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Abstract
Analysis	 of	 long-	term	 trends	 in	 abundance	 of	 animal	 populations	 provides	 insights	
into	 population	 dynamics.	 Population	 growth	 rates	 are	 the	 emergent	 interplay	 of	
inter alia	 fertility,	survival,	and	dispersal.	However,	the	density	feedbacks	operating	
on	 some	 vital	 rates	 (“component	 feedback”)	 can	 be	 decoupled	 from	 density	 feed-
backs	on	population	growth	 rates	estimated	using	abundance	 time	series	 (“ensem-
ble	feedback”).	Many	of	the	mechanisms	responsible	for	this	decoupling	are	poorly	
understood,	thereby	questioning	the	validity	of	using	logistic-	growth	models	versus	
vital	rates	to	infer	long-	term	population	trends.	To	examine	which	conditions	lead	to	
decoupling,	we	simulated	age-	structured	populations	of	long-	lived	vertebrates	expe-
riencing	component	density	feedbacks	on	survival.	We	then	quantified	how	imposed	
stochasticity	in	survival	rates,	density-	independent	mortality	(catastrophes,	harvest-	
like	removal	of	individuals)	and	variation	in	carrying	capacity	modified	the	ensemble	
feedback	 in	abundance	time	series	simulated	from	age-	structured	populations.	The	
statistical	detection	of	ensemble	density	feedback	from	census	data	was	largely	unaf-
fected	by	density-	independent	processes.	Long-	term	population	decline	caused	from	
density-	independent	mortality	was	the	main	mechanism	decoupling	the	strength	of	
component	versus	ensemble	density	feedbacks.	Our	study	supports	the	use	of	simple	
logistic-	growth	models	to	capture	long-	term	population	trends,	mediated	by	changes	
in	population	abundance,	when	survival	rates	are	stochastic,	carrying	capacity	fluctu-
ates,	and	populations	experience	moderate	catastrophic	mortality	over	time.
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stationarity, time series
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1  |  INTRODUC TION

Compensatory	density	feedback	describes	a	population's	ability	to	
return	to	the	environment's	carrying	capacity	in	response	to	an	in-
crease	in	population	size	(sensu	Herrando-	Pérez	et	al.,	2012b)—	see	
the full glossary of terms in Table 1.	Density	feedback	is	a	phenom-
enon	driven	by	adjustments	to	 individual	fitness	 imposed	by	vari-
ation	 in	 per-	capita	 resource	 availability,	 dispersal,	 and	 associated	
trophic and social interactions, including competition, predation, 
and	parasitism	(Eberhardt	et	al.,	2008;	Herrando-	Pérez	et	al.,	2012a; 
Matthysen,	2005).	As	survival	and	fertility	rates	ebb	and	flow	over	
time,	it	is	theoretically	possible	to	detect	the	presence,	and	quan-
tify	the	strength,	of	density	feedbacks	in	population	growth	rates	
using	abundance	time	series.	Such	“census	data”	results	from	pop-
ulations monitored at semiregular intervals over a sufficient period 
relative to the generation length of the species under investigation 
(Brook	&	Bradshaw,	2006;	Herrando-	Pérez	et	al.,	2012a).	There	is	
now	 considerable	 evidence	 that	 survival	 and	 reproduction	 track	
population	trends	 in	many	vertebrate	 (Eberhardt,	2002;	Morrison	
et al., 2021;	Owen-	Smith	&	Mason,	2005;	Paradis	et	al.,	2002;	Pardo	
et al., 2017)	and	invertebrate	(Bonsall	&	Benmayor,	2005;	Ma,	2021; 
Marini	 et	 al.,	 2016;	 McGeoch	 &	 Price,	 2005)	 species.	 Therefore,	
given	 the	 irreplaceable	 importance	 of	 long-	term	 monitoring	 of	
population	 size	 in	 applied	 ecology	 and	 conservation	 (Bonebrake	
et al., 2010;	Di	 Fonzo	et	 al.,	2016;	Herrando-	Pérez	 et	 al.,	2012a; 
Micheli	et	al.,	2020),	 assessing	 the	strength	of	compensatory	sig-
nals	in	censuses	of	population	abundance	remains	an	essential	tool	
in	 the	 ecologist's	 toolbox	 (Hostetler	 &	 Chandler,	 2015; Johnson 
et al., 2022;	 Ponciano	 et	 al.,	 2018;	 Rueda-	Cediel	 et	 al.,	 2015; 
Thibaut	&	Connolly,	2020).

The	 family	 of	 self-	limiting	 population-	growth	 models	 includ-
ing	 logistic	 growth	 curves	 (“phenomenological	 models”	 hereafter)	
(Eberhardt	et	al.,	2008)	use	census	data	to	quantify	the	net	effect	
of	population	size	N	on	the	per	capita	rate	of	exponential	population	
change r	 (Berryman	&	Turchin,	2001).	Expressed	as	a	proportional	
change in N	between	two	time	(t)	steps	(e.g.,	years	or	generations),	the	
assumption	is	that	the	discrete-	time	metric	rt = loge(Nt + 1/Nt)	summa-
rizes	the	combination	or	“ensemble”	(Herrando-	Pérez	et	al.,	2012a)	
of	all	“component”	density	feedbacks	operating	on	survival,	fertility,	
and	dispersal	(Münster-	Swendsen	&	Berryman,	2005).	The	problem	
is	that	population	growth	rates	can	be	insensitive	to	variation	in	par-
ticular	demographic	rates	(Battaile	&	Trites,	2013;	Bürgi	et	al.,	2015; 
Kolb	et	al.,	2010).	Thus,	across	109	observed	censuses	of	bird	and	
mammal	populations,	the	strength	of	“component	density	feedback”	
(on	demographic	rates)	explained	only	<10% of the strength of “en-
semble	density	feedback”	(on	population	growth	rate)	using	logistic	
models	 after	 controlling	 for	 time-	series	 length	 and	 species'	 body	
size	(Herrando-	Pérez	et	al.,	2012a).	The	potential	reasons	for	such	
decoupling	 include	observation	error	 (Abadi	et	al.,	2012;	Knape	&	
de	Valpine,	2012),	 fluctuating	age	structure	 (Hoy	et	al.,	2020),	un-
equal	contribution	to	density	feedbacks	by	age-	structured	individu-
als (Gamelon et al., 2016),	shifting	nonstationarity	among	vital	rates	
(Layton-	Matthews	 et	 al.,	 2019),	 immigration	 (Lieury	 et	 al.,	 2015),	

spatial heterogeneity (Thorson et al., 2015),	and	environmental	state	
shifts (Turchin, 2003;	Wu	et	al.,	2007).

Determining the partial effects of different underlying mecha-
nisms	 responsible	 for	 the	decoupling	of	component	and	ensemble	
density	feedbacks	is	virtually	impossible	for	population	censuses	of	
real	species.	This	limitation	occurs	for	two	main	reasons:	(1)	the	mul-
tiple,	density-	dependent	and	-	independent	mechanisms	generating	
population	 fluctuations	change	 themselves	 through	 time—	a	condi-
tion	 known	as	 “nonstationarity”	 (sensu Turchin, 2003),	 and	 (2)	 the	
full set of those mechanisms is often unknown and/or not measured 
in	wild	populations.	To	build	a	 fully	 controlled	 simulation	environ-
ment that incorporated most mechanisms a priori determined to 
affect	 component-	ensemble	 decoupling,	 we	 built	 stochastic,	 age-	
structured population models with known, component density feed-
backs	 on	 survival.	We	 imposed	 nonstationarity	 to	 population	 size	
via	multiple	demographic	scenarios	emulating	density-	independent	
mortality	and	temporal	variation	in	carrying	capacity.	We	then	sim-
ulated	multiannual	time	series	of	abundance	from	those	populations	
and	used	them	to	estimate	the	strength	of	ensemble	density	feed-
backs	by	means	of	discrete-	time	 logistic-	growth	models.	Based	on	
previous	findings	from	censuses	of	real	populations	(Herrando-	Pérez	
et al., 2012a),	our	hypothesis	is	that	certain	types	and	magnitudes	of	
nonstationarity	should	erode	the	ability	of	logistic	models	to	capture	
the	strength	of,	and	evidence	for,	ensemble	density	feedbacks	when	
component	density	feedbacks	are	operating.

Specifically,	we	simulated	the	dynamics	of	21	 long-	lived	verte-
brates	from	a	range	of	taxonomic/functional	groups	and	body	sizes,	
adjusting	component	feedbacks	in	each	case	to	elicit	initially	stable	
dynamics.	Theoretically,	 the	strength	of	 the	ensemble	signal	 (den-
sity	feedback	on	population	growth	rate)	must	track	the	strength	of	
the	component	signal	(density	feedback	on	survival),	if	survival	has	a	
demographic	impact,	mediated	by	population	size,	on	the	long-	term	
population trends. To test our hypothesis, we then imposed nonsta-
tionarity	to	each	time	series	in	the	form	of	two	density-	independent	
processes	 (catastrophic	and	harvest-	like	mortality;	 fluctuating	car-
rying	capacity)	to	assess	the	extent	by	which	those	processes	mask	
the	effect	of	the	component	signal	on	the	ensemble	signal.

2  |  METHODS

Our	overarching	aim	was	to	simulate	populations	of	 long-	lived	spe-
cies	and	their	time	series	of	abundance	with	known	component	feed-
back	in	survival	(as	well	as	in	fertility	in	some	cases	to	assess	whether	
two	 component	 feedbacks	 altered	 our	 conclusions—	they	 do	 not;	
see	Appendix	S1)	and	various	sources	of	nonstationarity.	Below,	we	
describe	 the	 set	of	 test	 species	 (Section	2.1),	 the	 simulation	of	 the	
base	 population	 models	 for	 each	 species	 (Section	 2.2)	 and	 of	 the	
component	density	feedbacks	on	survival	within	the	base	population	
models	 (Section	2.3),	 how	we	 imposed	 (Section	2.4)	 and	measured	
(Section	2.5)	nonstationarity	 in	 the	 resultant	 time	series	of	popula-
tion	abundance,	how	we	simulated	the	abundance	time	series	from	
the	base	population	models	(Section	2.6),	the	demographic	scenarios	
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    |  3 of 18BRADSHAW and HERRANDO-PÉREZ

TA B L E  1 Glossary	of	terms	used	in	the	paper.	Italicized,	boldface	terms	in	the	definition	column	indicate	terms	defined	elsewhere	in	the	
table.

Term Definition References

Carrying capacity Maximum	population	density	(commonly	denoted	K)	a	given	environment	
can	sustain	indefinitely,	so	describing	the	equilibrium	population	density	
as	determined	by	available	resources.	K	can	be	exceeded,	but	only	
temporarily.	Mathematically,	K	equates	to	the	long-	term	mean	population 
density where the per capita rate of exponential population change (r)	
approaches	zero

Berryman	and	Turchin	(2001);	
Berryman	(1999)

Cohort Group	of	individuals	that	were	born	at	the	same	time.	Used	to	assign	
individuals to the same age class within a Leslie matrix including specific 
demographic rates

Gotelli (2008)

Compensation (compensatory) A	density	feedback	whereby	population	density	is	negatively	correlated	
with	population	growth,	fertility,	survival	or	dispersal.	Population	density	
declines when the carrying capacity	is	exceeded	and	vice	versa

Neave	(1953)

Component density feedback Density	feedback	compensating	or	depensating	single	demographic rates Herrando-	Pérez	et	al.	(2012b)

Demographic rate A	measurable	aspect	of	individual	fitness	expressed	as	a	probability	or	a	rate	
over a defined time period, including survival	(probability	of	an	individual	
surviving from time t to t + 1),	fertility	(number	of	offspring	per	female	
produced	per	unit	time),	and	dispersal	(number	of	individuals	leaving	a	
defined	population	per	unit	time)

Levin et al. (2008)

Density feedback (~density 
dependencea)

When	social	and	trophic	interactions	modify	demographic rates and the 
resulting change in demographic rates alters population density,	“feeding”	
back	to	modify	the	intensity	of	those	interactions

Berryman	(1989);	Berryman	
et al. (2002)

Density- feedback strength The degree to which a demographic rate or population rate of change varies 
with increasing or decreasing population density. In the Ricker logistic 
model, this is measured as the slope of the compensatory	(negative)	
relationship	between	the	per capita rate of exponential population change 
and population density

Brook	and	Bradshaw	(2006);	
Doncaster (2008)

Density independence Present	or	past	population	density	not	affecting	per-	capita	population	
growth rate and/or demographic rates

Herrando-	Pérez	et	al.	(2012b);	
Smith	(1935)

Depensation (depensatory) A	density	feedback	whereby	population	density	is	positively	correlated	with	
population growth, fertility, survival, or dispersal. It typically occurs at 
low population density far from carrying capacity, often referred to as an 
“Allee	effect”

Courchamp et al. (1999);	
Neave	(1953)

Ensemble density feedback Compensation or depensation	acting	on	a	population's	overall	growth	rate,	
representing the sum of all component density feedbacks

Herrando-	Pérez	et	al.	(2012a);	
Münster-	Swendsen	and	
Berryman	(2005)

Gompertz logistic Linear (compensatory),	discrete-	time	relationship	between	the	per capita 
rate of exponential population change (r)	and	the	natural	logarithm	of	
population density

Doncaster (2008);	
Medawar	(1940);	
Nelder	(1961)

Leslie matrix Also	known	as	a	population	demographic	matrix,	it	represents	the	probability	
of	transitioning	from	one	age	class	to	the	next	(survival),	and	producing	
new	individuals	in	the	first	age	class	(fertility)

Caswell (2001)

Nonstationarity 
(nonstationary)

Occurs when density- dependent and - independent mechanisms generating 
fluctuations in population density themselves change through time

Dennis and Taper (1994);	
Turchin (2003)

Per capita rate of exponential 
population change

Often denoted r, this is the rate of population change calculated as the 
natural logarithm of the ratio of population densities at time t + 1	to	t, 
where r = loge(Nt + 1/Nt).	When	r = 0,	the	population	is	stable;	when	r < 0,	it	
declines; when r > 1,	the	population	is	increasing

Turchin (2003)

Phenomenological Model	describing	the	long-	term	dynamics	of	population	density	(cycles,	
stability,	instability)	resulting	from	demographic	processes

Herrando-	Pérez	et	al.	(2012b)

Population density Often denoted N,	this	is	the	number	of	individuals	in	a	population	per	unit	
area; when the area under consideration does not shift through time, 
population	size	can	replace	density	per	se	in	dynamical	models

Berryman	(1999)

Return time Time	required	for	a	population	to	return	to	carrying capacity following a 
disturbance

Berryman	(1999)

(Continues)
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we	considered	 to	 examine	which	 conditions	 led	 to	 a	 decoupling	of	
component	and	ensemble	feedbacks	(Section	2.7),	the	logistic	models	
we	used	to	quantify	ensemble	density	feedbacks	from	the	projected	
time	 series	 of	 abundance	 (Section	2.8),	 and	how	we	 compared	 the	
strength	 of	 the	 component	 and	 ensemble	 density-	feedback	 signals	
(Section	2.9).	See	Figure 1 for a detailed schematic of the process.

2.1  |  Test species

Because	the	variability	in	population	growth	rates	is	driven	primarily	
by	variation	in	survival	rates	for	species	with	slower	life	histories	such	
as	mammals	(Oli	&	Dobson,	2003)	and	birds	(Sæther	&	Bakke,	2000),	
we	parameterised	the	simulated	population	dynamics	of	21	long-	lived	

Term Definition References

Ricker logistic Linear (compensatory),	discrete-	time	relationship	between	the	per capita rate 
of exponential population change (r)	and	population density

Doncaster (2008);	
Ricker (1958)

Stationarity (stationary) Opposite of nonstationarity; a dynamical system where the mechanisms 
generating	fluctuations	in	population	size	do	not	change	with	time

Dennis and Taper (1994);	
Turchin (2003)

Stochastic Property	of	models	estimating	the	probability	of	various	outcomes	while	
allowing	for	uncertainty	in	one	or	more	parameters.	In	stable	(stationary)	
systems, stochasticity is due to environmental factors; in chaotic systems, 
variability	is	caused	by	both	internal	(components	of	population	structure	
like	density	feedbacks)	and	environmental	factors

Sinclair	and	Pech	(1996)

Time series Estimates	of	population	abundance	monitored	at	semi-	regular	intervals	(e.g.,	
years),	collectively	known	as	“census”

Knape	and	de	Valpine	(2012)

Vital rate See	demographic rate

aDensity feedback should replace density dependence	because,	while	used	synonymously,	the	former	abates	conceptual	and	terminological	confusion	
(Herrando-	Pérez	et	al.,	2012b).

TA B L E  1 (Continued)

F I G U R E  1 Scheme	of	the	main	elements	of	how	density	feedback	operates	in	population	dynamics	(see	Table 1 for a full glossary of 
terms	indicated	in	italicized	boldface).	(i)	a	component density feedback	can	operate	on	survival	probability	(shown	here	as	compensation)	
where	survival	declines	as	population	size	increases.	(ii)	Another	common	component	density	feedback	operates	on	fertility,	where	the	
number	of	offspring	per	female	decreases	with	increasing	population	size.	(iii)	A	time	series	of	abundance	estimates	(“census	data”)	for	a	
population captures an ensemble density feedback on the per capita rate of exponential population change (r)	resulting	from	all	component	
density	feedbacks.	In	systems	demonstrating	stationarity, the underlying mechanisms (e.g., carrying capacity K)	driving	change	in	population	
size	do	not	themselves	shift	over	time.	(iv)	Plotting	the	rate	of	population	change	(r = Nt + 1/Nt)	against	population	size	(Nt)	provides	a	way	
to measure the evidence for, and strength	of,	ensemble	density	feedback.	In	this	representation,	a	Ricker logistic model estimates the 
linear	slope	between	r and Nt (a negative slope here indicates compensation,	but	a	positive	slope	would	indicate	depensation).	Where	r = 0	
intersects the linear Ricker logistic	fit,	the	long-	term	mean	carrying capacity (K)	can	be	estimated	if	not	trending	upward	or	downward.	The	
black	arrows	indicate	that,	under	compensatory dynamics, a population tends to grow towards K when r > 0	(i.e.,	low	N)	and	to	decline	from	K 
when r < 0	(i.e.,	high	N).	(v)	In	this	example,	the	system	is	in	a	state	of	nonstationarity	because	the	K is declining over time.
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    |  5 of 18BRADSHAW and HERRANDO-PÉREZ

species	of	extant	 (n = 8)	and	extinct	 (n = 13)	Australian	vertebrates	
from	 five	 taxonomic/functional	 groups	 (herbivore	 vombatiformes	
[wombat	suborder]	and	macropodiformes	[kangaroo	suborder],	large	
omnivore	birds,	carnivores,	and	invertivore	monotremes	[echidnas]),	
spanning	mean	 adult	 body	masses	 of	 1.7–	2786 kg	 and	 generation	
lengths	of	2.3–	21 years	(Bradshaw	et	al.,	2021; Table 2).	These	spe-
cies differ in their resilience to environmental change, and represent 
the	slow	end	of	the	slow-	fast	continuum	of	life	histories	(Herrando-	
Pérez	et	al.,	2012c).	Here,	high	survival	rates	make	it	possible	that	
reproductive efforts are dispersed over the lifetime of individuals 
(Gaillard et al., 1989).	We	chose	this	suite	of	species	to	cover	a	range	
of	demographic	types—	it	is	the	relative	structure	of	the	population	
and the particulars of the life histories that matter here, not the spe-
cifics	 of	 species	A	 or	B,	 or	whether	 they	 are	 extant	 or	 extinct	 or	
live(d)	in	Australia	or	elsewhere.	A	full	justification	of	the	selection	of	
our	test	species	can	be	found	in	Bradshaw	et	al.	(2021).

2.2  |  Base (age- structured) population model

We	developed	the	base	population	model	 for	each	test	species	as	
a stochastic (i.e., parameters resampled within their uncertainty 
bounds)	Leslie	transition	matrix	(M)	following	a	prebreeding	design	
(Caswell, 2001; Table 1).	 The	 Leslie	 transition	matrix	M has ω + 1	

(i) × ω + 1	( j)	elements	(ages	from	0	to	ω	years)	for	females	only,	where	
ω = maximum	longevity.	Fertility	 (mx)	occupied	the	first	 row	of	 the	
matrix,	survival	probabilities	(Sx)	occupied	the	subdiagonal,	and	the	
final	diagonal	transition	probability	(Mi,j)	was	Sω	for	all	species―ex-
cept Vombatus ursinus	(VU;	common	wombat),	Thylacinus cynocepha-
lus	 (TC;	thylacine),	and	Sarcophilus harrisii	 (SH;	devil),	 for	which	we	
set Sω = 0	to	 limit	unrealistically	high	proportions	of	old	individuals	
in the population given the evidence for catastrophic mortality at 
ω	 for	 the	 latter	 two	species	 (Cockburn,	1997;	Holz	&	Little,	1995; 
Oakwood et al., 2001).	 Multiplying	M	 by	 a	 population	 vector	 n 
estimates	 total	 population	 size	 (Σn)	 at	 each	 forecasted	 time	 step	
(Caswell, 2001).	We	parameterised	the	base	model	with	n0 = ADMw 
for	a	closed	population	(dispersal = 0),	where	w	is	the	right	eigenvec-
tor of M	(stable	stage	distribution),	and	A is the surface area of the 
study	zone	(A = 250,000 km2),	so	that	the	species	with	the	lowest	n0 
would have an initial population of at least several thousand individ-
uals	at	the	start	of	the	simulations.	Based	on	theoretical	equilibrium	
densities (D, km−2)	calculated	for	each	taxon	(Bradshaw	et	al.,	2021),	
we	set	the	species-	specific	carrying	capacity	K = DA.

We	ran	projections	of	the	base	model	to	40	generations	(40⌊G⌉; 
see	Section	2.6)	per	simulated	population	such	that:

(1)G =
log

((
vTM

)
1

)

�1

TA B L E  2 Taxonomy	and	life-	history	characteristics	of	the	21	test	species	(all	native	to	Australia)	used	to	simulate	age-	structured	
populations	and	time	series	of	population	abundance	(Bradshaw	et	al.,	2021).

Taxonomic/functional group Species Abb M GL q Status

Herbivore	vombatiformes Diprotodon optatum DP 2786 18.1 724 Extinct

Palorchestes azael PA 1000 15.1 604 Extinct

Zygomaturus trilobus ZT 500 13.2 528 Extinct

Phascolonus gigas PH 200 10.7 428 Extinct

Vombatus ursinus VU 25 10.0 400 Extant

Herbivore	macropodiformes Procoptodon goliah PG 250 8.3 332 Extinct

Sthenurus stirlingi SS 150 8.1 324 Extinct

Protemnodon anak PT 130 7.8 312 Extinct

Simosthenurus occidentalis SO 120 7.8 312 Extinct

Metasthenurus newtonae MN 55 6.0 240 Extinct

Osphranter rufus OR 25 5.5 220 Extant

Notamacropus rufogriseus NR 14 6.3 252 Extant

Omnivore	birds Genyornis newtoni GN 200 20.0 800 Extinct

Dromaius novaehollandiae DN 55 5.9 236 Extant

Alectura lathami AL 2.2 6.8 272 Extant

Carnivores Thylacoleo carnifex TC 110 9.1 364 Extinct

Thylacinus cynocephalus TH 20 5.2 208 Extinct

Sarcophilus harrisii SH 6.1 3.1 124 Extanta

Dasyurus maculatus DM 2 2.3 92 Extant

Invertivore monotremes Megalibgwilia ramsayi MR 11 16.4 656 Extant

Tachyglossus aculeatus TA 4 14.1 564 Extant

Abbreviations:	GL,	generation	length	(years);	M,	body	mass	(kg),	q,	projection	length	(years)	of	simulated	populations	given	the	species'	GL.
aExtant	in	Tasmania,	currently	extinct	in	mainland	Australia.
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6 of 18  |     BRADSHAW and HERRANDO-PÉREZ

where (vTM)1	 is	 the	dominant	eigenvalue	of	 the	 reproductive	matrix	
R derived from M, and v is the left eigenvector of M (Caswell, 2001).

2.3  |  Component density feedback on survival

2.3.1  |  Setting	the	survival	modifier

We	 simulated	 a	 component	 compensatory	 density-	feedback	 func-
tion	by	forcing	a	reduction	modifier	(Sred)	of	the	age-	specific	survival	
(Sx)	vector	in	M	according	to	total	population	size	Σn:

where the a, b, and c	constants	for	each	species	are	adjusted	to	produce	
a	stable	population	on	average	over	40	generations	(40⌊G⌉;	see	above)	
(Brook	et	al.,	2006; Traill et al., 2010).	This	formulation	avoids	expo-
nentially	 increasing	populations	and	optimizes	 transition	matrices	 to	
produce	parameter	values	as	close	as	possible	to	the	maximum	poten-
tial rates of population increase (rm),	therefore	ensuring	that	long-	term	
population	dynamics	are	approximately	stable	at	the	species-	specific	
carrying capacity.

The	total	projection	length	in	years	(q)	varied	across	the	21	test	
species	given	their	different	generation	lengths,	from	92	(Dasyurus 
maculatus;	DM;	spot-	tailed	quoll)	to	800	(Genyornis newtoni;	GN;	mi-
hirung)	years	 (median = 324 years,	with	95%	 interquartiles	of	108–	
762 years;	Table 2),	with	one	value	of	abundance	simulated	per	year	
representing	a	typical	census	interval	(Knape	&	de	Valpine,	2012).

2.3.2  |  Varying	uncertainty	in	survival

In	each	projection	and	annual	time	step,	the	survival	vector	Sx was 
resampled following a β	distribution	assuming	a	5%	standard	devia-
tion of each Sx	 and	 a	 Gaussian-	resampled	 fertility	 vector	mx.	We	
tested	 that	 increasing	 the	 standard	 deviation	 on	 juvenile	 survival	
(Barraquand	&	Yoccoz,	2013; Hilde et al., 2020)	had	no	effect	on	our	
conclusions (see Appendix 2	and	Section	3).

2.3.3  |  Catastrophe	function

For	 each	 species,	 we	 added	 a	 catastrophic	 (density-	independent)	
mortality	function	to	the	transition	matrix	M and scaled it to genera-
tion	length	among	vertebrates	(Reed	et	al.,	2003):

where pC = probability	of	catastrophe	was	set	at	0.14	given	this	is	the	
mean	 probability	 per	 generation	 observed	 across	 vertebrates	 (Reed	
et al., 2003).	Once	 invoked	at	probability	C,	 a	binomial	β-	resampled	
proportion	centred	on	0.5	to	the	β-	resampled	survival	vector	induces	

a ~ 50%	mortality	event	for	that	year	(Bradshaw	et	al.,	2013).	A	cata-
strophic	event	is	defined	as	“…	any	1-	yr	peak-	to-	trough	decline	in	esti-
mated	numbers	of	50%	or	greater”	(Reed	et	al.,	2003).	The	catastrophe	
function	essentially	 recreates	 the	demographic	effects	of	a	density-	
independent	process	such	as	extreme	weather	events,	fires,	or	disease	
outbreaks.

2.3.4  |  Adding	a	component	feedback	in	fertility

We	 deliberately	 avoided	 applying	 density-	feedback	 functions	 to	
fertility	to	isolate	the	component	feedback	to	a	single	demographic	
rate	(survival,	see	above).	However,	we	also	tested	whether	splitting	
the	 compensatory	 feedback	between	 survival	 and	 fertility	 altered	
our results and conclusions (see Appendix 3	for	justification	and	test	
outcomes).	Our	 conclusions	 remained	 the	 same	without	or	with	 a	
density	feedback	on	fertility	(Section	3).

2.4  |  Generating nonstationarity

Nonstationarity	 is	defined	as	a	property	of	a	 long-	term	population	
trend	 whereby	 the	 density-	dependent	 and	 -	independent	 mecha-
nisms generating fluctuations in population density themselves 
change through time (Turchin, 2003; Table 1).	 To	 determine	 how	
nonstationarity	 affects	 the	 relationship	 between	 component	 and	
ensemble	 density	 feedbacks,	 we	 considered	 five	 main	 types	 of	
nonstationarity	 embedded	 within	 eight	 different	 demographic	
scenarios (see Demographic scenarios	Section	2.7),	as	follows:	(i)	ca-
tastrophe survival function as the only source of nonstationarity 
(Section	2.3.3);	(ii)	catastrophe	survival	function	with	the	addition	of	
a	90%	mortality	pulse	at	20	generations;	(iii)	increased	mortality	via	a	
proportional	offtake	in	the	abundance	vector	(n)	such	that	the	popu-
lation	declined	on	average	over	the	projection	interval	(two	rates	of	
population	 decline	 considered);	 (iv)	 variable	 but	 declining	 carrying	
capacity; (v)	 catastrophe	 survival	 function	 increased	 to	 produce	 a	
stable	long-	term	population	trend	(r  ≅ 0)	over	40	generations	with	a	
null	density	feedback	on	survival.	These	nonstationary	mechanisms	
recreate	 real	 situations	 experienced	 by	wild	 populations	 of	 large-	
bodied	carnivores	and	herbivores	exposed	to	 temporal	changes	 in	
food	resources	or	mortality	events	resulting	from	disease	outbreaks	
or harvesting.

2.5  |  Measuring nonstationarity in abundance 
time series

To	ascertain	 the	degree	of	 nonstationary	 in	 each	 simulated	 abun-
dance	 time	 series	 (Section	 2.6)	 across	 all	 demographic	 scenarios	
(Section	2.7),	we	calculated	 the	mean	and	variance	of	 return	 time	
(TR)—	defined	as	the	time	required	to	return	to	equilibrium	following	
a	disturbance	(Berryman,	1999).	We	calculated	the	mean	and	vari-
ance	of	return	time	for	each	generated	abundance	time	series	as:

(2)Sred =
a

1 +
� ∑

n

b

�c

(3)C =
pC

G
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    |  7 of 18BRADSHAW and HERRANDO-PÉREZ

where TR is the mean TR across M	steps	of	the	time	series.	For	each	
mth time step,

where SCm
	is	the	number	of	complete	time	steps	taken	before	reaching	

TRm
, and SFm	is	the	fraction	of	time	required	to	reach	TRm

 in the Mth	(final)	
step:

where N	is	the	abundance	mean	across	all	time	steps	in	the	time	se-
ries	 (a	proxy	for	carrying	capacity),	Np	 is	the	population	size	prior	to	
crossing N, and Na	is	the	population	size	after	crossing	N. The variance 
of TR is:

Thus, when TR ≪ Var
(
TR

)
 (i.e., TR ∕Var

(
TR

)
≪ 1),	 the	 time	 se-

ries	 is	 considered	 to	 be	 highly	 nonstationary	 (Berryman,	 1999).	
See	 Appendix 1 and Figures S1–	S3	 for	 how	 these	 the	 perturba-
tions imposed in the demographic scenarios altered indices of 
nonstationarity.

2.6  |  Simulating time series of 
population abundance

From	 the	 base	 model	M that incorporates age structure, density 
feedbacks	 on	 survival,	 catastrophic	 events,	 and	 varying	 carrying	
capacity	as	described	above,	we	generated	multiannual	abundance	
time	 series	 up	 to	 40	 generations	 for	 each	 species	 (Section	 2.2; 
Equation 1).	We	 standardized	projection	 length	 to	40	generations	
because	 there	 is	 strong	 evidence	 that	 the	 length	 of	 a	 time	 series	
(q)	 dictates	 the	 statistical	 power	 to	 detect	 an	 ensemble	 density-	
feedback	signal	in	logistic	growth	curves	(Brook	&	Bradshaw,	2006; 
Knape	&	de	Valpine,	2012).	Here,	we	summed	the	n	abundance	vec-
tor	over	all	age	classes	to	produce	a	total	population	size	Nt,i for each 
year t	of	each	projection	i.	We	rejected	the	first	generation	of	each	
projection	as	a	burn-	in	to	allow	the	initial	(deterministic)	age	distribu-
tion	to	calibrate	to	the	stochastic	expression	of	stability	under	com-
pensatory	density	feedback.

2.7  |  Demographic scenarios

We	generated	10,000	abundance	 time	series	over	40	generations	
(Sections	2.2 and 2.6)	for	each	of	the	21	test	species	(Table 2)	in	each	

of	 nine	 demographic	 scenarios	 (totalling	 10,000 × 21 × 9 = 189,000	
time	series;	90,000	time	series	per	species;	21,000	time	series	per	
scenario).	Each	times	series	represented	the	idiosyncratic	demogra-
phy	of	a	unique	population	occupying	an	area	of	250,000 km2 with 
zero	permanent	dispersal	(Section	2.2).

Below,	we	present	the	nine	demographic	scenarios	(summarized	
in Table 3),	 and	 then	 we	 describe	 the	 measurement	 of	 ensemble	
and	compensatory	feedbacks	(statistical support	 in	Section	2.8 and 
strength	in	Section	2.9)	from	each	simulated	time	series	across	sce-
narios. Our set of scenarios emulate true nonstationary processes 
(Section	2.4; Appendix 1)	 often	 shaping	 the	 long-	term	 population	
dynamics	 of	 large	 mammals	 through	 density-	independent	 (cata-
strophic	 and	 harvest)	mortality	 and	 variation	 in	 carrying	 capacity.	
Our	focus	is	on	whether	those	processes	erode	the	density-	feedback	
signal	from	time	series	of	abundance	and	precipitate	decoupling	of	
component	and	ensemble	density	feedbacks.	Scenarios	 i to viii ad-
dress	 the	effects	of	nonstationary	processes	on	ensemble	density	
feedbacks	when	a	component	density	feedback	on	survival	is	pres-
ent	 (true	 positive),	 and	 Scenario	 ix addresses those effects when 
such	a	component	feedback	is	absent,	potentially	leading	to	spurious	
ensemble	density	feedback	(false	positive).

2.7.1  |  Stochasticity	in	demographic	rates	
(Scenario	i)

Scenario	 i:	 Population	 subjected	 to	 the	 stochasticity	 imposed	 by	
resampling	 demographic	 rates	 in	 the	 Leslie	matrices	 (Section	2.2)	
(Dennis et al., 2006).	This	is	the	only	scenario	where	we	impose	no	
catastrophic mortality events.

2.7.2  |  Catastrophic	mortality	(scenarios	ii and iii)

Scenario	 ii:	 As	 in	 Scenario	 i,	 but	with	 generationally	 scaled	 catas-
trophes	centered	on	50%	mortality,	 leading	to	population	stability	
(r  ≅ 0).	Compared	to	Scenario	i,	Scenario	ii tests the hypothesis that 
density-	independent	 catastrophes	 imposing	 process	 error	 erode	
the	density-	feedback	 signal	 from	 time	 series	of	 abundance	 (Abadi	
et al., 2012;	Knape	&	de	Valpine,	2012).

Scenario	iii:	As	in	Scenario	ii,	but	with	an	additional,	single	“pulse”	
perturbation	of	90%	mortality	applied	across	all	ages	at	20	genera-
tions	to	alter	the	population	age	structure—	this	tests	the	hypothesis	
that	large	“resets”	of	population	size	modify	the	underlying	compo-
nent	 dynamics	 so	 abruptly	 via	 highly	modified	 age	 structure	 that	
the	ensemble	signal	is	eroded	(Hoy	et	al.,	2020;Turchin, 2003	;	Wu	
et al., 2007).

2.7.3  |  Harvest-	like	mortality	(scenarios	iv and v)

Scenario	 iv:	A	“harvest”-	like	scenario	where	a	consistent	proportion	
of individuals is removed from the n	abundance	vector	at	each	time	

(4)TR =

∑M

m=1
TRm

M

(5)TRm
= SCm

+ SFm

(6)SFm =
Np − N

Np − Na

(7)
Var

�
TR

�
=

∑M

m=1

�
TRm

−TR

�2

M − 1
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8 of 18  |     BRADSHAW and HERRANDO-PÉREZ

step to produce a weakly declining population on average (r ≅ −0.001)	
(Bargmann	et	al.,	2020;	Bergman	et	al.,	2015)	(this	scenario	also	in-
cludes	the	castastrophic	mortality	function	described	in	Scenario	ii).

Scenario	v:	As	in	Scenario	iv,	but	with	a	strongly	declining	popu-
lation on average (r  ≅ −0.01).	Scenarios	iv and v test the hypothesis 
that	the	greater	the	rate	of	trending	in	population	size	over	time,	the	
more	the	ensemble	signal	is	degraded.

2.7.4  |  Variable	carrying	capacity	(scenarios	vi, viii, 
viii)

Scenario	vi: Resampling a constant mean carrying capacity (and con-
stant variance via resampling the b parameter in Equation 2).	This	
tests the hypothesis that uncertainty in carrying capacity reduces 
ensemble	 feedbacks	 in	 abundance	 time	 series	 (Abadi	 et	 al.,	2012; 
Knape	 &	 de	 Valpine,	 2012).	 This	 scenario	 also	 includes	 the	 cata-
strophic	mortality	function	described	in	Scenario	ii.

Scenario	vii:	As	in	Scenario	vi,	but	where	the	resampling	variance	
in	carrying	capacity	doubles	over	the	projection	interval	(via	a	linear	

increase in the standard error used to resample the b parameter in 
Equation 2)	(Abadi	et	al.,	2012;	Knape	&	de	Valpine,	2012).

Scenario	viii:	As	in	Scenario	vi,	but	with	declines	in	carrying	ca-
pacity	at	a	rate	of	0.001	over	the	projection	interval	(via	decreasing	
the b parameter in Equation 2).	This	tests	the	hypothesis	that	state	
shifts	(here,	gradually	reducing	carrying	capacity)	erode	the	ensem-
ble	signal	(Turchin,	2003;	Wu	et	al.,	2007).

2.7.5  |  Absence	of	component	density	feedback	on	
survival	(Scenario	ix)

Scenario	 ix: This is the only scenario where we imposed no com-
ponent	 density	 feedback	 on	 survival,	 testing	 the	 hypothesis	 that	
in	populations	exposed	to	high	density-	independent	process	error,	
false	detection	of	an	ensemble	signal	can	occur	even	when	compo-
nent	feedback	is	weak	or	absent	(Knape,	2008).	To	produce	popu-
lations	 that	were	 approximately	 stable	on	average	over	 the	entire	
projection	interval,	we	simulated	density-	independent	mortality	via	
an	increase	in	the	probability	of	a	catastrophe	(pC in Equation 3)	to	

Scenario Catastrophe type Description

Component	feedback	present

Stochastic mortality, no catastrophic mortality, stable K

(i)	 Kfixed, r  ≅ 0 none Stochastically	resampled	survival	rates	
in	age-	structured	population

Catastrophic mortality (50%), stable K

(ii)	 Kfixed; r  ≅ 0;	sustained	
catastrophic mortality

generationally scaled As	in	i,	but	with	catastrophes

(iii)	 Kfixed; r  ≅ 0;	additional	
pulsed catastrophic 
mortality

generationally scaled As	in	ii,	but	with	a	single	90%	mortality	
pulse implemented at 20G

Harvest mortality, catastrophic mortality, stable K

(iv)	 Kfixed; r  ≅ −0.001;	annual	
harvesting

generationally scaled As	in	ii,	but	with	proportional	removal	
of individuals from the n vector 
such that r =	−0.001	(slowly	
declining N)

(v)	 Kfixed; r  ≅ −0.01;	annual	
harvesting

generationally scaled As	in	iv,	but	where	r =	−0.01	(rapidly	
declining N)

(vi)	 Kstochastic; r  ≅ 0 generationally scaled As	in	ii,	but	normally	distributed	K 
varying randomly at each time step 
(SD = 5%)

(vii)	Kstochastic with increasing 
variance; r  ≅ 0

generationally scaled As	in	vi,	but	variance	in	K increased 
linearly	from	5%	to	10%

(viii)	Kstochastic declining, 
forcing r  < 0

generationally scaled As	in	vi,	but	K also decreases on 
average	at	a	rate	of	−0.001

Component	feedback	absent

(ix)	 no	K; r  ≅ 0 temporally scaled Probability	of	catastrophe	increased	
over time such that r  ≅ 0	(~ average 
stability)

Note:	All	scenarios	were	simulated	over	40	generations	across	21	test	species	(Table 2).	Time	series	
obtained	from	simulated	age-	structured	populations	(Leslie	matrices)	occupying	250,000 km2 with 
no permanent dispersal.
Abbreviations:	G, generation; N,	population	abundance;	K, carrying capacity; r,	long-	term	mean	
instantaneous	rate	of	population	change,	SD,	standard	deviation.

TA B L E  3 Demographic	scenarios	
to	quantify	the	detection	of	ensemble	
density-	feedback	signals	in	time	series	
of	abundance	using	phenomenological	
models	(logistic	growth	curves)	if	a	
component	density	feedback	on	survival	
is present (1. H0:	false	negatives),	or	
absent	(2.	H0:	false	positives).
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    |  9 of 18BRADSHAW and HERRANDO-PÉREZ

produce	a	stable	population	on	average	(r  ≅ 0)	over	40	generations,	
and	 removed	 the	component	density-	feedback	on	 survival	by	 set-
ting the survival reduction parameter Sred to 1 in all iterations.

2.8  |  Measuring ensemble density feedbacks

For	each	simulated	time	series,	we	applied	four	phenomenological	mod-
els	to	quantify	both	the	statistical	evidence	of	the	ensemble	compensa-
tory	density	feedback	and	the	strength	of	such	a	feedback	as	follows:

2.8.1  |  Phenomenological	models

The phenomenological models included four variants of the gen-
eral	 logistic	 growth	 curve	 (Verhulst,	 1838)	 following	 Brook	 and	
Bradshaw	(2006):

where Nt = population	size	at	time	t, α = intercept,	β = strength	of	en-
semble	 density	 feedback,	 and	 εt = Gaussian	 random	 variable	 with	 a	
mean	 of	 zero	 and	 a	 variance	 σ2 reflecting uncorrelated stochastic 
variability	in	the	per-	capita	rate	of	population	change	r. Our first two 
models	are	density-	independent	models	assuming	no	compensatory	
ensemble	 density	 feedback	 (DI):	 (1)	 random	 walk,	 where	 α = β = 0,	
and	 (2)	 exponential	 growth	 where	 β = 0.	 The	 second	 two	 variants	
are	 density-	feedback	 (or	 density-	dependent)	 models	 assuming	 a	
compensatory	 ensemble	 density	 feedback	 (DF):	 (3)	 Ricker-	logistic	
(Ricker, 1954),	and	(4)	Gompertz-	logistic	 (Nelder,	1961),	where	Nt on 
the right side of Equation 8 is replaced with loge(Nt).	The	 latter	 two	
models represent alternative situations where population growth rate 
varies	 in	response	to	unit	 (Ricker)	or	order-	of-	magnitude	 (Gompertz)	
changes	in	population	density	(Herrando-	Pérez	et	al.,	2012b).

2.8.2  |  Strength	of	ensemble	density	feedback

We	 estimated	 the	 strength	 of	 the	 ensemble	 density-	feedback	 as	
the negative of the slope �̂	 estimated	 from	 the	Gompertz-	logistic	
model (under compensation, �̂	will	always	be	< 0, so the lower the �̂  ,	
the	stronger	the	compensatory	feedback).	We	used	the	Gompertz-	
logistic �̂,	 instead	of	the	Ricker-	logistic	 �̂, to estimate this strength 
because	only	the	former	characterizes	the	multiplicative	nature	of	
demographic rates (Doncaster, 2008;	Herrando-	Pérez	et	al.,	2012a).

2.8.3  |  Statistical	evidence	for	ensemble	
density	feedback

We	 calculated	 the	 relative	 likelihood	 of	 the	 four	 phenomeno-
logical	models	 fitted	 to	each	 time	series	by	means	of	 the	Akaike's	

information	 criterion	 (AIC)	 corrected	 for	 finite	 number	 of	 sam-
ples	 (AICc)	 (Sugiura,	 1978)	 in	 a	 multimodel	 inferential	 framework	
(Burnham	&	Anderson,	2002).	Across	 the	 four	models,	we	 ranked	
the statistical evidence	for	an	ensemble	density-	feedback	Pr(density 
feedback)	as	the	sum	of	AICc weights (wAICc = model	probability)	for	
the	Ricker-		and	Gompertz-	logistic	models	(i.e.,	ΣwAICc-	density feed-
back),	 and	 the	evidence	 for	 a	 lack	of	 such	 feedback	 as	 the	 sum	of	
AICc	weights	for	random	walk	and	exponential	growth	(i.e.,	ΣwAICc-	
density independence)—	where	 ΣwAICc-	density feedback + ΣwAICc-	
density independence = 1	(Burnham	&	Anderson,	2002).	This	follows	
the	 logic	 that	 the	more	 the	 slope	 between	 the	 per-	capita	 rate	 of	
change (r)	and	abundance	(Nt)	 (Ricker	model)	or loge(Nt)	 (Gompertz	
model)	differs	from	zero	(β ≠ 0),	the	stronger	statistical	support	for	an	
ensemble	density	feedback	in	the	time	series	than	density	independ-
ence (ΣwAICc-	density feedback > ΣwAICc-	density independence im-
plies	Pr(density feedback) > 0.5)—	providing	that	sample	size	(number	
of	 transitions)	 does	 not	 limit	 statistical	 inference	 (Herrando-	Pérez	
et al., 2012c).

2.9  |  Correlating ensemble versus component 
density feedbacks

We	plotted	 the	estimated	 strength	of	 the	ensemble	density	 feed-
back	(Gompertz-	̂�)	to	the	strength	of	the	component	feedback	sig-
nal	for	survival	(1 –	 Sred)	across	all	21	species	(Table 2)	to	determine	
whether	the	component	strength	can	be	used	to	predict	the	ensem-
ble	strength	in	each	of	the	nine	demographic	scenarios.	We	tested	
the	correlation	between	the	strength	of	ensemble	and	component	
density	feedbacks,	and	between	the	strength	of	ensemble	feedback	
and	 the	 degree	 of	 nonstationarity,	 across	 species	 by	 calculating	 a	
bootstrapped	estimate	of	Spearman's	correlation	ρ (treating relative 
differences	in	the	metrics	as	ranks).	We	uniformly	resampled	10,000	
times	from	the	95%	confidence	interval	of	each	metric	for	each	spe-
cies and demographic scenario, calculating the correlation coeffi-
cient ρ	in	turn,	and	then	calculating	the	median	and	95%	confidence	
interval of ρ.	The	relationship	between	the	strength	of	ensemble	and	
component	density	feedback	(as	well	as	between	ensemble	strength	
and	stationarity)	showed	some	nonlinearity,	 so	we	also	 fitted	sim-
ple	 exponential	 plateau	models	 of	 the	 form	 y = ym–	x − (ym–	x − y0)e

−kx 
to these relationships. Here, y0 is the starting value of component 
strength, ymax	 is	 the	maximum	 component	 strength	 (Gompertz-	̂�),	
k = rate	constant	 (in	units	of	x−1),	 and	x is the component strength 
(1 –	 Sred).

3  |  RESULTS

3.1  |  Magnitude of ensemble density feedbacks

Bootstrapping	across	all	species,	the	reduction	in	ensemble	density-	
feedback	strength	measured	as	Gompertz-	β	was	greatest	in	Scenarios	
iv and v where we imposed population declines of r  ≅ −0.001	 and	

(8)r = loge

(
Nt+1

Nt

)
= � + �Nt + �t
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10 of 18  |     BRADSHAW and HERRANDO-PÉREZ

F I G U R E  2 Strength	of	ensemble	compensatory	density	feedback	across	demographic	scenarios.	Bootstrapped	(10,000	uniform	
resamples	between	95%	confidence	limits)	across	21	test	species	(detailed	in	Table 2)	of	the	strength	of	ensemble	compensatory	density	
feedback	(Gompertz-β)	among	scenarios	(detailed	in	Table 3).	Midpoints	indicate	means,	and	error	bars	are	the	interquartile	ranges.	
Demographic scenarios include carrying capacity K	fixed	(Kfixed;	Scenario	ii),	a	pulse	disturbance	of	90%	mortality	at	20	generations	(20G; 
Scenario	iii),	weakly	declining	(r  ≅ −0.001;	Scenario	iv)	and	strongly	declining	(r  ≅ −0.01;	Scenario	v)	populations,	K varying stochastically 
(Kstoch)	around	a	constant	mean	with	a	constant	variance	(Scenario	vi),	K varying stochastically with a constant mean and increasing variance 
(Kstoch↑Var;	Scenario	vii),	and	K varying stochastically with a declining mean and a constant variance (↓Kstoch;	Scenario	viii).

F I G U R E  3 Decoupling	of	ensemble	and	component	density	feedbacks	in	demographic	scenarios	with	and	without	catastrophic	mortality.	
Relationship	between	strength	of	ensemble	(slope	coefficient	β	of	the	Gompertz-	logistic	model × [−1]	in	the	time	series)	and	component	(1	
–		the	modifier	Sred	on	survival	in	the	Leslie	transition	matrix)	density	feedback	for:	Scenario	i (pink; stochastic mortality, no catastrophic 
mortality,	stable	K)	and	Scenario	ii	(grey:	stochastic	mortality,	catastrophic	mortality,	stable	K).	Fitted	curves	across	species	are	exponential	
plateau models of the form y = ymax − (ymax − y0)e

−kx.	Shaded	regions	represent	the	95%	prediction	intervals	for	each	scenario.	Each	scenario	
includes	21,000	simulated	time	series	of	abundance	(10,000	for	each	of	21		species;	Table 2).	Also	shown	are	the	mean	probabilities	of	
median	density	feedback	(Pr(density feedback):	sum	of	the	Akaike's	information	criterion	weights	for	the	Ricker-		and	Gompertz-	logistic	
models across time series (ΣwAICc-	density feedback)	relative	to	the	weights	of	two	density-	independent	models	(random	and	exponential).
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    |  11 of 18BRADSHAW and HERRANDO-PÉREZ

r  ≅ −0.01,	respectively,	relative	to	the	baseline	Scenario	ii (r  ≅ 0)	with	
population	stability	over	time	(Figure 2).	The	next	largest	reductions	
in	the	ensemble	signal	occurred	in	Scenarios	 iii	 (pulse	perturbation	
at	20	generations)	and	viii (stochastically varying carrying capacity 
declining	 over	 time)	 (Figure 2).	 Lastly,	 Scenarios	 vi (stochastically 
varying	carrying	capacity	around	a	long-	term	stable	average)	and	viii 
(stochastically	varying	carrying	capacity	around	a	 long-	term	stable	
average,	with	 increasing	 variance	 over	 time)	 had	 similar	 ensemble	
feedback	strengths	relative	to	the	base	Scenario	ii (Figure 2).	Clearly,	
only	harvest-	like	mortality	(Scenarios	iv and v)	dampens	the	strength	
of	compensatory	density	feedbacks	on	population	growth	rates.

3.2  |  Strength of component versus ensemble 
density feedback

3.2.1  |  Component-	ensemble	decoupling

Decoupling	of	component	and	ensemble	density	feedback	was	sig-
nalled	by	 the	 reduction	 in	 the	 correlation	 and/or	 the	 slope	of	 the	
linear	relationship	between	the	strengths	of	both	types	of	feedback	
for each time series across the 10,000 series covering 40 genera-
tions of each of the 21 test species and nine demographic scenarios. 

Neither	increasing	the	standard	deviation	in	juvenile	survival	relative	
to adults (Appendix 2; Figure S4),	nor	including	a	component	feed-
back	in	fertility	in	addition	to	one	operating	on	survival	(Appendix 3),	
affected our conclusions.

The	 addition	 of	 catastrophic	 mortality	 (Scenario	 ii)	 versus	 a	
population with only stochastic survival rates over the same period 
(Scenario	 i)	 reduced	the	correlation	(median	Spearman's	ρ = 0.893	
[0.826–	0.947]	 and	 0.881	 [0.780–	0.949],	 respectively)	 and	 slope	
between	the	strength	of	ensemble	(Gompertz-	β;	Section	2.8.2)	and	
component	 feedback	 (1 –	 Sred)	 across	 the	21,000	abundance	 time	
series	 (10,000	 series × 21	 test	 species)	 (Figure 3 and Figure S8).	
The	catastrophic-	pulse	mortality	(Scenario	iii)	returned	the	closest	
correlation	 (median	Spearman's	ρ = 0.929	 [0.871–	0.971])	between	
the	 strength	 of	 ensemble	 and	 component	 feedback,	 although	 it	
also	depressed	the	slope	of	the	relationship	relative	to	Scenario	 i 
(Figure 4).

The magnitude of correlation when the carrying capacity was 
forced to fluctuate (Figure 5)	 ranged	from	a	median	Spearman's	
ρ	 of	 0.8	 to	 0.9	 for	 Scenarios	 vi to viii (Figure 5 and Figure S8).	
In	contrast,	strong	decoupling	occurred	in	the	harvest-	mortality	
scenarios,	 with	 median	 Spearman's	 ρ	 of	 only	 0.009	 [−0.441–	
0.489]	 (Scenario	 iv)	 and −0.051	 [−0.498–	0.412]	 (Scenario	 v)	
(Figure 4).	Noticeably,	some	abundance	time	series	experienced	

F I G U R E  4 Decoupling	of	ensemble	and	component	density	feedbacks	in	demographic	scenarios	with	catastrophic	mortality	and	with	
catastrophic mortality + pulsed mortality and harvesting (see Figure 6).	Relationship	between	strength	of	ensemble	(slope	coefficient	β 
of	the	Gompertz-	logistic	model × [−1])	and	component	(1	–		the	modifier	Sred	on	survival)	density	feedback	for:	Scenario	iii (green: pulse 
disturbance	of	90%	mortality	at	20	generations);	Scenario	iv (red: weakly declining population at r ≅ −0.001);	and	Scenario	iv	(blue:	strongly	
declining population at r ≅ −0.01).	Each	scenario	includes	21,000	simulated	time	series	of	abundance	(10,000	for	each	of	21	species;	Table 2).	
Fitted	curves	across	species	are	exponential	plateau	models	of	the	form	y = ymax − (ymax − y0)e

−kx.	Shaded	regions	represent	the	95%	prediction	
intervals	for	each	scenario.	Also	shown	are	the	mean	probabilities	of	median	density	feedback	(Pr(density feedback):	sum	of	the	Akaike's	
information	criterion	weights	for	the	Ricker-		and	Gompertz-	logistic	models	across	time	series	(ΣwAICc-	density feedback)	relative	to	the	
weights	of	two	density-	independent	models	(random	and	exponential).

 20457758, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10010 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 18  |     BRADSHAW and HERRANDO-PÉREZ

depensation	or	“Allee	effects”	(population	growth	rate	increasing	
with	population	size;	Table 1).	For	these	two	harvest-	like	scenar-
ios	 (Scenarios	 iv and v),	 the	 95%	 confidence	 interval	 of	 the	 en-
semble	component	strength	included	0	for	all	species	(Figure 4).	
As	expected,	when	the	component	density	feedback	on	survival	
was	 absent	 (Scenario	 ix),	 all	 estimated	 strengths	 of	 ensemble	
feedback	enveloped	0	 (Figure 6),	meaning	an	absence	of	an	en-
semble	 density-	feedback	 signal	 (i.e.,	 r ~ loge(Nt)	 slope	not	 differ-
entiated	from	zero).	Clearly,	the	decoupling	between	the	density	
feedback	 on	 population	 growth	 rates	 (ensemble)	 and	 mortality	
(component)	 varied	 according	 to	 the	 type	 of	 perturbation	 the	
populations	 experienced,	with	 the	 strongest	 decoupling	 caused	
by	harvest-	like	mortality.

3.2.2  |  Strength	of	ensemble	feedback	
versus nonstationarity

Nonstationarity	 was	 a	 weak	 (median	 Spearman's	 ρ = −0.113	 –		
−0.086	over	10,000	time	series × 21	test	species)	predictor	of	the	
strength	of	ensemble	feedback	when	catastrophic	(Scenarios	ii, iii)	
or	 harvest-	like	 (Scenarios	 iv, v)	mortality	was	 imposed	 (Figure 7),	
but	 both	 variables	 were	 reasonably	 well-	correlated	 (median	

Spearman's	ρ = 0.756–	0.844)	for	Scenarios	vi to viii with fluctuating 
carrying capacity (Figure 8 and Figure S8).	The	former	correlations	
indirectly	reinforce	the	observation	that	density-	independent	mor-
tality	is	a	stronger	driver	of	component-	ensemble	density-	feedback	
decoupling	 than	 fluctuating	 resources	 (Subsection	 3.2.1)	 as	 the	
variation	 in	 the	magnitude	 of	 density	 feedbacks	 is	more	 respon-
sive	to	variation	in	carrying	capacity	than	to	density-	independent	
mortality.

3.3  |  Evidence for density feedback

The	 magnitude	 of	 statistical	 evidence	 for	 density	 feedback	 was	
largely invariant across all demographic scenarios (i to viii)	 that	
had	 a	 component	 feedback	 on	 survival	 (Figures S5 and S6; see 
above).	Thus,	the	median	probability	for	a	signal	of	ensemble	feed-
back	 (Pr(density feedback) = ΣwAICc-	density feedback for Ricker and 
Gompertz	models,	see	Section	2)	over	21,000	abundance	times	se-
ries	(10,000	series × 21	test	species)	was	>0.99	for	scenarios	i to vii 
(Figures S5–	S7),	and	0.93	(0.74–		> 0.99)	for	Scenario	viii with a de-
clining	carrying	capacity.	Logically,	for	Scenario	ix where we imposed 
a	null	density	feedback	on	survival	in	our	simulated	time	series,	the	
median	 statistical	 support	 for	 an	 ensemble	 density	 feedback	was	

F I G U R E  5 Decoupling	of	ensemble	and	component	density	feedbacks	in	demographic	scenarios	with	catastrophic	mortality	and	
fluctuating	carrying	capacity.	Relationship	between	strength	of	ensemble	(slope	coefficient	β	of	the	Gompertz-	logistic	model × [−1])	and	
component	(1	–		the	modifier	Sred	on	survival)	density	feedback	for:	Scenario	vi (purple: carrying capacity varying stochastically with a 
constant	mean	and	an	increasing	variance);	Scenario	vii (green: carrying capacity varying stochastically with a constant mean and an 
increasing	variance);	and	Scenario	viii (red: carrying capacity K	varying	stochastically	with	a	declining	mean	and	a	constant	variance).	Each	
scenario	includes	21,000	simulated	time	series	of	abundance	(10,000	for	each	of	21	test	species,	Table 2).	Fitted	curves	across	species	are	
exponential	plateau	models	of	the	form	y = ymax − (ymax − y0)e

−kx.	Shaded	regions	represent	the	95%	prediction	intervals	for	each	scenario.	Also	
shown	are	the	mean	probabilities	of	median	density	feedback	(Pr(density feedback):	sum	of	the	Akaike's	information	criterion	weights	for	
the	Ricker-		and	Gompertz-	logistic	models	across	time	series	(ΣwAICc-	density feedback)	relative	to	the	weights	of	two	density-	independent	
models	(random	and	exponential).
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    |  13 of 18BRADSHAW and HERRANDO-PÉREZ

only	 0.32	 (0.31–	0.34),	 so	 the	 two	 models	 assuming	 no	 ensemble	
density	feedback	(random,	exponential,	see	Section	2)	received	the	
highest	 statistical	 support.	 Finally,	 false	 positives	 in	 demographic	
Scenario	 iv	 (component	 feedback	 absent,	 ensemble	 feedback	 de-
tected)	occurred	in	<4 of every 10 time series.

In	 summary,	 if	 a	 component	 density	 feedback	 on	 survival	was	
present	(theoretically	driving	the	ensemble	density	feedback	on	the	
population	growth	rate),	the	phenomenological	models	were	reason-
ably	good	at	detecting	the	ensemble	feedback	from	the	time	series	
(true positive in >9	of	every	10	time	series)―regardless	of	whether	a	
population	was	perturbed	via	fluctuating	carrying	capacity	or	cata-
strophic or harvest mortality .

4  |  DISCUSSION

Our	 simulations	 reveal	 several	 new	 insights	 into	 how	 density-	
feedback	signals	in	population	growth	rates	and	those	operating	on	
vital	rates	can	be	decoupled.	First,	we	discovered	that	the	estimated	
strength	of	density	feedbacks	from	abundance	time	series	are	par-
ticularly	 sensitive	 to	 density-	independent	mortality	 that	 produces	

long-	term	declines	in	population	size.	In	other	words,	logistic	mod-
els	are	unlikely	to	reveal	density	feedback	in	harvested	populations	
that	 are	 declining,	 even	when	 strong	 component	 feedbacks	 exist.	
Therefore,	attempting	to	measure	density	feedbacks	in	such	popula-
tions	only	from	time	series	of	abundance	would	be	unlikely	to	bear	
fruit.	On	the	contrary,	estimated	feedback	strength	is	much	less	sen-
sitive to moderate fluctuations in carrying capacity.

Second,	 the	statistical	detection	of	density	 feedbacks	 in	abun-
dance	time	series	is	robust	in	the	face	of	even	pronounced	nonsta-
tionarity. It is essential here to distinguish the detection from the 
strength	of	the	feedback	itself—	the	former	is	based	on	the	statistical	
evidence that phenomenological models provide more support for a 
relationship	between	rate	of	change	and	population	density	than	not	
(Brook	&	Bradshaw,	2006),	whereas	the	latter	indicates	the	magni-
tude	of	the	slope	of	that	relationship	(Herrando-	Pérez	et	al.,	2012c).	
Third,	 the	concern	that	density-	independent	processes	can	 invoke	
false	evidence	of	ensemble	signals	of	compensation	are	not	borne	
out	by	our	simulations,	at	least	with	respect	to	density-	independent	
mortality	not	leading	to	declining	population	size.	Our	results	there-
fore	lend	credence	to	the	application	of	phenomenological	(logistic-	
growth)	models	 to	studies	addressing	the	 long-	term	effect	of	vital	
rates	on	population	abundance,	provided	there	is	enough	informa-
tion	 available	 (i.e.,	 population	 censuses	 over	 long	 periods)	 for	 de-
scribing	population	trends.

The	relative	magnitude	of	density-	dependent	and	-	independent	
mechanisms	 and	 their	 characterization	 and	detection	with	 logistic	
models	will	vary	from	population	to	population.	For	instance,	varia-
tion	in	survival	probability	can	be	entirely	driven	by	variation	in	cli-
matic	conditions	and	density-	independent	predation	 (Hebblewhite	
et al., 2018).	In	one	of	the	best-	studied	systems	in	this	regard,	Soay	
sheep (Ovis aries)	populations	from	St.	Kilda	Archipelago	in	the	UK	
demonstrate that the demographic role of density and weather 
varies	across	sexes	and	age	classes	 in	mild	winters,	but	survival	 is	
reduced	consistently	 in	all	 individuals	 in	years	of	bad	weather	and	
when	abundance	is	high	(Coulson	et	al.,	2001).	An	illustrative	exam-
ple with carnivores are wolves (Canis lupus)	whereby	 interpack	ag-
gression with strong social hierarchies might shape survival at high 
densities,	 but	 become	 demographically	 irrelevant	 at	 low	 densities	
resulting	 from	prey	shortages	and/or	hunting	or	culling	 (Cubaynes	
et al., 2014).	Our	results	reveal	that	such	density-	independent	pro-
cesses	can	erode	the	ensemble	signal	 if	 insufficient	data	are	avail-
able	relative	to	the	frequency	of	such	events.

Our	approach	and	findings	do	not,	of	course,	explain	all	possible	
scenarios	 leading	 to	 the	decoupling	of	 density-	feedback	 signals	 in	
single	demographic	rates	and	abundance	time	series.	For	example,	
other	 density-	independent	 factors	 that	 we	 did	 not	 consider	 can	
dampen the demographic role of social and trophic interactions me-
diated	by	population	size	(Herrando-	Pérez	et	al.,	2012a),	among	the	
most	 important	being	 immigration	 (Lieury	et	 al.,	 2015)	 and	 spatial	
heterogeneity in population growth rates (Thorson et al., 2015).	
Indeed,	 examining	 the	 nuances	 of	 spatial	 heterogeneity	 and	 the	
exchange	 of	 individuals	 among	 populations	would	 require	 a	 com-
pletely different modeling framework than the one we constructed 

F I G U R E  6 Strength	of	ensemble	density	feedback	and	
generation	length	for	21	vertebrate	species	for	demographic	
scenarios	with	and	without	a	component	density	feedback	
on	mortality.	Relationship	between	strength	of	ensemble	
(slope coefficient β × [−1]	of	the	Gompertz-	logistic	model)	and	
generation	length	across	the	21	species	for:	Scenario	ii	(black:	with	
compensatory	density	feedback;	see	also	Figure 2)	and	Scenario	
ix	(grey:	without	compensatory	density	feedback).	Each	scenario	
includes	21,000	simulated	time	series	of	abundance	(10,000	
for each of 21 test species, Table 2).	Probabilities	of	density	
feedback	(Pr(density feedback) = sum	of	the	Akaike's	information	
criterion	weights	for	the	Ricker	and	Gompertz	models	relative	
to	the	weights	of	two	density-	independent	models	(random	and	
exponential))	calculated	across	simulations	gave	median	Pr(density 
feedback) = 0.994	and	0.322	for	the	two	stable	scenarios	with	
(Scenario	ii)	and	without	(Scenario	ix)	component	feedback	on	
survival, respectively.
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here. Other disrupting phenomena such as fluctuating age structure 
(Hoy et al., 2020),	 environmental	 state	 shifts	 (Turchin,	2003;	Wu	
et al., 2007),	 and	sampling	error	 (Knape	&	de	Valpine,	2012)	were	
implicit	 in	 our	 modeling	 framework.	 In	 addition,	 by	 standardizing	
the	 spatial	 extent	 and	population	densities	 at	 the	 beginning	of	 all	
projections,	 and	 by	 including	 known	 sampling	 and	 process	 errors,	
our	models	quantify	the	contributions	of	nonstationarity	and	other	
forms	of	density-	independent	change	to	vital	rates.

Another	 caveat	 is	 that	 simulating	 closed	 populations	 might	
have potentially inflated our capacity to detect the component sig-
nal	 in	 abundance	 time	 series,	 because	 permanent	 dispersal	 could	
alleviate	 per-	capita	 reductions	 in	 fitness	 as	 a	 population	 nears	
carrying	 capacity.	We	 also	 limited	 our	 projections	 to	 a	 standard-
ized	 40	 generations	 across	 species,	 but	 even	 expanding	 these	 to	

120 generations resulted in little change in the stationarity metric 
(Figure S9).	Complementary	studies	focusing	on	the	faster	end	of	the	
life-	history	continuum	could	provide	further	 insights,	even	though	
our	 range	of	 test	 species	 still	 produced	a	 life-	history	 signal	of	 the	
strength and stationarity of component (Figure S10)	 and	 ensem-
ble	density	feedbacks	 (Figures S11 and S12)	that	declined	with	 in-
creasing generation length. However, this relationship faded when 
the	 trajectories	 simulated	 declines	 through	 proportional	 removal	
of	 individuals.	 Indeed,	both	evidence	for	 (Holyoak	&	Baillie,	1996),	
and	 strength	 of	 (Herrando-	Pérez	 et	 al.,	2012c),	 ensemble	 density	
feedback	generally	increase	along	the	continuum	of	slow	to	fast	life	
histories,	because	species	with	slow	life	histories	are	assumed	to	be	
more	demographically	stable	when	density	compensation	is	operat-
ing	(Sæther	et	al.,	2002).

F I G U R E  7 Strength	of	ensemble	density	feedback	in	demographic	scenarios	with	catastrophic	mortality,	catastrophic	mortality	with	
pulsed	mortality,	and	two	types	of	harvesting.	Relationship	between	strength	of	ensemble	density	feedback	(slope	coefficient	β × [−1]	of	the	
Gompertz-	logistic	model)	and	the	stationarity	index	TR ∕Var

(
TR

)
 across 21 test species over 40 generations for four demographic scenarios: 

(a)	Scenario	ii: carrying capacity (K)	fixed,	(b)	Scenario	iii:	a	pulse	disturbance	of	90%	mortality	at	20	generations,	(c)	Scenario	iv: weakly 
declining population at r ≅ −0.001,	and	(d)	Scenario	v: strongly declining population at r ≅ −0.01.	Each	scenario	includes	21,000	simulated	
time	series	of	abundance	(10,000	for	each	of	21	species,	Table 2).	Fitted	curves	across	species	exponential	plateau	models	of	the	form	
y = ymax − (ymax − y0)e

−kx.	Shaded	regions	represent	the	95%	prediction	intervals	for	each	type.	ρmed	are	the	median	Spearman's	ρ correlation 
coefficients	for	the	relationship	between	the	ensemble	strength	and	stationarity	index	across	species	(resampled	10,000	times;	see	
Figure S8 for full uncertainty range of ρ	in	each	scenario).

(a)

(b)

(c) (d)
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5  |  CONCLUSIONS

While	quantifying	the	true	extent	of	all	component	density-	feedback	
mechanisms operating in real populations will remain challenging in 
most circumstances, phenomenological models can normally cap-
ture	the	evidence	for	and	strength	of	the	component	feedbacks	at	
play.	Appreciating	the	degree	of	nonstationarity	and	other	types	of	
perturbations	affecting	abundance	time	series	can	contextualize	in-
terpretations	of	estimated	signals	of	density	feedback	in	abundance	
time	series,	especially	where	substantial	density-	independent	mor-
tality	 leads	 to	 long-	term	 population	 declines.	 Importantly,	 failing	
to	capture	 the	 realistic	magnitude	of	density-	feedback	strength	 in	
applied	ecological	models	can	lead	to	suboptimal	conservation	and	
management	 recommendations	 and	 outcomes	 (Herrando-	Pérez	
et al., 2012a; Horswill et al., 2017).
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