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Abstract: Arabica-coffee and Theobroma-cocoa agroindustrial wastes were treated with NaOH and
characterized to efficiently remove Pb(II) from the aqueous media. The maximum Pb(II) adsorption ca-
pacities, qmax, of Arabica-coffee (WCAM) and Theobroma-cocoa (WCTM) biosorbents (qmax = 303.0 and
223.1 mg·g−1, respectively) were almost twice that of the corresponding untreated wastes and were
higher than those of other similar agro-industrial biosorbents reported in the literature. Structural,
chemical, and morphological characterization were performed by FT-IR, SEM/EDX, and point of zero
charge (pHPZC) measurements. Both the WCAM and WCTM biosorbents showed typical uneven and
rough cracked surfaces including the OH, C=O, COH, and C-O-C functional adsorbing groups. The
optimal Pb(II) adsorption, reaching a high removal efficiency %R (>90%), occurred at a pH between
4 and 5 with a biosorbent dose of 2 g·L−1. The experimental data for Pb(II) adsorption on WACM
and WCTM were well fitted with the Langmuir-isotherm and pseudo-second order kinetic models.
These indicated that Pb(II) adsorption is a chemisorption process with the presence of a monolayer
mechanism. In addition, the deduced thermodynamic parameters showed the endothermic (∆H0 > 0),
feasible, and spontaneous (∆G0 < 0) nature of the adsorption processes studied.

Keywords: biosorption; Pb(II) removal; agroindustrial waste; heavy metals

1. Introduction

Effluents from industrial activities such as smelting, mining, painting, tanning, etc. are
causing severe environmental pollution by depositing heavy metals, particularly in aquatic
ecosystems [1]. These metals are highly toxic, are not degradable, and can accumulate in
living organisms and affect many of their vital functions. Lead (Pb) is the second most toxic
metal and can adversely affect the nervous, digestive, and reproductive systems and can
even cause death [2,3]. For these reasons and for preventive purposes, for example, the
World Health Organization (WHO) has established the permissible limit of Pb in drinking
water at 0.01 mg L−1 [4].

Various methods are used to remove heavy metals, such as Pb, from wastewater:
coagulation–flocculation, liquid–liquid extraction, ion exchange, and electrochemical treat-
ment. However, these methods have disadvantages such as the high operating costs, long
operating times, and the generation of a large volume of toxic sludge [5,6]. In this con-
text, the removal of contaminants using biological materials (biosorbents), such as algae,
cyanobacteria, fungi, or particularly agroindustrial wastes has become an economical,
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ecological, and promising alternative method compared with the conventional methods
mentioned above [7–10]. These biosorbents can be modified to improve the adsorption ca-
pacity, structural stability, and reusability. The modification can be carried out by chemical
reagents (chemical modification), physical calcination, or grinding methods [11]. In particu-
lar, Calero et al. [12], Moyo et al. [13], Petrović et al. [14], and Ye and Yu [15], among others,
reported that chemical modification, with NaOH, of biosorbent-precursors improved the
removal capacity of Pb.

Peru is an important producer of coffee and cocoa worldwide, with annual productions
of 136 and 218 Kt, respectively [16]. The processing of coffee cherries and cocoa pods
generates wastes at approximately 80% (coffee) [17] and 70% (cocoa) [18,19] of the total
weight of the product, constituting a serious environmental problem for their producing
regions [20]. However, these agro-industrial residues could be used for the effective
cleaning of aqueous ecosystems of the surrounding crops, in which we have evidence that
there is contamination with heavy metals such as Pb.

In this work, we significantly improved the absorption capacity of Pb(II) by means of
alkaline modification (with NaOH) to coffee- and cocoa-untreated wastes [21].

2. Results and Discussion
1.1. Effect of Alkaline Treatment

After treatment with NaOH, both the arabica-coffee and theobroma-cocoa biosorbents
lost weight, 40.2% and 38.4%, respectively (Table 1). This loss may be due to the fact
that, during NaOH treatment, the hydrolysis reactions that take place would cause a
high dissolution of organic compounds from the biomass and, therefore, its considerable
disintegration [12,22].

Table 1. Physical–chemical characteristics of untreated and alkaline treated Arabica-coffee and
Theobroma-cocoa wastes.

WAC
Coffe Waste

WTC
Cocoa Waste

WACM
Coffe Waste

WTCM
Cocoa Waste

Untreated Alkaline Treated a

Point of Zero Charge, pHPZC 4.8 6 6 6.8
Acid titrable sites (mmol g−1) 2.8 × 10−2 1.97 × 10−2 0 0
Basic titrable sites (mmol g−1) 2.12 × 10−2 1.84 × 10−2 2.97 × 10−2 2.63 × 10−2

% Biomass loss due to treatment 40.2 38.4
a 0.1 M NaOH.

The basic titrable sites on both WACM- and WTCM-treated biosorbents were almost
1.4 times higher than that in the respective untreated precursors WAC and WTC (see
Table 1). According to Santos et al. [22], and Bulgariu and Bulgariu [23], among others,
the NaOH treatment provides, due to the hydrolysis reactions, the formation of more
carboxylic (-COO−) and hydroxyl (-OH) groups (basic titrable sites), both in undissociated
as dissociated forms, that improve the Pb-binding properties of WACM and WTCM biosor-
bents. It is interesting to mention the absence of acid-titrable sites on the surface of each
treated biomass (See Table 1).

The point of zero charge, pHPZC, values for WACM and WTCM were higher than
those for WAC and WTC, respectively (Table 1). This result indicates an increase in the
surface basicity of the treated biosorbents, which is consistent with the increase in the
concentration of its basic titrable sites, described above. A similar feature was reported by
Blázquez et al. [24] for olive stone biomass modified with NaOH.

An interesting consequence of the alkaline treatment of the studied biomasses is the
considerable increase in the Pb(II) removal capacity. Thus, taking into account optimal
conditions, described below (Section 1.3), the Pb(II) adsorption capacity qe of WACM
and WTCM were almost three times higher than of corresponding non-treated WAC and
WTC biomasses (see Figure 1). Mangwandi et al. [6], Ren et al. [11], and Gupta et al. [25],
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among others, reported that chemical modification of a biomass considerably improves its
adsorption capacity of heavy metals.
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Figure 1. Pb(II) adsorption capacity qe for Arabica-coffee and Theobroma-cocoa wastes, untreated
(WAC and WTC) and treated (WACM and WTCM) biosorbents. Initial Pb(II) concentration,
C0 = 48.42 mg L−1, biosorbent dose = 2 g L−1, pH 4.

1.2. SEM/EDX and FTIR Analysis

SEM micrographs of the WACM and WTCM biosorbents before and after Pb(II) was
loaded are shown in Figure 2. Typical uneven and rough surface morphologies are observed.
Before adsorption, the images show more porous and less compact structures, than that
with Pb(II) loaded. The results of the EDX spectra (Figure 3) confirmed that Pb(II) is
adsorbed on the surface of both Pb-loaded biosorbents. Furthermore, the disappearance
of the Na peak on these samples (Figure 3 right) can be attributed to ionic exchange with
Pb(II). Similar morphologies were reported by Jaihan et al. [5] in papaya peels loaded
with Pb(II).
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Figure 3. EDX spectra of WACM and WTCM before (left) and after Pb adsorption (right). pH = 4,
C0 = 130.8 mg L−1, T = 293 K, t = 120 min.

Figure 4 shows the FTIR spectra of WACM and WTCM before and after Pb(II) sorp-
tion. The FTIR spectra of the unloaded-Pb samples show the positions of the peaks and
absorption bands (in parentheses for WTCM) at the following:
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Figure 4. FTIR spectra before (black) and after (red) Pb(II) adsorption by WACM (left) and WTCM (right).
pH 4, C0 = 130.8 mg L−1, T = 293 K, t = 120 min.

(1) 3339.3 (3335.7) cm−1, assignable to typical -OH bond stretching vibrations in
samples such as cellulose, lignin, or water [26–29];

(2) 2919.9 (2910.9) cm−1, assignable to the symmetric stretching of the C-H bonds of
aliphatic acids [30];

(3) 1636.2 (1621.6) cm−1 assignable to the asymmetric stretching of the double bond of
C=O carbonyl groups [29];

(4) 1420.4 (1420.4) cm−1, assignable to the stretching C-OH and C=O groups of car-
boxylates [29,31];

(5) 1019.1 (1028.8) cm−1, characteristic of C-O-C stretching in polysaccharides [32];
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The FTIR spectra after Pb(II) was loaded show changes in the intensity and position of
some peaks and bands with respect to those of the clean samples. Thus, for both biosorbents,
the positions of the peaks or bands 1, 3, and 4 are displaced with respect to the clean sample
values at ∆1 = −13.3 (−9.7), ∆3 = −4.9 (−23.2), ∆4 = −8.5 (−3.6) cm−1. These results
indicate that the OH, C=O, and C-O groups would be involved in the biosorption of Pb(II).
A similar behavior was reported, among others, by Barka et al. [33] and Mahyoob et al. [29]
in the removal of Pb(II) by biomasses such as cladodes of prickly pear or olive tree leaves.

1.3. Adsorption Experiments
1.3.1. Influence of pH Solution

The pH plays an important role in the adsorption process and provides necessary
information on the adsorption–desorption mechanisms. The effect of pH was studied in
the range of 2 to 5 (Figure 5) since Pb precipitates, at pH > 5, into Pb(OH)2 [27]. The Pb(II)
adsorption capacity qe, was very low for an acidic medium close to pH 2. It is due to a
competing effect between H+ and Pb(II) ions for fill surface active sites [30,34]. For pH > 2,
qe increased greatly, reaching values of 227.1 and 214.3 mg g−1 at pH 4 for WACM and
WTCM, respectively. With a further increase at pH 5, the qe values showed improvements
by almost 17% for WACM and by only 2% for WTCM. Accordingly, when pH increases,
the repulsive interactions between H+ and Pb(II) ions decrease, facilitating access of Pb(II)
to the surface adsorption sites.
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Figure 5. Influence of pH on the Pb(II) adsorption capacity, qe, for T = 293 K, adsorption time = 120 min,
biosorbent dose = 2 g L−1, C0 = 130.8 mg L−1.

1.3.2. Influence of Biomass Dosage

Figure 6 depicts the Pb(II) removal efficiency, %R, as a function of the biomass dosage.
A significant increase in %R is observed for both the WACM and WTCM biosorbents,
reaching almost 55% and 60%, respectively, for a biomass dosage of 2 g L−1. A further
increase in the dosage produces a slight increase in %R for WTCM but a rapid decrease
for WACM. The latter trend is due to the agglomeration of the WACM biomass, observed
during the experimentation, which would reduce the effective surface area available for
the interaction between Pb(II) and the biosorbent [35].

For both the WACM and WTCM biosorbents, the dose of 2 g L−1 was selected as
the optimal value, which would provide a suitable surface area for the efficient removal
of Pb(II).



Molecules 2023, 28, 683 6 of 15

Molecules 2023, 28, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 5. Influence of pH on the Pb(II) adsorption capacity, qe, for T = 293 K, adsorption time = 120 

min, biosorbent dose = 2 g L1, C0 = 130.8 mg L1. 

2.3.2. Influence of Biomass Dosage 

Figure 6 depicts the Pb(II) removal efficiency, %R, as a function of the biomass dosage. 

A significant increase in %R is observed for both the WACM and WTCM biosorbents, 

reaching almost 55% and 60%, respectively, for a biomass dosage of 2 g L−1. A further 

increase in the dosage produces a slight increase in %R for WTCM but a rapid decrease 

for WACM. The latter trend is due to the agglomeration of the WACM biomass, observed 

during the experimentation, which would reduce the effective surface area available for 

the interaction between Pb(II) and the biosorbent [35]. 

For both the WACM and WTCM biosorbents, the dose of 2 g L−1 was selected as the 

optimal value, which would provide a suitable surface area for the efficient removal of 

Pb(II). 

 

Figure 6. Effect of biomass dosage. T = 293 K, adsorption time = 120 min, pH = 4, C0 = 130.8 mg L1. 

2.3.3. Influence of Initial Pb(II) ion Concentration, C0 

The effect of the initial Pb(II) ion concentration C0 on the adsorption capacity qe and 

removal efficiency %R was studied in the range of 5.6 to 130.8 mg L−1 (See Figure 7). For 

both the WACM and WTCM biosorbents, the highest %R values (> 92%) were obtained 

for low C0 concentrations (in the range of 5.6 to 40 mg L−1), where the ratio of surface active 

sites to the free Pb(II) ions is high, resulting in rapid adsorption [36]. For high C0 concen-

0

50

100

150

200

250

300

1 2 3 4 5 6

q
e

[m
g 

P
b

 (
g 

w
as

te
 m

o
d

if
ie

d
)-1

)]

pH

WCAM

WCTM

30

35

40

45

50

55

60

65

70

0 2 4 6 8

%
R

biomass dose (g L-1)

WCAM

WTCM

Figure 6. Effect of biomass dosage. T = 293 K, adsorption time = 120 min, pH = 4, C0 = 130.8 mg L−1.

1.3.3. Influence of Initial Pb(II) ion Concentration, C0

The effect of the initial Pb(II) ion concentration C0 on the adsorption capacity qe and
removal efficiency %R was studied in the range of 5.6 to 130.8 mg L−1 (See Figure 7). For
both the WACM and WTCM biosorbents, the highest %R values (>92%) were obtained
for low C0 concentrations (in the range of 5.6 to 40 mg L−1), where the ratio of surface
active sites to the free Pb(II) ions is high, resulting in rapid adsorption [36]. For high C0
concentrations, %R decreased until almost 60% was reached at C0 = 130.8 mg L−1. The
diminishing %R with increasing C0 is attributed to the saturation of the available adsorption
sites [32,36].
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Figure 7. Effect of the initial Pb(II) concentration C0 on qe (dotted lines) and %R (full lines). t = 60 min,
T = 293 K, pH 4, biosorbent dose = 2 g L−1.

On the other hand, the Pb(II) adsorption capacity qe of both the WACM and WTCM
biosorbents showed an opposite trend to %R, since it increases with increasing C0. This
result can be explained considering that for a given amount of adsorbent, an increase in the
amount of Pb(II) ions, in solution, produces a concentration gradient that drives a greater
interaction with the active binding sites of the biosorbent [37,38].
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1.4. Adsorption Isotherms

The adsorption isotherms were studied in a range of initial Pb(II) concentrations C0
between 5.6 and 130.8 mg L−1, at pH 4 and pH 5, and T = 293 K and t = 120 min. The
results are depicted in Figure 8, where Pb(II) adsorption capacity qe vs. Ce concentra-
tion of Pb(II) in equilibrium is presented. These data were fitted to two very common
isotherm models [39,40]: (i) Langmuir model, which assumes solute sorption in monolayers
with a homogeneous sorption energy; (ii) Freundlich model, which assumes multilayer
sorption, with heterogeneous sorption energies. The adjustment parameters with both
models were obtained by fitting the corresponding experimental data [Ce/qe vs. Ce] and
[log(qe) vs. log(Ce)].
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Figure 8. WACM and WTCM adsorption isotherms fitted to Langmuir model. For pH 4 (continuous lines)
and pH 5 (dotted lines); biosorbent dose = 2 g L−1, t = 120 min, T = 293 K.

We can see (Table 2) that adsorption isotherms are fitted better with Langmuir (R2 close
to 1) than the Freundlich model (R2 ≤ 0.87). From the first model and, for both pH 4 and
pH 5, lower KL and higher maximum sorption capacity qmax values are obtained for WACM
than for WTCM. At pH 5, qmax = 303.0 mg g−1 for WACM is almost 21% higher than the
value at pH 4, while for WTCM, qmax = 223.1 mg g−1 is practically the same at both pHs.

Table 2. Isothermal parameters for Pb(II) adsorption on WACM and WTCM, adjustment to Langmuir
and Freundlich models.

WACM WTCM
Parameters pH = 4 pH = 5 pH = 4 pH = 5

Langmuir model
KL (L·mg−1)

qmax (mg·g−1)
R2

0.32
238.1
~1

0.22
303.0
0.98

0.45
222.2

~1

0.61
223.1
~1

Freundlich model
KF (mg·g−1 L(1/n)·mg−(1/n))

nF
R2

58.47
2.39
0.73

56.78
2.04
0.72

66.08
2.80
0.87

71.69
3.11
0.79

qmax values of agro-industrial wastes, with alkaline treatment, are consigned in Table 3.
We can note that qmax of WACM and WTCM are among the highest. On the other hand, it
is important to mention that that qmax value of the treated biosorbent is almost twice that
of its corresponding untreated precursor [21].
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Table 3. Comparative table of the maximum adsorption capacity qmax of Pb(II), for biosorbents with
alkaline treatment.

Biosorbent Wastes qmax (mg g−1) Reference

Apricot shells
Mangifera indica seed shells

Olive tree pruning
Grape pomace

Moringa oleifera tree leaves
Theobroma cacao; WTCM

Arabica coffee; WACM

37.37
59.25

121.60
137

209.54
223.1
303.0

[35]
[13]
[12]
[14]
[36]

This work
This work

1.5. Kinetic of Biosorption

The kinetic study is of great importance for the practical and effective use of biosor-
bents in the industry [41]. In this work, the kinetic studies were carried out by varying
the adsorption time from 0 to 180 min, at pH 4; C0 = 48.42 and 130.8 mg L−1; biosorbent
dosage = 2 g L−1; and T = 293 K.

The experimental kinetic data were modeled using three adsorption kinetic models
(Table 4): pseudo first-order model, pseudo second-order model, and ploting qt vs. t1/2

(Weber and Morris model). The parameters obtained after the non-linear adjustments,
including correlation coefficient R2, are consigned in Table 4. Figure 9 shows the non-linear
fit of the pseudo second-order equation to the kinetic data.

Table 4. Kinetic parameters of Pb(II) adsorption on WACM and WTCM biosorbents.

Model Parameters WACM WTCM

C0 = 130.8 mg L−1 C0 = 48.42 mg L−1 C0 = 130.8 mg L−1 C0 = 48.42 mg L−1

Pseudo 1st order
k1(min−1)

qe,cal (mg g−1) a

R2

0.075
206.62
0.94

0.063
132.93

0.84

0.075
206.62
0.94

0.043
124.92

0.87

Pseudo 2nd order

k2 (g mg−1 min−1)
qe,cal (mg g−1) a

h
R2

0.0003
249.53
20.99
0.94

0.0006
147.98
13.14
0.93

0.0004
229.99
21.16
0.97

0.0004
141.23

7.98
0.92

Weber and Morris model

kd,I (mg g−1 min−1/2) b

R2

kd,II (mg g−1 min−1/2) b

R2

kd,III (mg g−1 min−1/2) b

R2

75.4
0.94
10.7
0.95
0.12

1

10.9
0.96
0.4
1
-
-

56.2
0.90
12.4
0.89
0.58

1

10.3
0.99
0.7
1
-
-

a Calculated adsorption capacity. b Intraparticle diffusion rate constant.

For both the WACM and WTCM biosorbents, a better correlation (R2 ≈ 1) is obtained
with pseudo-second-order than the first-order adjustment models. This result indicates
that Pb(II) adsorption is a chemisorption process [42]. We can note that the calculated
adsorption capacities qe,cal are close to those determined experimentally and, for a given C0
concentration, greater for WACM than for WTCM. The adsorption rates (k2, rate constant
adsorption and h, initial adsorption rate) are comparable for both biosorbents.

The qt vs. t0.5 data, for both WACM and WTCM biosorbents, are depicted in Figure 10
and fitted with the intra-particle diffusion Weber–Morris model. According to the kd
intra-particle diffusion rate constants (in mg g−1 min−1/2, Table 4), we can distinguish
three parts: The first part shows rapid growth of qt at time t (kd,I > 10.3), particularly
at high initial Pb(II) concentrations (C0 = 130.8 mg L−1), where kd,I can reach values up
to seven times higher than for those at low C0 concentrations (e.g., 48.4 mg L−1). These
results would indicate the rapid absorption of Pb(II) ions on the surface of the biosorbents.
The second part shows slower growth of qt with t (0.16 < kd,II < 12.4), which would be
related to a gradual sorption process, where Pb(II) sorbed would fill the biosorbent pores;
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this part would be related to the diffusion of Pb(II) inside the biosorbent (intraparticle
diffusion) [24]. Finally, the 3rd part shows that qt is practically constant with very low kd,III
values (kd,III < 0.6). It indicates that the equilibrium between Pb(II) ions in the solution and
the sorbent surface is reached.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 9. qt vs. time t. C0 = 48.4 (continuous lines) and 130.8 mg L−1 (dotted lines); dose = 2 g L−1, T = 

293 K. qt = amount Pb(II) removed per mass unit of biosorbent at time t. 

Table 4. Kinetic parameters of Pb(II) adsorption on WACM and WTCM biosorbents. 

Model Parameters WACM  WTCM  

  
C0 = 130.8 

mg L−1 

C0 = 48.42 

mg L−1 

C0 = 130.8 

mg L−1 

C0 = 48.42 

mg L−1 

Pseudo 1st order 

k1(min−1) 

qe,cal (mg g−1)a 

R2 

0.075 

206.62 

0.94 

0.063 

132.93 

0.84 

0.075 

206.62 

0.94 

0.043 

124.92 

0.87 

Pseudo 2nd order 

k2 (g mg−1 min−1) 

qe,cal (mg g−1)a 

h 

R2 

0.0003 

249.53 

20.99 

0.94 

0.0006 

147.98 

13.14 

0.93 

0.0004 

229.99 

21.16 

0.97 

0.0004 

141.23 

7.98 

0.92 

Weber and Morris 

model 

kd,I (mg g−1 min−1/2)b 

R2 

kd,II (mg g−1 min−1/2)b 

R2 

kd,III (mg g−1 min−1/2)b 

R2 

75.4 

0.94 

10.7 

0.95 

0.12 

1 

10.9 

0.96 

0.4 

1 

- 

- 

56.2 

0.90 

12.4 

0.89 

0.58 

1 

10.3 

0.99 

0.7 

1 

- 

- 
a Calculated adsorption capacity. b Intraparticle diffusion rate constant. 

For both the WACM and WTCM biosorbents, a better correlation (R2  1) is obtained 

with pseudo-second-order than the first-order adjustment models. This result indicates 

that Pb(II) adsorption is a chemisorption process [42]. We can note that the calculated ad-

sorption capacities qe,cal are close to those determined experimentally and, for a given C0 

concentration, greater for WACM than for WTCM. The adsorption rates (k2, rate constant 

adsorption and h, initial adsorption rate) are comparable for both biosorbents. 

The qt vs. t0.5 data, for both WACM and WTCM biosorbents, are depicted in Figure 

10 and fitted with the intra-particle diffusion Weber–Morris model. According to the kd 

intra-particle diffusion rate constants (in mg g−1 min−1/2, Table 4), we can distinguish three 

parts: The first part shows rapid growth of qt at time t (kd,I > 10.3), particularly at high 

initial Pb(II) concentrations (C0 = 130.8 mg L−1), where kd,I can reach values up to seven 

times higher than for those at low C0 concentrations (e.g., 48.4 mg L−1). These results would 

indicate the rapid absorption of Pb(II) ions on the surface of the biosorbents. The second 

part shows slower growth of qt with t (0.16 < kd,II < 12.4), which would be related to a 

Figure 9. qt vs. time t. C0 = 48.4 (continuous lines) and 130.8 mg L−1 (dotted lines); dose = 2 g L−1,
T = 293 K. qt = amount Pb(II) removed per mass unit of biosorbent at time t.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 16 
 

 

gradual sorption process, where Pb (II) sorbed would fill the biosorbent pores; this part 

would be related to the diffusion of Pb(II) inside the biosorbent (intraparticle diffusion) 

[24]. Finally, the 3rd part shows that qt is practically constant with very low kd,III values 

(kd,III < 0.6). It indicates that the equilibrium between Pb(II) ions in the solution and the 

sorbent surface is reached. 

 

Figure 10. Weber–Morris plots of Pb(II) adsorption on WACM and WTCM. C0 = 48.4 (continuous 

lines) and 130.8 mg L−1 (dotted lines). 

2.6. Biosorption Thermodynamics 

ΔG0 was calculated from Equations 4 and 5. The plot lnKc vs. 1/T (eq. 7), depicted in 

Figure 11, was fitted using the least squares method, aiming to calculate the ΔH0 and ΔS0 

values. The results are consigned in Table 5 and indicate that the Pb(II) adsorption process 

on both the WACM and WTCM biosorbents is: i) feasible, spontaneous (positive ΔG0 val-

ues), and more favorable with increasing temperature; ii) endothermic by nature (positive 

ΔH0 values); and iii) a process with increasing randomness (positive ΔS0 values) at the 

solid–liquid interface [43]. 

Similar results were reported by Song et al. [27], Morosanu et al. [31], Milojkovic et 

al. [44], among others, for Pb(II) removal by Auricularia auricular spent substrate, rapeseed 

biomass, and Myriophyllum spicatum and its compost, respectively. However, a feasible, 

spontaneous, but exothermic process of Pb(II) adsorption was also reported by Petrović et 

al. [14] when removing Pb(II) with a hydrochar of grape pomace. Mahyoob et al. [29] de-

termined that Pb(II) adsorption on co-processed olive tree leaves was an exothermic pro-

cess with decreasing randomness (negative ΔS0). 

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

q
t
[m

g
 P

b
 (

g
 w

as
te

 m
o

d
if

ie
d

-1
)]

t^(0.5)

I II III

WACM (green) 

WTCM (red) 

WACM (green) 

WTCM (orange) 

Figure 10. Weber–Morris plots of Pb(II) adsorption on WACM and WTCM. C0 = 48.4 (continuous lines)
and 130.8 mg L−1 (dotted lines).

1.6. Biosorption Thermodynamics

∆G0 was calculated from Equations (4) and (5). The plot lnKc vs. 1/T (Equation (7)),
depicted in Figure 11, was fitted using the least squares method, aiming to calculate the
∆H0 and ∆S0 values. The results are consigned in Table 5 and indicate that the Pb(II)
adsorption process on both the WACM and WTCM biosorbents is: (i) feasible, spontaneous
(positive ∆G0 values), and more favorable with increasing temperature; (ii) endothermic
by nature (positive ∆H0 values); and (iii) a process with increasing randomness (positive
∆S0 values) at the solid–liquid interface [43].
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Table 5. Thermodynamic parameters for Pb(II) adsorption on WACM and WTCM.

∆H0 (kJ mol−1) ∆S0 (J mol−1 K−1)
∆G0 (kJ mol−1)

293 K 303 K 313 K

WACM 22.5 88.9 −35.90 −44.42 −53.70
WTCM 25.4 97.2 −31.26 −41.32 −50.70

Similar results were reported by Song et al. [27], Morosanu et al. [31], Milojkovic et al. [44],
among others, for Pb(II) removal by Auricularia auricular spent substrate, rapeseed biomass,
and Myriophyllum spicatum and its compost, respectively. However, a feasible, spontaneous,
but exothermic process of Pb(II) adsorption was also reported by Petrović et al. [14] when
removing Pb(II) with a hydrochar of grape pomace. Mahyoob et al. [29] determined
that Pb(II) adsorption on co-processed olive tree leaves was an exothermic process with
decreasing randomness (negative ∆S0).

2. Materials and Methods
2.1. Preparation of Biosorbents

Arabica-coffee (WAC) and Theobroma-cocoa (WTC) waste were obtained from the
Satipo and Chanchamayo provinces, respectively, located at Junín, Perú. Both samples
were previously washed with abundant distilled water, dried in an oven at 60 ◦C for
48 h, and finally ground. WAC and WTC were treated with a 0.1 M NaOH solution in a
solid–liquid ratio of 1:10 (g biomass: mL solution) for 24 h with constant stirring at 300 rpm.
Once treated, both products were filtered and washed with abundant deionized water and
then were dried in an oven at 60 ◦C for 48 h, and finally, both treated samples (WACM and
WTCM) were ground again and homogenized with a 70 mesh sieve.

The alkaline treatment of precursor wastes produced a biomass loss. The percentage
loss was determined as the difference between the initial sample weight (before treatment)
and the final sample weight (after treatment)

All chemical reagents used in this work were of analytical grade.
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2.2. Biosorbent Characterization

• The point of zero charge (pHPZC) study was evaluated according to the methodology
reported by do-Nascimento et al. [45]. A mixture of 0.05 g of biomass with 50 mL of an
aqueous solution under different initial pHs (pH0) ranging from 1 to 12 was prepared.
The acid dilutions were prepared from a 1 M HCl solution, while basic dilutions were
from 1 M NaOH. After 24 h of equilibrium, the final pHs (pHf) were measured.

• The concentrations of the acid and basic groups (or acid/basic titrable sites) on the
surface of WACM and WTCM were determined using the Boehm method reported by
Aygun et al. [46]. For acid titrable sites (between brackets for basic sites), mixtures of
0.25 g (0.5 g) of the biosorbent with 50 mL of a standardized 0.05 M NaOH (0.1 M HCl)
solution were prepared. All the mixtures were shaken, at room temperature, for 24 h
at 100 rpm, and then, for each mixture, 20 mL (10 mL) of the supernatant liquid was
pipetted and excess acid (base) was adequately titrated using bromocresol blue or
phenolphtalien) as an indicator.

• Fourier transform infrared (FTIR, SHIMADZU IR Affinity) spectroscopy, over a spec-
tral range of 4000 to 500 cm−1 was used to characterize the functional groups present
on the surface of WACM and WTCM before and after Pb(II) biosorption.

• Morphological and elemental analysis on the surface of biosorbents were performed
by Scanning Electron Microscopy (SEM) coupled with EDX (Energy Dispersive X-rays
spectroscopy) (LEO 440 model).

2.3. Adsorption Experiments

Batch experiments were carried out using Pb(NO3)2 solution, with varying Pb(II)
concentrations between 5.63 to 130.8 mg L−1. The dose of the modified biomass was varied
in the range of 0.5 to 6 g L−1 and adjusted to a pH in the range of 2.0 to 5.0 (using LAQUA
PH1200) by adding 0.01 M HNO3 or 0.01 M NaOH. The solutions, at room temperature,
were stirred to 150 rpm for 120 min, and the samples were taken at certain time intervals.

The Pb(II) concentrations, before and after adsorption, were evaluated using an Atomic
Absorption Spectrophotometer (SHIMADZU-AAS 6800). All adsorption experiments were
replicated three times, and the results were averaged.

Pb(II) adsorption capacity qe(in mg g−1) and removal efficiency (%R) were determined
using Equations (1) and (2), respectively [9].

qe =
(C0 − Ce) × V

m
(1)

%R =
(C 0−Ce)

C0
× 100 (2)

where C0 and Ce (in mg·L−1) are the initial and equilibrium final Pb(II) concentrations,
respectively, and V (in L) is the volume of solution and m (in g) is the biosorbent mass.

The adsorption isotherms and kinetic data were obtained by contacting a biomass
dose of 2 g L−1 with different Pb(II) concentrations at pH 4 (also pH 5 for isotherms). The
experimental data were adjusted to the corresponding adsorption models described in
Table 6 (isotherms) and Table 7 (kinetic).

Table 6. Adsorption isotherm models.

Model Equation Parameters

Langmuir Ce
qe

= 1
qmxkL

+ Ce
qmx

qe (mg g−1): adsorption capacity
Ce (mg L−1): adsorbate concentration in equilibrium
qmax (mg g−1): maximum sorption capacity
kL (L mg−1): Langmuir constant related to the affinity between
sorbent and sorbate

Freundlich lnqe = lnkF + 1
n lnCe

kF (mg g−1 L(1/n)·mg−(1/n)): equilibrium constant
n: constant related to the affinity between sorbent and sorbate
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Table 7. Kinetic adsorption models.

Model Equation Parameters

Pseudo-first order qt = qe
(
1 − e−K1t) qe (mg g−1): adsorption capacity

qt (mg g−1): amount of Pb(II) retained per unit biomass at time t.
k1 (min−1): first-order kinetic constant
k2 (g (mg min)−1): rate constant adsorption
h (mg(g min)−1): initial adsorption rate

Pseudo-second order qt = qe
qeK2t

1+qeK2t

h = k2q2
e

Weber and Morris qt = kdt1/2 + B
kd (mg g−1 min−1/2): intraparticle diffusion rate constant
B (mg g−1): constant related to the thickness of the adsorbent
boundary layer

2.4. Thermodynamic Parameters

This study was carried out by varying the temperature from 293 to 313 K (20 to 40 ◦C)
using a biosorbent dose of 2 g L−1, an initial Pb(II) concentration C0 = 130.8 mg L−1, and a
contact time 120 min at pH 4. Parameters such as free energy change ∆G◦, enthalpy change
∆H◦, and entropy change, ∆S◦ for the adsorption process studied were calculated using
Equations (3)–(6) [47,48]:

Kc =
Ces

Ce
(3)

∆Go = −RTLnKc (4)

∆Go = ∆Ho − T∆So (5)

lnKc =
∆So

R
− ∆Ho

RT
(6)

where R is the ideal gas constant (8.314 J mol−1 K−1); T is the absolute temperature of
the solution; Kc is the thermodynamic equilibrium constant; and Ces and Ce are Pb(II)
concentrations at equilibrium, respectively, in the biosorbent and solution.

3. Conclusions

Arabica-coffee (WACM) and Theobroma-cocoa (WTCM) biosorbents were chemically
modified, with 0.1 M NaOH to improve their Pb(II) adsorption capacities an aqueous
medium. After treatment, both WACM and WTCM biosorbents lost weight 40.2% and
38.4%, respectively.

The point of zero charge, pHPZC values at 6 and 6.8, for WACM and WTCM, respec-
tively, were higher than those for the corresponding WAC and WTC untreated samples.
These measurements were consistent with the concentration of basic titrable sites, which
was almost 1.4 times higher for treated than untreated biosorbents. The basic sites would be
associated with the OH, C=O, COH, and C-O-C functional groups, which were identified
by FTIR measurements.

SEM/EDX analyses showed typical uneven and rough surface morphologies, more
porous and less compact for clean than for Pb(II)-loaded biosorbents.

Both the WACM and WTCM biosorbents reached high Pb(II) removal efficiency
%R values (>90%) for a biomass dosage of 2 g L−1 at pH between 4 and 5, with initial
Pb(II) concentrations C0 in the range of 5 to 40 mg L−1. For these conditions, the Pb(II)
adsorption capacity qe of WACM (and WTCM) was almost three times higher than that of
the corresponding untreated biosorbent.

The adsorption isotherm data were well fitted with the Langmuir model (monolayer
adsorption mechanism), which provided, at pH 5, maximum Pb(II) adsorption capacities,
qmax, equal to 303.0 and 223.1 mg g−1 for WACM and WTCM, respectively. These values
are i) twice those corresponding to untreated samples and ii) higher than for other similar
alkaline-treated biosorbents reported in the literature.

The adsorption kinetic data were well fitted with the pseudo-second-order model,
indicating that the Pb(II) adsorption on WACM and WTCM was a chemisorption process.
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This process, according to our thermodynamic results, can be characterized as endothermic
(∆H0 > 0), feasible, and spontaneous (∆G0 < 0) and with an increasing randomness (∆S0 > 0)
at the solid–liquid interface.
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