrophe was set at 0.14 given this is the 
mean probability per generation observed across vertebrates (Reed 
et al., 2003). Once invoked at probability C, a binomial β-resampled 
proportion centred on 0.5 to the β-resampled survival vector induces 

a ~ 50% mortality event for that year (Bradshaw et al., 2013). A cata-
strophic event is defined as “… any 1-yr peak-to-trough decline in esti-
mated numbers of 50% or greater” (Reed et al., 2003). The catastrophe 
function essentially recreates the demographic effects of a density-
independent process such as extreme weather events, fires, or disease 
outbreaks.

2.3.4  |  Adding a component feedback in fertility

We deliberately avoided applying density-feedback functions to 
fertility to isolate the component feedback to a single demographic 
rate (survival, see above). However, we also tested whether splitting 
the compensatory feedback between survival and fertility altered 
our results and conclusions (see Appendix 3 for justification and test 
outcomes). Our conclusions remained the same without or with a 
density feedback on fertility (Section 3).

2.4  |  Generating nonstationarity

Nonstationarity is defined as a property of a long-term population 
trend whereby the density-dependent and -independent mecha-
nisms generating fluctuations in population density themselves 
change through time (Turchin,  2003; Table  1). To determine how 
nonstationarity affects the relationship between component and 
ensemble density feedbacks, we considered five main types of 
nonstationarity embedded within eight different demographic 
scenarios (see Demographic scenarios Section 2.7), as follows: (i) ca-
tastrophe survival function as the only source of nonstationarity 
(Section 2.3.3); (ii) catastrophe survival function with the addition of 
a 90% mortality pulse at 20 generations; (iii) increased mortality via a 
proportional offtake in the abundance vector (n) such that the popu-
lation declined on average over the projection interval (two rates of 
population decline considered); (iv) variable but declining carrying 
capacity; (v) catastrophe survival function increased to produce a 
stable long-term population trend (r  ≅ 0) over 40 generations with a 
null density feedback on survival. These nonstationary mechanisms 
recreate real situations experienced by wild populations of large-
bodied carnivores and herbivores exposed to temporal changes in 
food resources or mortality events resulting from disease outbreaks 
or harvesting.

2.5  |  Measuring nonstationarity in abundance 
time series

To ascertain the degree of nonstationary in each simulated abun-
dance time series (Section  2.6) across all demographic scenarios 
(Section 2.7), we calculated the mean and variance of return time 
(TR)—defined as the time required to return to equilibrium following 
a disturbance (Berryman, 1999). We calculated the mean and vari-
ance of return time for each generated abundance time series as:

(2)Sred =
a

1 +
� ∑

n

b

�c

(3)C =
pC

G
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    |  7 of 18BRADSHAW and HERRANDO-­PÉREZ

where TR is the mean TR across M steps of the time series. For each 
mth time step,

where SCm
 is the number of complete time steps taken before reaching 

TRm
, and SFm is the fraction of time required to reach TRm

 in the Mth (final) 
step:

where N is the abundance mean across all time steps in the time se-
ries (a proxy for carrying capacity), Np is the population size prior to 
crossing N, and Na is the population size after crossing N. The variance 
of TR is:

Thus, when TR ≪ Var
(
TR

)
 (i.e., TR ∕Var

(
TR

)
≪ 1), the time se-

ries is considered to be highly nonstationary (Berryman,  1999). 
See Appendix  1 and Figures  S1–S3 for how these the perturba-
tions imposed in the demographic scenarios altered indices of 
nonstationarity.

2.6  |  Simulating time series of 
population abundance

From the base model M that incorporates age structure, density 
feedbacks on survival, catastrophic events, and varying carrying 
capacity as described above, we generated multiannual abundance 
time series up to 40 generations for each species (Section  2.2; 
Equation  1). We standardized projection length to 40 generations 
because there is strong evidence that the length of a time series 
(q) dictates the statistical power to detect an ensemble density-
feedback signal in logistic growth curves (Brook & Bradshaw, 2006; 
Knape & de Valpine, 2012). Here, we summed the n abundance vec-
tor over all age classes to produce a total population size Nt,i for each 
year t of each projection i. We rejected the first generation of each 
projection as a burn-in to allow the initial (deterministic) age distribu-
tion to calibrate to the stochastic expression of stability under com-
pensatory density feedback.

2.7  |  Demographic scenarios

We generated 10,000 abundance time series over 40 generations 
(Sections 2.2 and 2.6) for each of the 21 test species (Table 2) in each 

of nine demographic scenarios (totalling 10,000 × 21 × 9 = 189,000 
time series; 90,000 time series per species; 21,000 time series per 
scenario). Each times series represented the idiosyncratic demogra-
phy of a unique population occupying an area of 250,000 km2 with 
zero permanent dispersal (Section 2.2).

Below, we present the nine demographic scenarios (summarized 
in Table  3), and then we describe the measurement of ensemble 
and compensatory feedbacks (statistical support in Section 2.8 and 
strength in Section 2.9) from each simulated time series across sce-
narios. Our set of scenarios emulate true nonstationary processes 
(Section 2.4; Appendix  1) often shaping the long-term population 
dynamics of large mammals through density-independent (cata-
strophic and harvest) mortality and variation in carrying capacity. 
Our focus is on whether those processes erode the density-feedback 
signal from time series of abundance and precipitate decoupling of 
component and ensemble density feedbacks. Scenarios i to viii ad-
dress the effects of nonstationary processes on ensemble density 
feedbacks when a component density feedback on survival is pres-
ent (true positive), and Scenario ix addresses those effects when 
such a component feedback is absent, potentially leading to spurious 
ensemble density feedback (false positive).

2.7.1  |  Stochasticity in demographic rates 
(Scenario i)

Scenario i: Population subjected to the stochasticity imposed by 
resampling demographic rates in the Leslie matrices (Section 2.2) 
(Dennis et al., 2006). This is the only scenario where we impose no 
catastrophic mortality events.

2.7.2  |  Catastrophic mortality (scenarios ii and iii)

Scenario ii: As in Scenario i, but with generationally scaled catas-
trophes centered on 50% mortality, leading to population stability 
(r  ≅ 0). Compared to Scenario i, Scenario ii tests the hypothesis that 
density-independent catastrophes imposing process error erode 
the density-feedback signal from time series of abundance (Abadi 
et al., 2012; Knape & de Valpine, 2012).

Scenario iii: As in Scenario ii, but with an additional, single “pulse” 
perturbation of 90% mortality applied across all ages at 20 genera-
tions to alter the population age structure—this tests the hypothesis 
that large “resets” of population size modify the underlying compo-
nent dynamics so abruptly via highly modified age structure that 
the ensemble signal is eroded (Hoy et al., 2020;Turchin, 2003 ; Wu 
et al., 2007).

2.7.3  |  Harvest-like mortality (scenarios iv and v)

Scenario iv: A “harvest”-like scenario where a consistent proportion 
of individuals is removed from the n abundance vector at each time 

(4)TR =

∑M

m=1
TRm

M

(5)TRm
= SCm

+ SFm

(6)SFm =
Np − N

Np − Na

(7)
Var

�
TR

�
=

∑M

m=1

�
TRm

−TR

�2

M − 1
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8 of 18  |     BRADSHAW and HERRANDO-­PÉREZ

step to produce a weakly declining population on average (r ≅ −0.001) 
(Bargmann et al., 2020; Bergman et al., 2015) (this scenario also in-
cludes the castastrophic mortality function described in Scenario ii).

Scenario v: As in Scenario iv, but with a strongly declining popu-
lation on average (r  ≅ −0.01). Scenarios iv and v test the hypothesis 
that the greater the rate of trending in population size over time, the 
more the ensemble signal is degraded.

2.7.4  |  Variable carrying capacity (scenarios vi, viii, 
viii)

Scenario vi: Resampling a constant mean carrying capacity (and con-
stant variance via resampling the b parameter in Equation 2). This 
tests the hypothesis that uncertainty in carrying capacity reduces 
ensemble feedbacks in abundance time series (Abadi et al., 2012; 
Knape & de Valpine,  2012). This scenario also includes the cata-
strophic mortality function described in Scenario ii.

Scenario vii: As in Scenario vi, but where the resampling variance 
in carrying capacity doubles over the projection interval (via a linear 

increase in the standard error used to resample the b parameter in 
Equation 2) (Abadi et al., 2012; Knape & de Valpine, 2012).

Scenario viii: As in Scenario vi, but with declines in carrying ca-
pacity at a rate of 0.001 over the projection interval (via decreasing 
the b parameter in Equation 2). This tests the hypothesis that state 
shifts (here, gradually reducing carrying capacity) erode the ensem-
ble signal (Turchin, 2003; Wu et al., 2007).

2.7.5  |  Absence of component density feedback on 
survival (Scenario ix)

Scenario ix: This is the only scenario where we imposed no com-
ponent density feedback on survival, testing the hypothesis that 
in populations exposed to high density-independent process error, 
false detection of an ensemble signal can occur even when compo-
nent feedback is weak or absent (Knape, 2008). To produce popu-
lations that were approximately stable on average over the entire 
projection interval, we simulated density-independent mortality via 
an increase in the probability of a catastrophe (pC in Equation 3) to 

Scenario Catastrophe type Description

Component feedback present

Stochastic mortality, no catastrophic mortality, stable K

(i)	 Kfixed, r  ≅ 0 none Stochastically resampled survival rates 
in age-structured population

Catastrophic mortality (50%), stable K

(ii)	 Kfixed; r  ≅ 0; sustained 
catastrophic mortality

generationally scaled As in i, but with catastrophes

(iii)	 Kfixed; r  ≅ 0; additional 
pulsed catastrophic 
mortality

generationally scaled As in ii, but with a single 90% mortality 
pulse implemented at 20G

Harvest mortality, catastrophic mortality, stable K

(iv)	 Kfixed; r  ≅ −0.001; annual 
harvesting

generationally scaled As in ii, but with proportional removal 
of individuals from the n vector 
such that r = −0.001 (slowly 
declining N)

(v)	 Kfixed; r  ≅ −0.01; annual 
harvesting

generationally scaled As in iv, but where r = −0.01 (rapidly 
declining N)

(vi)	 Kstochastic; r  ≅ 0 generationally scaled As in ii, but normally distributed K 
varying randomly at each time step 
(SD = 5%)

(vii)	Kstochastic with increasing 
variance; r  ≅ 0

generationally scaled As in vi, but variance in K increased 
linearly from 5% to 10%

(viii)	Kstochastic declining, 
forcing r  < 0

generationally scaled As in vi, but K also decreases on 
average at a rate of −0.001

Component feedback absent

(ix)	 no K; r  ≅ 0 temporally scaled Probability of catastrophe increased 
over time such that r  ≅ 0 (~ average 
stability)

Note: All scenarios were simulated over 40 generations across 21 test species (Table 2). Time series 
obtained from simulated age-structured populations (Leslie matrices) occupying 250,000 km2 with 
no permanent dispersal.
Abbreviations: G, generation; N, population abundance; K, carrying capacity; r, long-term mean 
instantaneous rate of population change, SD, standard deviation.

TA B L E  3 Demographic scenarios 
to quantify the detection of ensemble 
density-feedback signals in time series 
of abundance using phenomenological 
models (logistic growth curves) if a 
component density feedback on survival 
is present (1. H0: false negatives), or 
absent (2. H0: false positives).
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    |  9 of 18BRADSHAW and HERRANDO-­PÉREZ

produce a stable population on average (r  ≅ 0) over 40 generations, 
and removed the component density-feedback on survival by set-
ting the survival reduction parameter Sred to 1 in all iterations.

2.8  |  Measuring ensemble density feedbacks

For each simulated time series, we applied four phenomenological mod-
els to quantify both the statistical evidence of the ensemble compensa-
tory density feedback and the strength of such a feedback as follows:

2.8.1  |  Phenomenological models

The phenomenological models included four variants of the gen-
eral logistic growth curve (Verhulst,  1838) following Brook and 
Bradshaw (2006):

where Nt = population size at time t, α = intercept, β = strength of en-
semble density feedback, and εt = Gaussian random variable with a 
mean of zero and a variance σ2 reflecting uncorrelated stochastic 
variability in the per-capita rate of population change r. Our first two 
models are density-independent models assuming no compensatory 
ensemble density feedback (DI): (1) random walk, where α = β = 0, 
and (2) exponential growth where β = 0. The second two variants 
are density-feedback (or density-dependent) models assuming a 
compensatory ensemble density feedback (DF): (3) Ricker-logistic 
(Ricker, 1954), and (4) Gompertz-logistic (Nelder, 1961), where Nt on 
the right side of Equation 8 is replaced with loge(Nt). The latter two 
models represent alternative situations where population growth rate 
varies in response to unit (Ricker) or order-of-magnitude (Gompertz) 
changes in population density (Herrando-Pérez et al., 2012b).

2.8.2  |  Strength of ensemble density feedback

We estimated the strength of the ensemble density-feedback as 
the negative of the slope �̂ estimated from the Gompertz-logistic 
model (under compensation, �̂ will always be < 0, so the lower the �̂  , 
the stronger the compensatory feedback). We used the Gompertz-
logistic �̂, instead of the Ricker-logistic �̂, to estimate this strength 
because only the former characterizes the multiplicative nature of 
demographic rates (Doncaster, 2008; Herrando-Pérez et al., 2012a).

2.8.3  |  Statistical evidence for ensemble 
density feedback

We calculated the relative likelihood of the four phenomeno-
logical models fitted to each time series by means of the Akaike's 

information criterion (AIC) corrected for finite number of sam-
ples (AICc) (Sugiura,  1978) in a multimodel inferential framework 
(Burnham & Anderson, 2002). Across the four models, we ranked 
the statistical evidence for an ensemble density-feedback Pr(density 
feedback) as the sum of AICc weights (wAICc = model probability) for 
the Ricker- and Gompertz-logistic models (i.e., ΣwAICc-density feed-
back), and the evidence for a lack of such feedback as the sum of 
AICc weights for random walk and exponential growth (i.e., ΣwAICc-
density independence)—where ΣwAICc-density feedback + ΣwAICc-
density independence = 1 (Burnham & Anderson, 2002). This follows 
the logic that the more the slope between the per-capita rate of 
change (r) and abundance (Nt) (Ricker model) or loge(Nt) (Gompertz 
model) differs from zero (β ≠ 0), the stronger statistical support for an 
ensemble density feedback in the time series than density independ-
ence (ΣwAICc-density feedback > ΣwAICc-density independence im-
plies Pr(density feedback) > 0.5)—providing that sample size (number 
of transitions) does not limit statistical inference (Herrando-Pérez 
et al., 2012c).

2.9  |  Correlating ensemble versus component 
density feedbacks

We plotted the estimated strength of the ensemble density feed-
back (Gompertz-�) to the strength of the component feedback sig-
nal for survival (1 – Sred) across all 21 species (Table 2) to determine 
whether the component strength can be used to predict the ensem-
ble strength in each of the nine demographic scenarios. We tested 
the correlation between the strength of ensemble and component 
density feedbacks, and between the strength of ensemble feedback 
and the degree of nonstationarity, across species by calculating a 
bootstrapped estimate of Spearman's correlation ρ (treating relative 
differences in the metrics as ranks). We uniformly resampled 10,000 
times from the 95% confidence interval of each metric for each spe-
cies and demographic scenario, calculating the correlation coeffi-
cient ρ in turn, and then calculating the median and 95% confidence 
interval of ρ. The relationship between the strength of ensemble and 
component density feedback (as well as between ensemble strength 
and stationarity) showed some nonlinearity, so we also fitted sim-
ple exponential plateau models of the form y = ym–x − (ym–x − y0)e

−kx 
to these relationships. Here, y0 is the starting value of component 
strength, ymax is the maximum component strength (Gompertz-�), 
k = rate constant (in units of x−1), and x is the component strength 
(1 – Sred).

3  |  RESULTS

3.1  |  Magnitude of ensemble density feedbacks

Bootstrapping across all species, the reduction in ensemble density-
feedback strength measured as Gompertz-β was greatest in Scenarios 
iv and v where we imposed population declines of r  ≅ −0.001 and 

(8)r = loge

(
Nt+1

Nt

)
= � + �Nt + �t
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10 of 18  |     BRADSHAW and HERRANDO-­PÉREZ

F I G U R E  2 Strength of ensemble compensatory density feedback across demographic scenarios. Bootstrapped (10,000 uniform 
resamples between 95% confidence limits) across 21 test species (detailed in Table 2) of the strength of ensemble compensatory density 
feedback (Gompertz-β) among scenarios (detailed in Table 3). Midpoints indicate means, and error bars are the interquartile ranges. 
Demographic scenarios include carrying capacity K fixed (Kfixed; Scenario ii), a pulse disturbance of 90% mortality at 20 generations (20G; 
Scenario iii), weakly declining (r  ≅ −0.001; Scenario iv) and strongly declining (r  ≅ −0.01; Scenario v) populations, K varying stochastically 
(Kstoch) around a constant mean with a constant variance (Scenario vi), K varying stochastically with a constant mean and increasing variance 
(Kstoch↑Var; Scenario vii), and K varying stochastically with a declining mean and a constant variance (↓Kstoch; Scenario viii).

F I G U R E  3 Decoupling of ensemble and component density feedbacks in demographic scenarios with and without catastrophic mortality. 
Relationship between strength of ensemble (slope coefficient β of the Gompertz-logistic model × [−1] in the time series) and component (1 
– the modifier Sred on survival in the Leslie transition matrix) density feedback for: Scenario i (pink; stochastic mortality, no catastrophic 
mortality, stable K) and Scenario ii (grey: stochastic mortality, catastrophic mortality, stable K). Fitted curves across species are exponential 
plateau models of the form y = ymax − (ymax − y0)e

−kx. Shaded regions represent the 95% prediction intervals for each scenario. Each scenario 
includes 21,000 simulated time series of abundance (10,000 for each of 21  species; Table 2). Also shown are the mean probabilities of 
median density feedback (Pr(density feedback): sum of the Akaike's information criterion weights for the Ricker- and Gompertz-logistic 
models across time series (ΣwAICc-density feedback) relative to the weights of two density-independent models (random and exponential).

 20457758, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10010 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 18BRADSHAW and HERRANDO-­PÉREZ

r  ≅ −0.01, respectively, relative to the baseline Scenario ii (r  ≅ 0) with 
population stability over time (Figure 2). The next largest reductions 
in the ensemble signal occurred in Scenarios iii (pulse perturbation 
at 20 generations) and viii (stochastically varying carrying capacity 
declining over time) (Figure  2). Lastly, Scenarios vi (stochastically 
varying carrying capacity around a long-term stable average) and viii 
(stochastically varying carrying capacity around a long-term stable 
average, with increasing variance over time) had similar ensemble 
feedback strengths relative to the base Scenario ii (Figure 2). Clearly, 
only harvest-like mortality (Scenarios iv and v) dampens the strength 
of compensatory density feedbacks on population growth rates.

3.2  |  Strength of component versus ensemble 
density feedback

3.2.1  |  Component-ensemble decoupling

Decoupling of component and ensemble density feedback was sig-
nalled by the reduction in the correlation and/or the slope of the 
linear relationship between the strengths of both types of feedback 
for each time series across the 10,000 series covering 40 genera-
tions of each of the 21 test species and nine demographic scenarios. 

Neither increasing the standard deviation in juvenile survival relative 
to adults (Appendix 2; Figure S4), nor including a component feed-
back in fertility in addition to one operating on survival (Appendix 3), 
affected our conclusions.

The addition of catastrophic mortality (Scenario ii) versus a 
population with only stochastic survival rates over the same period 
(Scenario i) reduced the correlation (median Spearman's ρ = 0.893 
[0.826–0.947] and 0.881 [0.780–0.949], respectively) and slope 
between the strength of ensemble (Gompertz-β; Section 2.8.2) and 
component feedback (1 – Sred) across the 21,000 abundance time 
series (10,000 series × 21 test species) (Figure  3 and Figure  S8). 
The catastrophic-pulse mortality (Scenario iii) returned the closest 
correlation (median Spearman's ρ = 0.929 [0.871–0.971]) between 
the strength of ensemble and component feedback, although it 
also depressed the slope of the relationship relative to Scenario i 
(Figure 4).

The magnitude of correlation when the carrying capacity was 
forced to fluctuate (Figure 5) ranged from a median Spearman's 
ρ of 0.8 to 0.9 for Scenarios vi to viii (Figure 5 and Figure S8). 
In contrast, strong decoupling occurred in the harvest-mortality 
scenarios, with median Spearman's ρ of only 0.009 [−0.441–
0.489] (Scenario iv) and −0.051 [−0.498–0.412] (Scenario v) 
(Figure 4). Noticeably, some abundance time series experienced 

F I G U R E  4 Decoupling of ensemble and component density feedbacks in demographic scenarios with catastrophic mortality and with 
catastrophic mortality + pulsed mortality and harvesting (see Figure 6). Relationship between strength of ensemble (slope coefficient β 
of the Gompertz-logistic model × [−1]) and component (1 – the modifier Sred on survival) density feedback for: Scenario iii (green: pulse 
disturbance of 90% mortality at 20 generations); Scenario iv (red: weakly declining population at r ≅ −0.001); and Scenario iv (blue: strongly 
declining population at r ≅ −0.01). Each scenario includes 21,000 simulated time series of abundance (10,000 for each of 21 species; Table 2). 
Fitted curves across species are exponential plateau models of the form y = ymax − (ymax − y0)e

−kx. Shaded regions represent the 95% prediction 
intervals for each scenario. Also shown are the mean probabilities of median density feedback (Pr(density feedback): sum of the Akaike's 
information criterion weights for the Ricker- and Gompertz-logistic models across time series (ΣwAICc-density feedback) relative to the 
weights of two density-independent models (random and exponential).
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12 of 18  |     BRADSHAW and HERRANDO-­PÉREZ

depensation or “Allee effects” (population growth rate increasing 
with population size; Table 1). For these two harvest-like scenar-
ios (Scenarios iv and v), the 95% confidence interval of the en-
semble component strength included 0 for all species (Figure 4). 
As expected, when the component density feedback on survival 
was absent (Scenario ix), all estimated strengths of ensemble 
feedback enveloped 0 (Figure 6), meaning an absence of an en-
semble density-feedback signal (i.e., r ~ loge(Nt) slope not differ-
entiated from zero). Clearly, the decoupling between the density 
feedback on population growth rates (ensemble) and mortality 
(component) varied according to the type of perturbation the 
populations experienced, with the strongest decoupling caused 
by harvest-like mortality.

3.2.2  |  Strength of ensemble feedback 
versus nonstationarity

Nonstationarity was a weak (median Spearman's ρ = −0.113 – 
−0.086 over 10,000 time series × 21 test species) predictor of the 
strength of ensemble feedback when catastrophic (Scenarios ii, iii) 
or harvest-like (Scenarios iv, v) mortality was imposed (Figure  7), 
but both variables were reasonably well-correlated (median 

Spearman's ρ = 0.756–0.844) for Scenarios vi to viii with fluctuating 
carrying capacity (Figure 8 and Figure S8). The former correlations 
indirectly reinforce the observation that density-independent mor-
tality is a stronger driver of component-ensemble density-feedback 
decoupling than fluctuating resources (Subsection  3.2.1) as the 
variation in the magnitude of density feedbacks is more respon-
sive to variation in carrying capacity than to density-independent 
mortality.

3.3  |  Evidence for density feedback

The magnitude of statistical evidence for density feedback was 
largely invariant across all demographic scenarios (i to viii) that 
had a component feedback on survival (Figures  S5 and S6; see 
above). Thus, the median probability for a signal of ensemble feed-
back (Pr(density feedback) = ΣwAICc-density feedback for Ricker and 
Gompertz models, see Section 2) over 21,000 abundance times se-
ries (10,000 series × 21 test species) was >0.99 for scenarios i to vii 
(Figures S5–S7), and 0.93 (0.74– > 0.99) for Scenario viii with a de-
clining carrying capacity. Logically, for Scenario ix where we imposed 
a null density feedback on survival in our simulated time series, the 
median statistical support for an ensemble density feedback was 

F I G U R E  5 Decoupling of ensemble and component density feedbacks in demographic scenarios with catastrophic mortality and 
fluctuating carrying capacity. Relationship between strength of ensemble (slope coefficient β of the Gompertz-logistic model × [−1]) and 
component (1 – the modifier Sred on survival) density feedback for: Scenario vi (purple: carrying capacity varying stochastically with a 
constant mean and an increasing variance); Scenario vii (green: carrying capacity varying stochastically with a constant mean and an 
increasing variance); and Scenario viii (red: carrying capacity K varying stochastically with a declining mean and a constant variance). Each 
scenario includes 21,000 simulated time series of abundance (10,000 for each of 21 test species, Table 2). Fitted curves across species are 
exponential plateau models of the form y = ymax − (ymax − y0)e

−kx. Shaded regions represent the 95% prediction intervals for each scenario. Also 
shown are the mean probabilities of median density feedback (Pr(density feedback): sum of the Akaike's information criterion weights for 
the Ricker- and Gompertz-logistic models across time series (ΣwAICc-density feedback) relative to the weights of two density-independent 
models (random and exponential).
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only 0.32 (0.31–0.34), so the two models assuming no ensemble 
density feedback (random, exponential, see Section 2) received the 
highest statistical support. Finally, false positives in demographic 
Scenario iv (component feedback absent, ensemble feedback de-
tected) occurred in <4 of every 10 time series.

In summary, if a component density feedback on survival was 
present (theoretically driving the ensemble density feedback on the 
population growth rate), the phenomenological models were reason-
ably good at detecting the ensemble feedback from the time series 
(true positive in >9 of every 10 time series)―regardless of whether a 
population was perturbed via fluctuating carrying capacity or cata-
strophic or harvest mortality .

4  |  DISCUSSION

Our simulations reveal several new insights into how density-
feedback signals in population growth rates and those operating on 
vital rates can be decoupled. First, we discovered that the estimated 
strength of density feedbacks from abundance time series are par-
ticularly sensitive to density-independent mortality that produces 

long-term declines in population size. In other words, logistic mod-
els are unlikely to reveal density feedback in harvested populations 
that are declining, even when strong component feedbacks exist. 
Therefore, attempting to measure density feedbacks in such popula-
tions only from time series of abundance would be unlikely to bear 
fruit. On the contrary, estimated feedback strength is much less sen-
sitive to moderate fluctuations in carrying capacity.

Second, the statistical detection of density feedbacks in abun-
dance time series is robust in the face of even pronounced nonsta-
tionarity. It is essential here to distinguish the detection from the 
strength of the feedback itself—the former is based on the statistical 
evidence that phenomenological models provide more support for a 
relationship between rate of change and population density than not 
(Brook & Bradshaw, 2006), whereas the latter indicates the magni-
tude of the slope of that relationship (Herrando-Pérez et al., 2012c). 
Third, the concern that density-independent processes can invoke 
false evidence of ensemble signals of compensation are not borne 
out by our simulations, at least with respect to density-independent 
mortality not leading to declining population size. Our results there-
fore lend credence to the application of phenomenological (logistic-
growth) models to studies addressing the long-term effect of vital 
rates on population abundance, provided there is enough informa-
tion available (i.e., population censuses over long periods) for de-
scribing population trends.

The relative magnitude of density-dependent and -independent 
mechanisms and their characterization and detection with logistic 
models will vary from population to population. For instance, varia-
tion in survival probability can be entirely driven by variation in cli-
matic conditions and density-independent predation (Hebblewhite 
et al., 2018). In one of the best-studied systems in this regard, Soay 
sheep (Ovis aries) populations from St. Kilda Archipelago in the UK 
demonstrate that the demographic role of density and weather 
varies across sexes and age classes in mild winters, but survival is 
reduced consistently in all individuals in years of bad weather and 
when abundance is high (Coulson et al., 2001). An illustrative exam-
ple with carnivores are wolves (Canis lupus) whereby interpack ag-
gression with strong social hierarchies might shape survival at high 
densities, but become demographically irrelevant at low densities 
resulting from prey shortages and/or hunting or culling (Cubaynes 
et al., 2014). Our results reveal that such density-independent pro-
cesses can erode the ensemble signal if insufficient data are avail-
able relative to the frequency of such events.

Our approach and findings do not, of course, explain all possible 
scenarios leading to the decoupling of density-feedback signals in 
single demographic rates and abundance time series. For example, 
other density-independent factors that we did not consider can 
dampen the demographic role of social and trophic interactions me-
diated by population size (Herrando-Pérez et al., 2012a), among the 
most important being immigration (Lieury et al.,  2015) and spatial 
heterogeneity in population growth rates (Thorson et al.,  2015). 
Indeed, examining the nuances of spatial heterogeneity and the 
exchange of individuals among populations would require a com-
pletely different modeling framework than the one we constructed 

F I G U R E  6 Strength of ensemble density feedback and 
generation length for 21 vertebrate species for demographic 
scenarios with and without a component density feedback 
on mortality. Relationship between strength of ensemble 
(slope coefficient β × [−1] of the Gompertz-logistic model) and 
generation length across the 21 species for: Scenario ii (black: with 
compensatory density feedback; see also Figure 2) and Scenario 
ix (grey: without compensatory density feedback). Each scenario 
includes 21,000 simulated time series of abundance (10,000 
for each of 21 test species, Table 2). Probabilities of density 
feedback (Pr(density feedback) = sum of the Akaike's information 
criterion weights for the Ricker and Gompertz models relative 
to the weights of two density-independent models (random and 
exponential)) calculated across simulations gave median Pr(density 
feedback) = 0.994 and 0.322 for the two stable scenarios with 
(Scenario ii) and without (Scenario ix) component feedback on 
survival, respectively.
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here. Other disrupting phenomena such as fluctuating age structure 
(Hoy et al.,  2020), environmental state shifts (Turchin, 2003; Wu 
et al., 2007), and sampling error (Knape & de Valpine, 2012) were 
implicit in our modeling framework. In addition, by standardizing 
the spatial extent and population densities at the beginning of all 
projections, and by including known sampling and process errors, 
our models quantify the contributions of nonstationarity and other 
forms of density-independent change to vital rates.

Another caveat is that simulating closed populations might 
have potentially inflated our capacity to detect the component sig-
nal in abundance time series, because permanent dispersal could 
alleviate per-capita reductions in fitness as a population nears 
carrying capacity. We also limited our projections to a standard-
ized 40 generations across species, but even expanding these to 

120 generations resulted in little change in the stationarity metric 
(Figure S9). Complementary studies focusing on the faster end of the 
life-history continuum could provide further insights, even though 
our range of test species still produced a life-history signal of the 
strength and stationarity of component (Figure  S10) and ensem-
ble density feedbacks (Figures S11 and S12) that declined with in-
creasing generation length. However, this relationship faded when 
the trajectories simulated declines through proportional removal 
of individuals. Indeed, both evidence for (Holyoak & Baillie, 1996), 
and strength of (Herrando-Pérez et al., 2012c), ensemble density 
feedback generally increase along the continuum of slow to fast life 
histories, because species with slow life histories are assumed to be 
more demographically stable when density compensation is operat-
ing (Sæther et al., 2002).

F I G U R E  7 Strength of ensemble density feedback in demographic scenarios with catastrophic mortality, catastrophic mortality with 
pulsed mortality, and two types of harvesting. Relationship between strength of ensemble density feedback (slope coefficient β × [−1] of the 
Gompertz-logistic model) and the stationarity index TR ∕Var

(
TR

)
 across 21 test species over 40 generations for four demographic scenarios: 

(a) Scenario ii: carrying capacity (K) fixed, (b) Scenario iii: a pulse disturbance of 90% mortality at 20 generations, (c) Scenario iv: weakly 
declining population at r ≅ −0.001, and (d) Scenario v: strongly declining population at r ≅ −0.01. Each scenario includes 21,000 simulated 
time series of abundance (10,000 for each of 21 species, Table 2). Fitted curves across species exponential plateau models of the form 
y = ymax − (ymax − y0)e

−kx. Shaded regions represent the 95% prediction intervals for each type. ρmed are the median Spearman's ρ correlation 
coefficients for the relationship between the ensemble strength and stationarity index across species (resampled 10,000 times; see 
Figure S8 for full uncertainty range of ρ in each scenario).

(a)

(b)

(c) (d)
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5  |  CONCLUSIONS

While quantifying the true extent of all component density-feedback 
mechanisms operating in real populations will remain challenging in 
most circumstances, phenomenological models can normally cap-
ture the evidence for and strength of the component feedbacks at 
play. Appreciating the degree of nonstationarity and other types of 
perturbations affecting abundance time series can contextualize in-
terpretations of estimated signals of density feedback in abundance 
time series, especially where substantial density-independent mor-
tality leads to long-term population declines. Importantly, failing 
to capture the realistic magnitude of density-feedback strength in 
applied ecological models can lead to suboptimal conservation and 
management recommendations and outcomes (Herrando-Pérez 
et al., 2012a; Horswill et al., 2017).
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