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Abstract: On 20 December 2021, after six quiet years, the Hunga Tonga–Hunga Ha’apai volcano
erupted abruptly. Then, on 15 January 2022, the largest eruption produced a plume well registered
from satellites and destroyed the volcanic cone previously formed in 2015, connecting the two
islands. We applied a multi-parametric and multi-layer study to investigate all the possible pre-
eruption signals and effects of this volcanic activity in the lithosphere, atmosphere, and ionosphere.
We focused our attention on: (a) seismological features considering the eruption in terms of an
earthquake with equivalent energy released in the lithosphere; (b) atmospheric parameters, such
as skin and air temperature, outgoing longwave radiation (OLR), cloud cover, relative humidity
from climatological datasets; (c) varying magnetic field and electron density observed by ground
magnetometers and satellites, even if the event was in the recovery phase of an intense geomagnetic
storm. We found different precursors of this unique event in the lithosphere, as well as the effects
due to the propagation of acoustic gravity and pressure waves and magnetic and electromagnetic
coupling in the form of signals detected by ground stations and satellite data. All these parameters
and their detailed investigation confirm the lithosphere–atmosphere–ionosphere coupling (LAIC)
models introduced for natural hazards such as volcano eruptions and earthquakes.

Keywords: volcanic eruptions; explosions; lamb waves; gravity waves; ULF waves; ionosphere;
LAIC models

1. Introduction

The Hunga Tonga–Hunga Ha’apai (HT-HH) volcano showed on 15 January 2022 one
of the most exceptional eruptions of history [1] since the effects of the explosive eruption
were observed around the entire globe.

Remote Sens. 2022, 14, 3649. https://doi.org/10.3390/rs14153649 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153649
https://doi.org/10.3390/rs14153649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6471-2862
https://orcid.org/0000-0003-0435-7763
https://orcid.org/0000-0002-3941-656X
https://orcid.org/0000-0003-4335-0345
https://orcid.org/0000-0001-7039-2781
https://orcid.org/0000-0001-7047-5704
https://orcid.org/0000-0002-9690-4965
https://orcid.org/0000-0003-1757-9816
https://orcid.org/0000-0002-5692-2560
https://orcid.org/0000-0002-5457-3379
https://orcid.org/0000-0003-3626-2419
https://orcid.org/0000-0002-7208-3381
https://doi.org/10.3390/rs14153649
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153649?type=check_update&version=2


Remote Sens. 2022, 14, 3649 2 of 28

The HT-HH volcano is located in the SW Pacific Ocean, belonging to the Ha’apai
island group, which represents the center of the Kingdom of Tonga, consisting of a volcanic
arc lying on the western part of the Tonga–Kermadec back arc (Figure 1). It covers an area
of over 109 km2 and lies along the subduction zone, a convergent plate boundary between
the Pacific and Indo-Australian plates, which form the Tonga trench, the second deepest
oceanic trench on Earth. The subduction of the Pacific plate beneath the Indo-Australian
one feeds the activity of this volcanic arc. This geodynamic process is responsible for the
formation of the NNE-SSW aligned ridge and basin system, where the Tonga–Kermadec
Trench faces the Tonga-Kermadec Ridge with its volcanoes, which is separated from the
Lau-Colville Ridge by the Havre Trough.
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Figure 1. Study area with a zoom of the Hunga Tonga–Hunga Ha’apai (HT-HH) volcanic region. The
Tonga–Kermadec trench lies to the east of the volcanic Tofua arc where several submarine volcanoes
are shown in red triangles. Source: Google Earth.

HT-HH is one of the volcanic edifices rising from the seafloor to the sea surface and a
little above. It consisted in 2 km long uninhabited islets (Hunga Tonga and Hunga Ha’apai)
representing the remnants of an older cone, destroyed by ancient caldera-forming eruptions.
The caldera, before the 2022 eruption, was submerged, slightly SE-wards between the two
islets. The volcano has been active since its first historical eruption in 1912, an underwater
explosion south of Hunga Tonga. All known eruptions occurred along the rim of the
submerged caldera. During the explosive eruption of December 2014, a tuff cone raised
over the sea level, connecting the islands Hunga Tonga to the northeast and Hunga Ha’apai
to the southwest [2]. The emerging island persisted, despite all odds, over passing erosional
stages, until the last eruption that destroyed the connection material and left the two
small islands.

On 15 January 2022, the Hunga Tonga volcano erupted with two main explosions in
quick succession releasing an enormous amount of energy into the atmosphere, permitting
the effects to be observed across the entire globe. Due to this extensive character, the event
has been studied by many researchers. This recent intra-caldera uplift, together with the
regular historic eruptions, indicate a gradually growing evolution of the magmatic system
beneath Hunga from repeated recharge events into a relatively homogeneous andesitic
reservoir [3].
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There are different important aspects that several studies have investigated in detail
to better understand this unique volcanic event: the exact origin time of the eruption, the
energy released in the lithosphere-atmosphere, the characteristics of the ash plume, different
waves propagation, and the tsunamis that originated by this event. The Global Volcanism
Program [4] identified the eruption as starting at 04:15 UTC with a plume reaching 30 km
in the atmosphere and 600 km in diameter. The analysis of GNSS [5] confirmed that
the material ejected was lofted between 30 and 40 km approximately 1 h after the initial
eruption. The relative Volcanic Explosivity Index (VEI), assigned by the Global Disaster
Alert and Coordination System (GDACS), was estimated to be 6. Later, it was confirmed
by [6] from their work on the explosion impulse. Again, the equivalent energy in the
lithosphere was evaluated between 4 and 18 Mt of TNT (trinitrotoluene) [7], while the
explosion power in the atmosphere–ionosphere was estimated to be 50 Mt [1], more than
58 Mt [8] and between 9–37 Mt [9]; this last measurement from multiple large peaks in
total electron content (TEC) variations obtained for the onset HT-HH eruption trigger
event at 04:18:10 UTC. Finally, USGS evaluated the eruption equivalent to a magnitude (M)
5.8 earthquake with techniques calibrated for earthquakes, based on the energy released
only in the lithosphere.

In [10], different waves were described as effects of the main explosion: infrasound
waves, acoustic-gravity waves, and Lamb waves. Many studies focused on the latter for
its high phase speed and non-dispersive wavelengths; ref. [11] numerically simulated
these atmospheric Lamb waves with similarities to ocean long waves. Among the first
studies for estimation of Lamb waves speed, ref. [12] provided a horizontal speed between
300 and 350 m/s from the travelling ionospheric disturbances (TIDs) global propagation
and it was confirmed by [13] with their manual picking of Lamb waves arrival at dozens
of stations. As shown in [14], these waves near Tonga consist of at least two pulses
beginning with a 7–10 min pressure increase, followed by a second larger compression and
subsequent long rarefaction phase. Ref. [15] identified the Lamb waves as a high-amplitude
monochromatic pulse with a phase speed between 308 ± 5 and 319 ± 4 m/s depending
on the location and they individuated its antipodal point in Algeria, where the signal
arrived 18.1 h after the eruption. Another interesting pressure record from Tamanrasset
in Southern Algeria, within a few hundred kilometers of the antipodal point, suggested
that the arrival of the “inbound” wave was followed within 15–20 min by two rapid falls
in pressure with a speed of 310 m/s. Refs. [16,17] demonstrated that the ionospheric
disturbances started ~40 min before the initial arrival of the Lamb waves, which could be
explained by the faster acoustic wave velocity in the ionosphere. Moreover, the varying
phase velocity of the ionospheric disturbances with different wave periods suggests that the
Lamb waves excite a broad spectrum of gravity waves [18]. For the first time, pronounced
and prolonged post-volcanic night-time equatorial plasma bubbles (EPBs) were observed
over the Asian–Oceania area following the arrival of Lamb waves [19]. The EPBs study
was explained in [20]. Again, taking the propagating pressure pulses clearly visualized
by the Soretena weather stations and the angular distance of each station from the Tonga
volcano, ref. [21] estimated the phase speed of the first Lamb wave to be 310 m/s with
the dominant wavelength of 500–600 km. In the end, the vertical TEC (vTEC) was used to
study the medium scale traveling ionospheric disturbances (MSTIDs) and the large-scale
traveling ionospheric disturbances (LSTIDs). Ref. [22] used two methods to assess the speed
of these disturbances: the triangulation of these irregularities from neighbouring GNSS
ray paths and the trace of slope of coherent wave structures in plots of the distance from
the epicentre versus time. The results showed that the first LSTIDs appeared as acoustic
waves generated from the initial shock and propagated radially at speed of 950 ± 170 m/s
while the first MSTIDs, corresponding to acoustic gravity waves generated by subsequent
atmospheric disturbance, propagated at a speed of 337 ± 17 m/s. In addition, ref. [23]
obtained wave periods and velocities for the MSTIDs consistent between the different types
of data analysed.
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Another important effect correlated to the explosive eruption is the tsunami. Ref. [24]
was the first to describe its effects on the coasts of Mexico. The study of the tsunami trig-
gered by the volcano continued with [25] who well modeled the air–sea-coupled tsunami
with an atmospheric pressure pulse, and finally ref. [26] affirmed that the tsunami was
driven by a constantly moving source in which the acoustic-gravity waves radiating from
the eruption excite the ocean and transfer energy into it via resonance.

In this paper, we analyse multi-parametric (seismic, atmospheric, ionospheric, and
geomagnetic) data from ground-based observatories and satellites and individuate the
possible precursors, the effects, as well as the consequences that the volcanic explosion
produced in the entire globe at different scales and in parameters of different nature. All
these signals confirm the uniqueness of this volcanic event and the coupling between the
layers of our Earth system.

From a seismological point of view, one of the lithosphere–atmosphere–ionosphere
coupling (LAIC) models is based on the release of different traces of gases induced by the
seismic activity to reveal their influence on the atmosphere and ionosphere. Refs. [27,28]
described an interaction of gases during volcanic activities. The variations of Earth’s
atmosphere due to volcanic activities are related to the eruption rate and the trace gases
such as sulphur dioxide (SO2), carbon monoxide (CO), and their possible interactions
between the troposphere and ionosphere layers. It is noted [29] that the appearance of some
thermal anomalies in the crater area can be seen some weeks/months before explosive
volcanic eruptions. These are due to rise hot material (magma, pressurized fluids); this
causes the hotter isotherms to approach the surface. During the upward movement, these
fluids can get in touch with the superficial waters, often of marine origin, entering also
from the flank of the volcanic edifice, causing the sudden evaporation and consequent
explosions, in the present case defined as a phreatoplinian eruption [13]. This increases the
concentration of water vapour in the tropospheric regions just above the volcano.

A recent study [30] offers an interesting view of the electrical activity associated with
volcanic plumes and how the ambient conditions together with the characteristics of the
explosive materials may determine its effects.

Here we propose a complete study of the great explosive eruption of 2022 investigating
the phenomenon from multi-parametric and multi-layer data. We start to present the
precursors in seismological and atmospheric data that could be connected to the incipient
eruption. Then, we analyse the effects of the propagation of a pressure wave in the
atmosphere registered from the Italian tide gauge network. Extending our study area to
the ionosphere, we present a specific analysis of the geomagnetic field from satellite data,
showing peculiar precursory signals. We also present the limit of this layer study due to the
geomagnetic storm in the “recovery” phase and finally we show a singular signal detected
on the spectrograms from the Finnish pulsation magnetometer network. The flowchart of
our analysis is shown in Figure 2. Among all the studies about this eruption, our analysis is
one of the more complete considering different aspects and different temporal and spatial
scales. The results obtained confirm the coupling between the lithosphere, atmosphere,
and ionosphere for this volcanic event.

In the next section, we provide the geological and geographical setting, then in Section 3
we describe the methods and data used; Section 4 shows the results, while Sections 5 and 6
report the discussion and the results, respectively.
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2. Geological and Geographical Setting

The volcanic edifice rises from the seafloor to above sea level, and it is visible at the
surface as two small andesitic islands, Hunga Tonga and Hunga Ha’apai, made up of a
succession of ignimbrites and andesitic lava flows, representing the remnants of the north-
western rim of a largely submarine caldera, around 1800 m high and 20 km wide, located
about 30 km SSE of Falcon Island (Figure 3). It belongs to the Tonga–Kermadec volcanic
arc, part of the “Ring of Fire”. A Surtseyan eruption observed near 20.5◦S and 175.4◦W on
19 December 2014 combined them into one larger structure [2,31]. Previous eruptions are
proved by additional welded pumice-rich ignimbrite units and non-welded pyroclastic
flow deposits, below paleosols and other volcanoclastic deposits. Cronin et al. [32] using
a WASSP multibeam sounder obtained a map of the entire submarine caldera and the
summit platform of the submerged Hunga volcanic edifice of recent formation. The caldera
appeared as a large, closed depression, around 150 m deep, probably formed by a violent
collapse of the older Hunga edifice into the sea by an unknown eruption. The rim of this
caldera is surrounded by numerous cones formed in previous eruptions. The floor of the
caldera has been quiescent since there is information. All known eruptions in the last
decades occurred around the rim of the caldera and some resulting vents and reefs were
still visible from the bathymetry (Figure 3). In addition, the emerged cone, formed after
the 2014–2015 eruptive activity and connecting the two islets, is located on the NW rim of
the caldera.
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Figure 3. Map of the summit platform of the HT-HH volcanic edifice in 2015, and the locations of
recorded eruptions. Images taken from [32].

3. Materials and Methods

A multi-parametric analysis needs different datasets and investigation methods to
be compared and/or integrated, each one in relation to the arrival time of the signal in
the location analyzed and to the type of phenomenon to be studied. In the following we
describe three groups of data, one for each macro-layer of the Earth.

3.1. Lithospheric Data

Starting from the lithospheric point of view, we carried out a seismological analysis of
the volcanic region in the subduction zone. Considering the magnitude M5.8, attributed
to the volcanic event by the United States Geological Survey (USGS), we use the USGS
catalogue in the period between 1 January 2021 and 16 January 2022. Taking into account
the zone of effective manifestation of the precursory deformations as defined by the Dobro-
volsky area [33] with a radius R = 100.43M = 312 km, we selected 388 events and obtained
the first map of Nuku’alofa—the capital of Tonga—seismicity. We proceeded to calculate
a cumulative trend of the events with a magnitude equal to or larger than Mc = 4.3 (Mc
indicates the magnitude of completeness), computed as a function of time by sliding the
time windows, each containing 150 earthquakes and stepping by 5 events.
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The estimation of the magnitude of completeness permitted us to evaluate the re-
vised accelerated moment release (R-AMR, introduced in [34]), the variation of b-value or the
seismic quiescence, which provides a measure for the relative abundance of the strong to
weak earthquakes and is considered to be related to the tectonic regime of the area under
consideration, or the seismic quiescence.

3.2. Atmospheric Data

The European Centre for Medium-range Weather Forecasts (ECMWF) Reanalysis v5
(ERA5) is centred on physical variables related to thermal radiative interaction between
atmosphere and surface: skin temperature (SKT), air temperature (T2m—measured at 2 m of
height), outgoing longwave radiation (OLR), cloud cover, relative humidity, ozone, surface
pressure. This dataset provides hourly estimates of a large number of atmospheric, land,
and oceanic climate variables; it covers the Earth at 0.25◦ × 0.25◦ spatial resolution resolving
the atmosphere using 137 levels from the surface up to a height of 80 km. Comparing the
2022 time series with the period 1980–2021, we were able to identify anomalies, possibly
due to volcanic eruptions in the Dobrovolsky area.

3.3. Ionospheric Data

To analyse the effects on the ionosphere, we considered information from the ground,
using geomagnetic observatories and ionosonde data, and from satellites. These last
data come from ESA Swarm three-satellite constellation (Alpha, Bravo, Charlie, indicated
with only capital letters in the text) and CSES-01 satellite (China Seismo-Electromagnetic
Satellite). Alpha and Charlie fly side-by-side at around 460 km of altitude, Bravo at 510 km,
and CSES-01 at about 500 km.

For Swarm magnetic field data, we downloaded both Level 1b low (1 Hz) and
high (50 Hz) resolution data from all satellites for the eruption day and two days be-
fore (13–15 January 2022). The magnetic field vectorial data come from the Vector Fluxgate
Magnetometer (VFM), while magnetic field intensity measurements are provided by the
Absolute Scalar Magnetometer (ASM, available only at 1 Hz resolution). These datasets are
provided in Common Data Format (CDF) and freely available in the ESA Swarm FTP and
HTTP Server swarm-diss.eo.esa.int.

Regarding the CSES-01 satellite, it is equipped with a high-precision magnetometer
(HPM) composed of two fluxgates and a coupled dark state scalar magnetometer (CDSM)
on one of its booms that allow us to investigate the magnetic field measurements. For
plasma measurements (as electron density and temperature), we considered Langmuir
probes (LAP), also in the case of Swarm. The CSES LAP can measure electron density
(Ne) over a range from 5 × 102 to 1 × 107 cm−3 and the electron temperature from 500 to
10,000 K. For Swarm electron density data, we considered EFI LP (2 Hz), baseline 0501.

4. Results
4.1. Investigation of the Preparation of the Volcanic Explosion of Hunga Tonga–Hunga Ha’apai of
15 January 2022
4.1.1. Seismological Data Analysis

The nearest seismic station (~760 km) to Tonga, Monasavu—Fiji (code MSVF_II),
showed an interesting vertical component trend at 04:00 UTC. Since this trend presented
the first impulse on the top, we could connect it with the explosive eruption. Then, we
proceeded to calculate a cumulative trend (Figure 4) of the 388 selected events with a
magnitude larger than or equal to Mc 4.3. After declustering the catalogue using the
Reasenberg method [35] for the Mc value, we obtained the b-value trend in time [36], with
values between 1.2 and 1.4. For volcanic earthquakes, we would expect the b-value to be
about 1.5 [37]. However, since we considered a larger area, corresponding to an equivalent
earthquake magnitude of M5.8, most of the seismicity was tectonic: this would explain
why the found b-value is a little lower than 1.5.
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Figure 4. Seismic analysis, in particular: (a) Map of seismicity within the Dobrovolsky area;
(b) distribution of magnitude with time; (c) seismicity distribution in depth.

Furthermore, we analyzed the accelerating seismicity (Figure 5) before the explosion
by applying the R-AMR method [34] to the USGS declustered catalog in order to evidence a
power-law diverging function with time for the cumulative value of the Benioff strain [38].
With this scenario, due to its gradual increase, we considered the main eruption as the
mainshock of the sequence (USGS estimated an equivalent earthquake magnitude of 5.8).
The acceleration seismicity in the earthquake preparatory phase is given by the so-called
C-factor [39,40]. The C-factor is defined as the ratio between the root mean square (rms) of
the residuals of the non-linear (power-law) fit and the root mean square of the linear fit:
the lower this parameter, the more acceleration we have in the seismic data. The resulting
C-factor is about 0.7 indicating a slow increase in seismicity. Interestingly, the predicted
magnitude is in the range of 6.4–6.7, larger than the equivalent magnitude for the energy
released in the lithosphere, even including part of the one released in the atmosphere.
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Figure 5. The R-AMR analysis of the USGS catalog around the 2022 Hunga Tonga eruption (lat
−20.55◦ lon −175.38◦) for the M5.8 equivalent earthquake. The algorithm evidenced a low in-
creased seismicity a few months before the explosive event. See [40] for more details about this
analysis method.

The found results are a confirmation that a clear distinction between tectonic and
volcanic seismicity is not possible when analysing a large region. Only considering a
smaller area coinciding with the size of the volcano would in principle provide a better
representation of the volcanic seismicity. However, no seismic stations were available on
the HT-HH volcano before the eruption, so we had to resort to USGS data over a larger
region. Nevertheless, it is interesting that we find some signals of the preparation of the
great eruption even in the behaviour of mostly tectonic seismic events, in terms of b-value
and R-AMR. Our results would confirm that the tectonic seismicity had some role in the
preparation phase of the eruption, as an inter-relation between tectonics and volcanism.
This would also explain the huge energy released into the atmosphere by the eruption.

4.1.2. Atmospheric Data Analysis

As described in the LAIC models proposed until now, the release of trace gases (es-
pecially SO2 and CO) by a volcanic event would be responsible for air ionization through
various chemical reactions with other gases in the atmosphere. Ref. [41] showed some
results analysing stratospheric aerosol and water vapour perturbations due to this erup-
tion. We analyzed the ERA5 reanalysis dataset with the application of the Climatological
Analysis for Seismic PRecursor Identification (CAPRI) algorithm [42,43]. It is based on the
comparison between the surface/atmospheric parameters in the three months preceding
the event with those of the historical time series of 40 years in the same seasonal period
(Figure 6). The anomalies are effective if they positively overpass the mean of twice the
standard deviations of the respective historical time series. A comparison with the same
parameters analysed during the same period before a fictitious event on 15 January 2021
(i.e., one year before the volcano explosion) allowed for the validation of the anomalous
days. In the respective spatial map (Figure 7), we can better individuate the distribution of
the parameter values compared to the volcano position, indicated with a small star, during
the detected anomalous days.
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Figure 6. Case study for 2022 Hunga Tonga volcanic eruption ECMWF (a) SKT, (b) T2m, (c) OLR. The
comparison between the 2022 time series (dashed red line) and the historical time series (1980–2021,
blue line) is shown. For the latter, we also represented the 1.0 (cyan), 1.5 (green) and 2.0 (yellow)
standard deviations from the mean, respectively. The circle puts in evidence the identified anomalies.
The eruption occurred at the end of the analyzed period (90 days) as indicated by the red vertical
line. Red shaded areas highlight periods of eruptive activity as also detected remotely by the
analysis of co-eruptive seismic, hydroacoustic, and infrasound signals since December 2021 (modified
from [14]). Reprinted with permission from AAAS. The grey shaded area instead highlights a period
of pre-eruptive seismic and hydroacoustic detections.
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Figure 7. Case study for 2022 Hunga Tonga volcanic eruption ECMWF (a) SKT, (b) T2m, (c–f) OLR
(25 October, 31 October, 17 November, 29 November) anomalous day maps in terms of difference
with respect to the historical mean. The stars indicate the volcano’s position.

Starting with the SKT (Figure 6a), we saw an anomalous day on 27 November 2021
(48 days before the eruption); the day before we identified an anomaly on the 2 m tempera-
ture (Figure 6b). The latter shows the absolute maximum on the SW side of the volcano
as shown in the map in Figure 7, so it is more plausible the connection to the volcanic
eruption. OLR reveals various persistent anomalies (Figure 6c): one 4-day persistent starts
on 25 October 2021 (81 days before the eruption), two 2-day persistent starts on 31 October
(75 days before the eruption), and 17 November (58 days before the eruption), respectively.
Moreover, we saw two anomalies on 29 November and the last one on 2 January 2022.
We also analysed some more parameters, not shown here. The cloud cover also shows
an anomaly on 9 November 2021 that could be related to the eventual air ionization that
can induce the formation of clouds. Again, the ozone concentration presents an anomaly
on 30 October 2021, but the distributional map of this day shows that the anomaly is not
centred in the volcano, so probably it is not correlated to the event. In addition, the surface
pressure individuates a little anomaly on 19 December 2021, but since in the anomalous
day map the anomaly is not centred on the volcano, we excluded it as a possible influence
on the preparation of the eruption.

We also show the main results from [14], where it is interesting to note that the pre-
eruptive seismic and hydroacoustic detections (the grey shaded area in Figure 6) followed
the atmospheric anomalies around 45 days before the explosion. Red shaded areas highlight
periods of eruptive activity as also detected remotely by the analysis of co-eruptive seismic,
hydroacoustic, and infrasound signals since December 2021 (modified from [14]).

In order to confirm these anomalies, we observed the parameters in the same seasonal
period of 2020–2021 (in the absence of volcanic eruption) and no anomalies were detected.

4.2. Results concerning the Effect of the Hunga Tonga Volcano Explosive Eruption of 15 January
2022 All around the Globe
4.2.1. Atmospheric Data Analysis

Considering that the effects of this volcanic event on atmospheric parameters were
distributed over the whole globe, we also performed a meteorological analysis in Italian
territory. We calculated the HT-HH—Italy (20.57◦S, 175.38◦W; 42◦N 12◦E respective coordi-
nates) shortest distance from the website by Movable Type Ltd. (https://www.movable-

https://www.movable-type.co.uk
https://www.movable-type.co.uk
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type.co.uk, accessed on 15 June 2022) that is 17,530 km. Since the pressure wave is the
parameter that mainly influenced on the meteorological effects of the volcanic event, and
such effects travel at the speed of sound, depending on the temperature, we calculated this
speed coherent to the 0–10 ◦C—winter temperature in which the wave passed in Northern
Hemisphere—and the value is 1195 km/h. It means that they arrived in Italy at around
20:00 UTC on 15 January 2022. We further calculated a second arrival of the signal, at 6:00
UTC on 17 January.

The data used for this analysis come from ISPRA’s (Italian Institute for Environmental
Protection and Research) National Tidegauge Network (https://www.mareografico.it/
?syslng=ing, accessed on 15 June 2022), consisting of 36 environmental monitoring stations
located along the Italian coasts. Since the wave came from approximately the north
direction, we considered stations at different latitudes (Figure 8).
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Figure 8. Location of tide gauge stations analyzed: the Tyrrhenian coast is red and the Adriatic coast
is light blue. (Modified from Google Earth).

To search for a fine estimation of the direction of the wave, we separated the Adriatic
and Tyrrhenian data. We focused our attention on atmospheric pressure, air temperature
(measured at 2 m of altitude), and relative humidity, which are the principal parameters
influenced by volcanic explosions on the occasion of larger eruptions and, in turn, Lamb
waves. All the parameters were analyzed using hourly data. In the atmospheric pressure
(Figure 9), we individuated a peak value in correspondence to the pressure wave arrival
on both coastal sides. From the comparison with the 2020 data, we saw that the general
trend is concordant with our analysis, but the identified increase was absent, confirming
the peculiarity of the data after the volcanic explosion.

Concerning the air temperature and relative humidity, we did not observe clear
evidence of the eruption influence, in terms of Lamb waves. In addition, the mean values
of 2020 are coherent with those analyzed.

https://www.movable-type.co.uk
https://www.movable-type.co.uk
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Figure 9. Atmospheric pressure in comparison between Adriatic (left) and Tyrrhenian (right) stations:
the vertical bars correspond to the first arrival and second arrival of the pressure wave.

To better appreciate the late arrival of the pressure wave from north to south stations,
we examined the same parameters data sampled every 15 s and downloaded from ISPRA’s
TAD Server (https://tsunami.isprambiente.it/Tad_Server, accessed on 15 June 2022). The
better temporal resolution allowed us to distinguish the temporal delay—between 20 UTC
and 20:15 UTC—of the pressure wave in stations at different latitudes and longitudes, again
separating the Tyrrhenian (Figure 10a) and Adriatic stations (Figure 10b). Furthermore, we
can see the pressure wave arrived before on the Adriatic coast and minutes later on the
Tyrrhenian side, confirming its northeast direction.
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4.2.2. Geomagnetic Field and Ionospheric Electron Density Data Analysis

In this section we investigate possible signatures of seismic shake or possible direct
electromagnetic emissions produced by the eruptive event in the geomagnetic field and
ionospheric electron density. We considered the region around the volcano using both
ground magnetic data coming from geomagnetic observatories and magnetic and electron
density data from low earth orbit (LEO) Swarm and CSES satellites.

First, we focused on the geomagnetic observatories data from the INTERMAGNET
database from 13 to 15 January 2022. The only operating observatories close to Hunga
Tonga and its magnetic conjugate point were API (Apia—Western Samoa, geographic
coordinates 13.82◦S, 171.78◦W), PPT (Pamatai–Papeete, French Polynesia, geographic coor-
dinates 17.57◦S, 149.57◦W) and SHU (Shumagin, USA, geographic coordinates 55.35◦N,
160.46◦W) observatories. The vectorial magnetic data collected (X, Y, Z) present a sampling
rate of 1 min and we calculated the first differences to highlight eventual signatures due
to the volcanic explosion. In the API observatory, there is a signature in the proximity to
the principal eruption that is not observed in the other observatories. Previously, ref. [44]
showed a high-frequency signature visible in both API’s vertical and horizontal compo-
nents suggesting an external ionospheric origin. Indeed, these data are very affected by
the geomagnetic storm running on the day of the main eruption as we can see when com-
paring magnetic data with the evolution of the Dst index. There is a clear evidence of the
geomagnetic storm effect reflected as an increase of the amplitude of the first differences
data at the beginning and during the geomagnetic storm. However, we can see that API,
the closest observatory to the volcano, detected an interesting magnetic perturbation at the
same time (04:16 UTC) that the two seismic stations MSVF (Monasavu, Fiji, geographic
coordinates 17.75◦S, 178.05◦E) and AFI (Afiamalu, Samoa, geographic coordinates 13.91◦S,
171.78◦W) recorded the arrival of the seismic waves P (04:16 UTC) and S (04:18 UTC),
produced by the volcano explosion. This means that this effect observed in the geomagnetic
observatory seems mechanical and not a magnetic disturbance eventually produced by the
volcanic eruption.

Then, we examined the magnetic field fluctuations at Swarm’s altitudes during the
eruption day (15 January 2022). The satellite magnetic signals were recorded with a sam-
pling frequency of 50 Hz in the north–east–center (NEC) reference frame, and were tapered
with a 400 s Hamming moving time window (frequency resolution 2.5 mHz). Before per-
forming the spectral analysis, the magnetic data were differentiated in order to: (a) Reduce
the typical red-noise trend of the spectra in the ionosphere (i.e., [45] for magnetospheric
applications); (b) mitigate the effect of satellite’s low polar orbits which determines an
apparent high variation of the main magnetic field in each time window as trends or offsets,
due to standard latitudinal dependence of geomagnetic field. We computed the power
spectral density (PSD) through a fast Fourier transform algorithm applied to magnetic field
measurements. The resulting spectra were then smoothed over 3 adjacent frequency bands
by using a triangular window (final frequency resolution ~5 mHz, i.e., [46–48]). The final
spectra were not converted by means of the transfer function of the difference in order to
make more clear ultra-low frequency (ULF, 1 mHz–5 Hz) signals.

First, we focused our attention on the time interval 21–22 UTC, which just followed
the great eruption: the differentiated magnetic signals for Swarm A and B are reported
in Figure 11 (panels a and d, respectively). We performed a dynamic spectral analysis
by moving the 400 s time window by time steps of 14 s. The resulting total PSDs, i.e.,
the sum of the PSDs of each magnetic field component, are shown in panels c and f. The
high fluctuation and power levels observed at the beginning and at the end of the interval
shown in the figure correspond to the high latitude sectors of the Swarm satellite’s orbit
(|λ| > 55–60◦) and are due to standard polar geomagnetic phenomena. The dynamic
spectra clearly show the occurrence of ULF fluctuations approximately in the ~1–150 mHz
frequency range, while at higher frequencies no significant signals emerge. Interestingly,
the PSD also seems to be symmetric around the equator, which is crossed approximately
at 21:51 UTC by Swarm A and at 21:47 UTC by Swarm B (λ = 0 is indicated by horizontal
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dashed lines in panels b and e). As highlighted by higher values of the PSD, the ULF
activity is more intense at Swarm A altitude, which is lower than the altitude of Swarm B.
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Figure 11. Differentiated magnetic data from Swarm A and B (panels (a,d)) during 15 January 2022,
together with the satellite-volcano distance ‘d’ and the satellite geographic latitude ‘λ’ (panels (b,e))
and sum of the PSD of all components, here indicated with S (panels (c,f)). The large high power
intervals at high latitudes (|λ| > 55–60◦) are due to polar phenomena.

We improved our investigation on PSD behaviours by extending it to the whole day of
15 January 2022. We restricted the analysis to time intervals for which the satellite–volcano
distance was lower than 7000 km and the absolute value of the satellite latitude did not
exceed 40◦. Finally, we computed the power, hereafter indicated as the LEO ULF power
track, by integrating the total PSD in the 1–150 mHz frequency range. Figure 12 shows ULF
waves power tracks for both Swarm satellites. As for Figure 11, by visual inspections of
the whole region, it can be seen that higher average power levels are attained at Swarm
A altitude. Interestingly, the power track levels seem to be independent of local time,
suggesting that our observations are probably related to large local sources in the area
around the volcano (indicated by a star): that signals probably came from the examined
regions below the satellites.
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Figure 12. Power tracks in the 1–150 mHz ULF range at Swarm A (top) and B (bottom) during
15 January 2022. The local times of the track beginning are indicated. Both satellites show power
tracks with higher values in a large region around the volcano, almost independently of the local
time. The volcano position is marked by a star.

Further, we analyzed the Swarm tracks passing in a Dobrovolsky area of M7.3—we
considered a major magnitude with respect to the one attributed to the eruption since the
energy released in the atmosphere is bigger than the energy released at the surface (as
described in [7] and more detailed [14]) over the conjugate magnetic point of the volcano
eruption. In this case, we examined the magnetic field components and the total intensity F
recorded with a sampling frequency of 1 Hz. Here, we follow the MASS method (ref. [49]
for more details about the method). According to the above-shown investigations, all-
time series were differentiated. In the tracks of all satellites on 13 January, there was an
interesting signal. We report Swarm A as an example in Figure 13.

The day before the eruption, a signal started probably due to the volcanic event,
seen from all satellites. On the same day of the explosive eruption, the disturbance of the
geomagnetic storm covered any eventual signal in the components of the geomagnetic field.

To detect eventual electromagnetic anomalies possibly connected to the volcanic
eruption, we investigated Swarm and CSES-01 magnetic and electron density (Ne) datasets.
Unfortunately, in the days near the volcanic event there was a relevant geomagnetic storm
with a minimum Dst index equal to −94 nT at 23:00 UTC on 14 January 2022.

To better visualise the geomagnetic signal on the eruption day, we compared the first
differences of the total intensity F (mag-F) of the three Swarm satellites (Figure 14).
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magnetic field as measured from the Swarm B satellite (orange) and given by the global geomag-
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Figure 13. Swarm satellite track passing over the Dobrovolsky area (yellow oval in the geographic
map; the star represents the conjugate point of the volcano location) on 13 January 2022 at 21:43
UTC. From left: first differences of X, Y, and Z components and total intensity F, geographic map. It
is evident an anomaly signal in the Z component of the magnetic field. Anomalous windows that
overcome 2.5 times the root mean square of the whole satellite track are marked.
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Figure 14. Comparison of the first differences of the total intensity F (mag-F) of the three Swarm
satellites. On the rightmost picture the geographic map showing the satellite tracks, with the
same colours of the first differences graphs. The arrows represent the horizontal directions of
the geomagnetic field as measured from the Swarm B satellite (orange) and given by the global
geomagnetic field model IGRF-13 at the sea level (black).

Swarms A and C showed almost the same signal since in this period they were flying
at a closer distance (0.2◦ of longitude) with respect to the standard orbit separation at the
equator (1.4◦ of longitude). Furthermore, Swarm B track is really interesting, providing
more information which permits a better understanding of the signal detected by Alpha
and Charlie satellites. Swarm B passed at 21:53 UTC on the east side of Hunga Tonga and at
23:27 UTC on the west side. The first track showed some disturbance at about the latitude
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of the volcano, while the second one did not present any disturbances. To explain this
particular situation, we proposed two scenarios: the first is that the signal influenced by the
phenomenon disappeared in the time period of the second passage of the Swarm B. The
second one suggests that the volcano magnetic disturbance was likely propagated along
the magnetic field direction. The latter was calculated with the IGRF-13 (International
Geomagnetic Reference Field) model [50], at sea level and reported as a black arrow in the
figure, and also extracted from direct measurements of ASM of the Swarm B at its altitude
and it has been shown by an orange arrow.

At this time, we were able to analyse the Langmuir probe (LAP) data—inherent to
the electron density in the ionosphere in situ—from the CSES-01 satellite relative to the
day before and the same day of the volcanic event. On the day before, we saw in different
tracks close to the equator a common disturbance that, due to its shape and recurrence, we
propose as an instrumental or cross-talk: probably it could be due to an interference with
the rotation of the solar panel conducted about the equator to optimize the solar irradiation
on the same panel. For further analysis, we plotted the electron density during the time of
the explosion of the Hunga Tonga volcano, shown in Figure 15.
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Figure 15. CSES LAP Ne during the time of the major explosion of Hunga Tonga volcano on
15 January 2022 at 04:20 UTC. The circles with numbers mark the observed disturbances on the track.

We saw principally one disturbance and two spikes. The disturbance number 1 in the
red circle has been recorded just after the volcano explosion (red vertical line) and could be
explained only as an electromagnetic wave if it was produced by the volcanic explosion.
The first spike (disturbance number 2)—evidenced on the green circle—was around 8 min
after the eruption; at this time, we expected that the possible acoustic-gravity wave signal
reached the F2 ionospheric layer. The second spike (disturbance number 3 in blue circle),
detected 10 min after the eruption, is caused by instantaneous illumination changes of the
probe surface when the boom of the electric field detector in the windward panel shades
the LAP [51]. We also represented the whole day CSES-01 and Swarms B—C Ne maps
divided for day and night time—Figure 16 left and right, respectively—(as the ionosphere
is significantly different). In the CSES-01 tracks (Figure 16A,B), no data were available after
15:00 UTC due to maintenance operations on the satellite.

In the CSES-01 Ne night-time map (Figure 16B) we can see two signals. One centred
in South America registered 2.7 h after the eruption at 10156 km from the volcano, and
thus it could not be generated by the pressure wave of the event. The second one was
in the Pacific Ocean, 5.8 h later than the eruption, and thus compatible with the pressure
wave arrival at this location, considering the speed of sound in the air. In both Swarm
satellites (Figure 16D,F), we have a cross-detected signal of South America around 2 h
before the main eruption, the same seen in CSES-01 tracks. Another interesting signal, seen
in these figures, is centred between Australia and New Guinea at 13 UTC, i.e., 9 h after the
main explosion. It could be an effect of the enormous plume of SO2 that were moving in
this direction [5]. In the Ne day time maps (Figure 16C,E) we see different signals around
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the magnetic equator that can be interpreted as a signature of the Equatorial Ionospheric
Anomaly (EIA).
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Figure 16. CSES-01 Ne maps are divided for day and nighttime (left and right, respectively), the UTC
time is represented near the track. (A,B) CSES-01; (C,D) Swarm B; (E,F) Swarm C tracks.

To further check this possible connection, we analyzed the time derivative of surface
pressure from the ECMWF ERA-5 dataset with the CSES-01 track at the same time of
satellite passage, i.e., 10 UTC (Figure 17). The satellite effectively crossed the pressure first
wavefront at the latitude signal individuated in Figure 16, causing the electron density
variation between −20◦ and +10◦ geographic latitudes. The lower latitude, between −50◦N
and −30◦N, perturbations of electron density seem to correspond with perturbations of
surface atmospheric pressure, but they are probably associated with other phenomena (e.g.,
weather) as the volcanic pressure wave still had not reached such distances at that time.
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storm. The Auroral Electrojet (AE) index is shown in Figure 18. In particular, in the South 
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Figure 17. Time derivative of surface pressure from the ECMWF ERA-5 dataset and CSES-01 track
(red line) at 10 UTC; two black dashed lines represent the pressure wavefront prevised at 09 UTC
and 10 UTC considering the velocity of 1100 km/h. These two times are representative of the time
interval that we suppose the map is sensible. CSES-01 satellite entered the represented area (latitude
of 60◦S) at 09:44 UTC and the estimated position of the front pressure wave is represented by a green
dashed line. It exits (latitude of 20◦N) at 10:05 UTC and the corresponding estimated position of the
pressure wave is represented by a red dashed line.

4.2.3. Ionosonde Analysis

As we mentioned before, the Hunga Tonga eruptions occurred during a geomagnetic
storm. The Auroral Electrojet (AE) index is shown in Figure 18. In particular, in the South
Hemisphere between longitude 90–225◦E and in latitude 60◦S–0 a negative ionospheric
storm occurs at 23 UTC on 14 January until 16 January 2022. In this condition, the effect
of volcanic eruption on the electron density could be covered by the storm effect as we
saw previously.
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Figure 18. Auroras Electrojet (AE) index distribution on 15 January 2022, day of major Hunga Tonga
volcanic eruption.

Using the global ionosonde network (see Table 1 for more information about the
ionosonde observatories considered), we analyzed the parameter foF2, defined as the
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highest frequency at which the ionosphere reflects vertically. foF2 increases at 05 UTC
but the same effect is seen on the previous day, so we cannot consider it connected to the
volcanic activity (Figure 19).

Table 1. List of ionosonde observatories used in this work. No information about ionosonde of
Khabarovsk and Wake Island is available.

Station Latitude Longitude Ionosonde URSI Code

Canberra −35.32 149.00◦E 4D 5A CADI 5D CB53N
Darwin −12.45 130.95◦E 4D 5C CADI 5D DW41K

Khabarovsk 48.50 135.10◦E - KB547
Learmonth −22.25 114.08◦E Lowell 5D LM42B

Norfolk Island −29.03 167.97◦E 4D 5A CADI 5D NI63_
Niue 19.65 190.07◦E 5D ND61R
Perth −31.94 115.95◦E 5D PE43K

Townsville −19.63 148.85◦E 4D 5A CADI 5D TV51R
Wake Island 19.26 166.65◦E - WA619Remote Sens. 2022, 14, 3649 22 of 29 
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Figure 19. Ionosonde data analysis on 15 January 2022, day of major Hunga Tonga volcanic eruption.

4.2.4. TEC Data Analysis

In order to further check the effect of the eruption on the ionosphere, we inspected the
vertical Total Electron Content (TEC) maps produced by the International GNSS Service
(IGS) (https://cddis.nasa.gov/, accessed on 15 June 2022). The daily dataset contains
spatial gridding of the TEC values derived from the dual-frequency GNSS receiver stations
data worldwide. We focused on the nearest grid point location with respect to the volcano,
i.e., at (lat, lon) = (−20◦, −175◦). Figure 20A shows the direct comparison among the TEC
values (in TECU) measured on 15 January and the same observable on the days before and
after it. It is noticeable the appearance, on the day of the eruption, of a prolonged decrease
(evidenced by the red ellipses), especially if compared to the day before when such a feature
is absent. In addition, this behaviour seems present (although to a lesser extent) even on
16 January (inside the smaller red ellipse). By superposing the Dst index (Figure 20B)
to the three days long time series (Figure 20C), we noticed that both the decrements on
15 and 16 January appeared just during the recovery phase of the geomagnetic storm,
which started around the end of the 14 January. We cannot exclude a priori that these

https://cddis.nasa.gov/
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decreases were manifestations of the storm, even if we observe that apparently, no manifest
variation coincides with the maximum of it across 14 and 15 January, probing for a possible
relationship with the volcanic eruption. At the same time, we cannot ignore the intense
lightning activity that accompanied the eruption [13]: this could have played a decisive
role in the variation of TEC [52].
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Figure 20. Total electron content (TEC) data from 14 to 16 January 2022. In (A) there is the comparison
of the three TEC time series as a function of the hour of the day (UTC): it is evident the lowering
of the TEC values on the eruption day (15 January) compared to the previous and following days;
(B,C) show the simultaneous behaviour of the Dst and the TEC time series.

4.2.5. Search Coil Magnetometer (SCM) Data Analysis

In addition, we retrieved the search coil magnetometer (SCM) data from the Sodankylä
Geophysical Observatory (https://www.sgo.fi/Data/Pulsation/pulData.php, accessed
on 15 June 2022), which furnishes continuous measurements of the Earth’s magnetic field,
cosmic radio noise, seismic activities, and cosmic rays. This Finnish pulsation magne-
tometer network includes four stations equipped with two three-component search coil
magnetometers (station names, monitoring start dates, and coordinates are considered in
Table 2). Recordings are made by a 24-bit 250 Hz sampling system with a cut-off filter at
35 Hz. The timing of the data is based on the GPS Precise Positioning Service (PPS) with a
10 MHz reference. The stations are able to detect regular geomagnetic pulsations, Alfvén
resonators, and Schumann resonances. Moreover, the Earth’s cavity resonances crossing
the troposphere and stratosphere can be directly influenced by the eruption.

Table 2. Search Coil Magnetometer (SCM) stations of Sodankylä Geophysical Observatory (SGO)
Finnish pulsation magnetometer chain details.

Station Start Operation
Month/Year Geographic Coordinates

NURMIJÄRVI 12/2019 62.42◦N 25.28◦E
OULU 08/2020 65.08◦N 25.90◦E

SODANKYLÄ 06/2018 67.43◦N 26.39◦E
KEVO 11/2018 69.75◦N 27.02◦E

https://www.sgo.fi/Data/Pulsation/pulData.php
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In order to identify a possible signal from the volcanic event, we selected all stations in a
wider band—to have a compressive view and evidence of the first two Schumann resonances.

Figure 21 shows the total power (expressed in dB) of data acquired on 15 January
2022 from four Finnish observatories by means of search coil magnetometers [53] presents
anomalous dynamic spectra detected at particular observatories located in France, Italy,
Russia, and Japan during the eruption day. All the spectrograms show high total power
at 7–9 Hz and at the upper harmonics (about 14 Hz), frequencies characteristic of the
Schumann resonance and where the effects of global lightning activities are searched. What
is relevant is the marked increase in energy between 04:15 and 05:45 UTC, in a wider
range of frequency (i.e., a higher power from 6 to 18 Hz), a phenomenon that interested all
the Finnish observatories. We believe that a spotlight should be pointed to the following
observations: (1) the occurring time is coherent with the Hunga Tonga eruption and the
consequent wave propagation time; (2) the analysis of the same observatories in other
periods does not show any anomalous signal. Thus, we could suppose that the features
detected in the spectrograms could be the effects of the volcanic thunderstorm associated
with the friction of particles recorded in the cloud of ash and gas produced by the eruption.
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5. Discussion

Before the main eruption of Hunga Tonga, we identified a weak seismic acceleration
in the stressed zone. From our experience on the seismicity induced from volcanic events,
we could attribute this seismicity increase to the imminent explosion, as tectonics and
volcanism had an inter-relating role in the preparation phase of this unique energetic event.
Also among the effects prior to the eruption, we saw different anomalies in atmospheric
parameters such as skin temperature (SKT), air temperature (T2m—measured at 2 m
of altitude), and outgoing longwave radiation (OLR) and these show the geographical
distribution of their maximum values approximately near to the volcano Hunga Tonga. We
also analysed data coming from geomagnetic observatories near the volcano. They are very
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influenced by the geomagnetic storm occurring during the eruption day, but we found an
interesting effect in the closest observatory API. However, we see that it was probably due
to the passing of the seismic wavefront as registered for the near seismic station AFI.

An eruption of this explosivity (estimated as VEI = 6) generates various phenomena
on a global scale. In the atmosphere, we could observe the arrival of the pressure wave
at different latitudes and distinguish the Tyrrhenian and Adriatic coasts with a peak of
atmospheric pressure data at the time calculated for this arrival considering a velocity of
around 1100 km/h. Furthermore, we analysed the magnetic field fluctuations at Swarm
altitude and the power spectral density (PSD) on the time interval 21–22 UTC on 15 January
2022. It was interesting to note that the latter parameter seems to be symmetric with respect
to the equator. Extending the analysis for the whole day, the power track level shows the
independence of the local time, suggesting the probable relation to large local sources in the
area around the volcano. Other signals probably inherent to the eruption are individuated
in the Swarm tracks on the scalar intensity of the magnetic field on the evening of the day
of the event (15 January 2022). The location of the scalar residual of the magnetic field
obtained from the Swarm constellation is coherent with the field direction considering
the IGRF-13 model supposing the source of the signal was at the volcano. On the other
hand, we also analysed the CSES-01 electron density and found a signal in the Pacific
Ocean compatible with the pressure wave arrival at this location. In particular, CSES-01
satellite flew almost tangent to the front of the pressure wave at about 10 UTC recording
oscillations of Ne possibly due to the acoustic gravity waves induced by the Lamb wave.
The satellite data present limits due to their orbit and the instrument’s sensibility. The
ionosonde data were really disturbed by the geomagnetic storm of this period, and thus,
analysing the foF2 parameter, we were not able to discern any volcanic effect. Moreover, the
total electron content shows an abrupt and particular decrease on the eruption day, whose
time persistence is unique. Finally, we observed the activation of Schumann resonance
and close frequencies on the interval time of the eruption explosion in all the Finnish
network observatories.

The timeline of all anomalies detected before and after the great eruption is shown in
Figure 22, representing a chronological summary of the found anomalies in the different
geolayers and demonstrating that, not only the consequences of the eruption were affecting
the entire globe, but also its preparation involved a very large area, much larger than the
local volcanic cone.
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6. Conclusions

In this article, we applied a multi-parameter and multi-layer approach to study the
pre- and post-effects of the largest Hunga Tonga Hunga Ha’apai eruptions that occurred on
15 January 2022 to the atmosphere and ionosphere. We started our analysis 120 days before
the explosion and extended the study to the day of the volcanic eruption. Searching for
possible effects of this event, we used different datasets to observe the phenomenon from
various points of view.

Our main conclusions can be resumed as:

(a) The seismicity of the study area showed a weak increase from 120 days before the
eruption;

(b) The atmospheric parameters presented anomalies that seem to anticipate the explosion.
The outgoing longwave radiation exhibits three anomalies (at 81, 75, and 58 days
before the eruption), the first one was 4-day persistent while the last was two 2-day
persistent. The 2-m and skin temperatures indicated anomalies 49 and 48 days,
respectively, before the eruption;

(c) The atmospheric pressure on the Italian territory increased in correspondence to the
arrival of the pressure wave from Hunga Tonga, and, then, the back wave from the
antipodal point. It is also identified a late wake from northern to southern stations of
this arrival;

(d) The spectral analysis of magnetic field components at Swarm satellite altitudes re-
vealed fluctuations that were equatorially symmetric, more intense at lower altitudes,
and local time independent in a large area around the volcano. Therefore, we be-
lieve that the observed ULF fluctuations are probably not directly related to external
sources, which are mainly linked to the solar wind-magnetosphere interactions;

(e) The first differences in the total intensity (mag-F) of the geomagnetic field of the three
Swarm satellites showed a clear anomaly in correspondence to the volcanic position;

(f) The electron density registered by CSES-01 LAP presented an anomaly around 8 min
after the eruption; correlating with the arrival of the acoustic-gravity wave signal
in the F2 ionospheric layer. Another anomaly at 6 h after the explosive event was
detected by Swarm and CSES-01 satellites;

(g) All the Finnish search coil magnetometers showed a higher total power at frequencies
characteristic of the Schumann resonance and where we expect the effects of global
lightning activities.

A unique limitation of our analysis of the ionosphere was the presence of a magnetic
storm the day before the eruption with its recovery phase on the day of the eruption, so
the risk of mixing the effects of volcanic origin on the ionosphere with those solar induced
cannot be neglected. Future perspectives could include more innovative techniques to
overcome this problem and, for instance, make a more accurate investigation about the
decrease of TEC that we found on the eruption day to exclude any possible geomagnetic
storm influence.

Nevertheless, our study confirmed the lithosphere–atmosphere–ionosphere coupling
models introduced for natural hazards, such as volcanic eruptions and earthquakes and
provided a very comprehensive view of such an eruption, that even if it was a unique
single point starting phenomenon, its preparation was evident over a larger area than the
volcanic cone and the effects of the explosion were very distinct and global.
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