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Genetic resources hold the key to adapting crops to a changing climate; they are a
source of many new alleles that can be used in plant breeding to improve already-existing
cultivars. They will be important in the future, especially in the European Union, due to
the current restrictions on new technologies, such as gene editing, and new policies on
sustainable agriculture (Farm to Fork and Biodiversity Strategies). However, the actual
use of genetic resources in crop improvement is limited. In this Special Issue, 21 articles
have been published which address different kinds of traits that can be incorporated in
new cultivars from different types of genetic resources (wild relatives, landraces, obsolete
cultivars, and modern cultivars). Sixteen articles were selected for the brief discussion
presented below.

Regarding wheat, some bread wheat cultivars grown in Spain (Rota, Eneas, and RGT
Chiclanero) were found to be resistant to yellow rust [1], whereas in a study on bread wheat
landraces’ resistance to leaf and yellow rust, Martínez-Moreno et al. [2] found that resistant
landraces originated from areas with higher precipitation and more uniform temperature.
Most were susceptible to either of the two rust species, but one displayed resistance to both,
which makes this study interesting for breeders. In another study on bread wheat in Egypt,
searching for drought tolerance, the cultivars Giza 171 and Misr2 were more tolerant than
the rest of the materials [3]. Studying several subspecies of tetraploid wheat (T. turgidum),
González et al. [4] could distinguish the dicoccum and turgidum from the durum subspecies
based on the polymorphism on the TtDro1B gene. The former category had shallower
and smaller roots compared to the latter. Ayed et al. [5] tried to explore the genotype in
terms of the environmental interaction and yield stability of 24 promising durum wheat
lines (landraces, cultivars, and lines from crosses), selected by ICARDA in several African
countries. Five genotypes were recommended for several semiarid regions of Tunisia. El
Haddaj et al. [6] reported how crop wild relatives may be a good source of alleles for plant
breeding in general as well as climate change adaptation. They described that one durum
wheat accession (Zeina), originating from T. araraticum, was superior in its mixograph score
to the best check, and three other accessions had an extraordinary Zn concentration. For
barley, several entries originating from crosses of H. spontaneum were superior to the checks
in protein, Zn content, and β-glucan content. For lentil, some accessions originating from
Lens orientalis had a higher protein, Zn, and Fe concentration.

In maize, some of the descent lines from the cross of the Algerian landraces Sidi
Maamar × Aougrout were tolerant to drought and no-nitrogen stress [7]. Sukto et al. [8]
carried out mass selection in the small-ear waxy corn populations of Thailand to improve
the carotenoid content and resistance to downy mildew; also in Thailand, Dermail et al. [9]
crossed three supersweet corn lines with eight waxy ones to generate 48 F1 hybrids. Se-
lection for different traits (early maturity, shorter plant stature, high yield, high flowering
synchrony, good plant architecture, etc.) was carried out. In addition, a sensory blind test
on sweetness, stickiness, tenderness, and overall liking was conducted to assess the quality.
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The obtained hybrid with the highest selection index, 101L/TSC-10 × KV/mon, showed
potential to become a future sweet–waxy corn hybrid on the market. Fongfon et al. [10]
examined the diversity of 37 landraces of purple rice collected from farmers for several
traits including anthocyanin, iron, zinc, and gamma oryzanol content, when grown together
as wetland rice. Most purple rice accessions were identified as tropical japonica, although
there were some from the indica group. Grown in a much smaller area than the normal
non-purple rice, purple rice landraces are also genetically less diverse. Some landraces had
a higher anthocyanin content, which can be useful for breeding.

In a study of chickpea, several lines from the WANA region (West Asia and North
Africa), including landraces and cultivars, were selected for their higher seed weight
and number [11]. In another article on chickpea, Eker et al. [12] found that multi-pods
per peduncle and compound leaf traits had an advantage under heat stress conditions.
Bomers et al. [13] found that three accessions of runner beans (out of 113, mostly Austrian)
showed a higher yield compared to the reference variety Bonela under heat stress during
two seasons. Rosa-Martínez et al. [14] evaluated the traits of 16 eggplant lines with different
introgressions from Solanum incanum (sugars, acid, phenolics, minerals, etc.). Several QTLs
were found with a higher malic acid and crude protein content. Casals et al. [15] described
how long-shelf-life and water-deficit-tolerance alleles can be found in tomato. A landrace
and a hybrid based on the Catalan Penjar variety was employed for this study. Finally,
Pérez-Méndez et al. [16] reviewed the use of wheat and rice landraces to combat climate
change (forecasting the effects of greenhouse gas emissions, drought, and plant disease)
and to increase biodiversity for ecosystem services. The authors concluded that modern
technologies, especially remote sensing, are relevant to achieve these goals.

The importance of plant genetic resources is clear, but much remains to be done.
On one hand, they must be preserved through different in situ and ex situ conservation
methods. On the other hand, extensive genotypic and phenotypic information should
be generated to identify genes/traits of interest, especially in the vast gene pool of wild
relatives, and facilitate their introgression into advanced breeding material.

Conflicts of Interest: The authors declare no conflict of interest.
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