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 23 

Abstract 24 

Numerous studies have explored whether and how the spread of the coronavirus disease 2019 25 

(COVID-19) responds to environmental conditions without reaching unique or consistent 26 

answers. Sociodemographic factors such as variable population density or mobility as well as 27 

the lack of effective epidemiological monitoring difficult establishing robust correlations. 28 

Here we carry out a regional cross-correlation study between nine atmospheric variables and 29 

an infection index (Ic) estimated from standardized positive polymerase chain reaction (PCR) 30 

test cases. The correlations and associated time-lags are used to build a linear multiple-31 

regression model between weather conditions and the Ic index. Our results show that surface 32 

pressure and relative humidity can predict COVID-19 outbreaks during periods of relatively 33 

minor mobility and meeting restrictions. The occurrence of low-pressure systems, associated 34 

with the autumn onset, leads to weather and behavioral changes that intensify the virus 35 

transmission. These findings suggest that surface pressure and relative humidity are key 36 

mailto:jesus.planella@udg.edu
mailto:pelegri@icm.csic.es
mailto:ignasi.valles@mail.huji.ac.il


2 
 

environmental factors in the seasonal dynamics of the COVID-19 spread, which may be used 37 

to improve COVID-19 forecast models. 38 

 39 

Introduction 40 

A cluster of atypical pneumonias in Wuhan (China) in December 2019 disclosed the new 41 

coronavirus pathogen SARS-CoV-2 and the related clinical entity (COVID-19)1. This new 42 

threat was categorised by the World Health Organization (WHO) as a public health 43 

emergency of international concern on January 30 and as global pandemic on March 11, 44 

20202. As of early August 2022, COVID-19 has claimed almost 6.4 million notified deaths 45 

and about 570 million confirmed cases3, besides the important socio-economical disruptions 46 

due the lockdowns and contention measures. The air-borne transmissivity of the new 47 

coronavirus was soon established, as well as its high infectiousness, in contrast with the 48 

previous SARS-CoV-1 and MERSV4 . 49 

The ongoing evolution of SARS-CoV-2 is entering a new scenario where humans are 50 

experiencing reinfections with new variants of this pathogen. Despite the availability of 51 

vaccines and the increasing rates of vaccination, the transmission of SARS-CoV-2 remains 52 

high. The limited duration of protective immunity against infection and the high genomic 53 

variability of the pathogen increase the rate of repeated infection5,6 and extend the persistence 54 

of coronavirus over time7. This is especially evident with recent variants like Delta 55 

(B.1.617.2) and Omicron (B.1.1.529) and their sub-variants (BA.04 and BA.05)8. This new 56 

scenario may likely evolve towards an endemic disease, possibly controlled by weather 57 

conditions9 that will cause outbreaks or seasonal peaks similar to most common respiratory 58 

infections10. Therefore, one of the critical questions is to determine the character and extent 59 

of this seasonality and which weather variables may have a greater incidence on the 60 

transmission dynamics of SARS-CoV-2.  61 

In temperate regions, weather conditions such as temperature and humidity modulate the 62 

transmissibility of many common respiratory viruses such as influenza11,12, favoring higher 63 

rates of transmission during winter13. Specifically, numerous studies have explored the 64 

possible relationship between climatic factors and the spread of SARS-CoV-214,15,16,17,18,19,20. 65 

Several of these studies have concluded that low temperatures and low relative humidity 66 

favor the spread of SARS-CoV-2. However, models solely based on atmospheric variables 67 

have failed to predict the incidence of the disease probably due to inconsistences in the 68 
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counting system of infected population21, as well as because of incomplete consideration of 69 

relevant social variables, including the masking effect of the social restrictions imposed 70 

during the succeeding SARS-CoV-2 waves.  71 

In the new unfolding epidemiological scenario, where policy interventions and social 72 

distancing measures are already residual, the seasonal character of COVID-19 deserves 73 

further attention. The predominance of Omicron-related variants, whose infectiousness is 74 

highly independent of the vaccinated status, emphasizes the need for a better understanding 75 

and characterization of the climatic factors that impact the susceptibility to infection. Here we 76 

assess the relationship between the spread of COVID-19 and the atmospheric conditions in 77 

the region of Catalonia (northwestern Mediterranean) from September 2020 to December 78 

2020. A climate-dependent COVID-19 predictive model is developed based on the cross-79 

correlation results between a simple infection index and time-lagged atmospheric variables. 80 

The model is validated externally during the third COVID-19 outbreak, from December 2020 81 

to February 2021 to assess its predictive performance. 82 

Methods 83 

Health data processing and normalization 84 

The health data used in this study are available from the Catalan Transparency Portal 85 

database of the Catalan government and they have been processed as follows. First, only 86 

positive cases detected by PCR (NPCR,+ ) were selected for the analysis. Then, detected cases 87 

were grouped into Health Regions (HRs, a total of nine with mean area about 3600 km2) and, 88 

for each HR dataset, data were broken down into Basic Health Areas (BHAs, a total of 372 89 

with mean area about 86 km2 and population ranging between 5000 and 25,000 people each). 90 

Afterwards, a rectangular grid of 0.1º x 0.1º latitude (lat) – longitude (lon), covering all 91 

Catalonia, was generated. Health data were assigned to each point of the grid according to 92 

their location in the basic areas; grid points located inside one same BHA contain the same 93 

health data. Points located within the BHA that did not report data during the pandemic were 94 

excluded from the further analysis. As a result, time series for health data at each grid point 95 

were generated for the period of time analysed. Then, time series NPCR,+ (t, lat, lon) were 96 

normalised by dividing the time series by the area and the population size of each BHA; the 97 

resulting series are positive PCR cases for 100,000 inhabitants and squared kilometre (cases 98 

per 105 inhab km2).  99 
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We applied two corrections to the normalised time series NPCR,+ (t, lat, lon). The first one 100 

considers observed weekday biases, e.g. typically as a result of increased counts after the 101 

weekend. For this purpose, a histogram of mean confirmed cases for each day of the week at 102 

each BHA was computed, and a weekday factor was applied to the previous normalised 103 

dataset. A second PCR correction factor was defined as: 104 

𝑓𝑃𝐶𝑅 = 𝑃𝐶𝑅+ (𝑡,𝑙𝑎𝑡,𝑙𝑜𝑛)𝑃𝐶𝑅𝑡𝑜𝑡(𝑡,𝑙𝑎𝑡,𝑙𝑜𝑛) ,                      (1) 105 

which represents the fraction between the daily positive tests (PCR+) and the total PCR tests 106 

(PCRtot) done during that day in each BHA region. This factor takes in account the 107 

availability of the total number of PCR tests to detect positive cases during the period of time 108 

analysed; this was particularly important during the first wave of the pandemic, as the 109 

number of available tests was significantly lower than during the other waves, which 110 

underestimated the number of infected people at the early stages of the pandemic.  111 

The normalised time series obtained at each grid point after applying both correction factors, 112 

NPCR,+
* (t, lat, lon), were smoothed with a three-day moving average. Further, an interpolant 113 

for scattered grid points was applied to estimate daily values in BHAs with no reported cases. 114 

The result was a daily COVID-19 health time series N̂PCR,+(t, lat, lon) at each point of the 115 

grid covering Catalonia. 116 

Daily infection index 117 

The final dataset N̂PCR,+(t, lat, lon) was used to define an infection index, to be used for 118 

monitoring the risk of contagious for the population in a specific area and day. The daily 119 

infection index at each grid point Ic (t, lat, lon) is computed as: 120 

𝐼𝑐 (𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛) = 𝑁̂𝑃𝐶𝑅,+(𝑡,𝑙𝑎𝑡,𝑙𝑜𝑛)∑ 𝑁̂𝑃𝐶𝑅,+(𝑡−𝑖,𝑙𝑎𝑡,𝑙𝑜𝑛)10𝑖=1  ,        (2) 121 

This pandemic parameter, which is obtained directly from the health dataset, provides 122 

information on the people infected daily with the virus with respect to the total population 123 

that is potentially infectious, which is estimated as the people infected during the prior 10 124 

days22. 125 
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After processing the health data, the BHAs were classified according to population density. 126 

In low-density populated areas, reporting of positive cases experienced some difficulties 127 

during 2020, mostly related to the local availability of tests. In order to avoid this problem, 128 

we selected eight densely populated areas (population density  d  500 inhab km-2) for further 129 

analysis (Fig.1). One of the selected BHAs is located in the city of Barcelona (BCN-10A,  130 

dBCN = 11873 inhab km-2) and five more are included in districts located in towns of the 131 

Barcelona metropolitan area: Gava (GVA-2, dGVA = 1847 inhab km-2), Sant Just Desvern 132 

(SJD, dSJD = 2340 inhab km-2), Sant Vicenç dels Horts (SVH-2, dSVH = 2409 inhab km-2), 133 

Rubi (RUB-3,  dRUB = 644 inhab km-2) and Terrassa (TRS-E, dTRS = 1864 inhab km-2). The 134 

last two BHAs belong to urban areas away from the city of Barcelona: a district of the town 135 

of Tarragona, located by the coast (TRG-2, dTRG = 1573 inhab km-2), and a district of the 136 

town of Lleida, located in the interior of Catalonia (LLEI-2, dLLEI = 1123 inhab km-2). 137 

 138 
Figure 1. (a) Basic health areas (BHAs, delimited in white) and automatic weather stations (orange dots) in 139 

Catalonia. Those BHA selected for this study, with a population density d  500 inhab km2, are drawn in red.      140 

(b) Bioclimates in Catalonia according to the climatic conditions: Mediterranean coastal, Mediterranean pre-141 

coastal, Mediterranean continental, Mediterranean pre-Pyrenean, Mediterranean Pyrenean and Oceanic23 142 

published on the Meteorological Service of Catalonia (MSC). 143 

 144 
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Health data selection 145 

In June 21, 2020, following a substantial decrease in the number of infections and deaths by 146 

COVID-19 and coinciding with the end of the academic courses, the Spanish government 147 

opened a period with no mobility and distance restrictions that was named ‘new-normality’. 148 

This allowed a substantial fraction of the Catalan population to spend a few weeks of July-149 

August in holiday destinations. This implied large internal mobility to locations away from 150 

their registered residence, disabling a proper normalization of infections in terms of resident 151 

population. Hence, we have assessed the impact of weather on the propagation of COVID-19 152 

between September 2020 and February 2021. An internal validation is done from September 153 

1 to November 18, 2020, which is the setup period. This covers a period of relative normality, 154 

when most families were back to their homes for work and the start of the academic course, 155 

and before the onset of the second COVID-19 wave. An external validation is done from 156 

November 19, 2020, to February 28, 2021, which is the forecast period. It covers a period 157 

after the end of the second COVID-19 wave and before a substantial fraction of the 158 

population was vaccinated. 159 

Weather data processing 160 

In situ temperature, relative humidity, surface pressure, solar radiation and precipitation data 161 

were obtained from a network of 187 automatic weather stations spread along Catalonia. For 162 

each atmospheric variable, the original 30-minute data available since 2009 from the 163 

Meteorological Service of Catalonia (MSC) were averaged to daily values. This allowed 164 

estimating the maximum and minimum daily temperatures and hence the daily thermal 165 

amplitude. Mean temperature difference between consecutive days was also computed. The 166 

final time series were smoothed with a run-averaged filter of three days and used to obtain the 167 

time series at each BHA by spatial interpolation in the region. In summary, the nine 168 

atmospheric variables chosen for assessing the impact of weather on the propagation of the 169 

COVID-19 are: daily mean temperature (Tmean), relative humidity (RH) , shortwave solar 170 

radiation (Rad), surface pressure (P), daily thermal amplitude (DTA), daily minimum 171 

temperature (Tmin), daily maximum temperature (Tmax), temperature difference between 172 

consecutive days (T ), and daily precipitation (Prec).  173 
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Cross-correlation Analysis 174 

The relationship between the local weather and health variables was explored through a time-175 

lagged cross-correlation analysis between each of the nine atmospheric variables and the Ic 176 

index. To explore the similarity between the two series, the atmospheric variables were 177 

shifted forwards and backwards in time with respect to Ic. Negative time lags  (  < 0) 178 

indicate that changes in the infection index follow the atmospheric variables. Following our 179 

initial hypothesis, that infection is driven by weather conditions, only negative lags are 180 

considered for further analysis; considering the average maximum reported COVID-19 181 

incubation days22 and according to the Ic definition, the maximum time lag considered was set 182 

to max = 10 days. In order to quantify the impact of weather on the spread of the virus, we 183 

assumed that an atmospheric variable affects the virus propagation if the sample correlation 184 

coefficient (CCF) between this variable and the infection index is significant at a 95% 185 

confidence level. 186 

Selection of climatic variables to build the model 187 

The propagation of the virus was modelled using a multiple linear regression model for each 188 

BHA, with the predicted infection index Ic,pred  expressed in terms of p local climatic 189 

predictors:  190 

𝐼𝑐,𝑝𝑟𝑒𝑑(𝑡; 𝑋1, … , 𝑋𝑝) = 𝑐0 + ∑ 𝑐𝑗𝑝𝑗=1 ∙ 𝑋𝑗(𝑡 + 𝜏𝑗∗),                   (3) 191 

where t is time, Xj indicates any of the local predictors of the model, c0 is the constant 192 

coefficient for the model, cj  (j  [1, p]) is the regression coefficient for the Xj  predictor, and 193 

τj
* is the characteristic lag for the Xj predictor. The characteristic time lag is defined as the 194 

time interval that produces the highest correlation coefficient between the predictors and the 195 

observed 𝐼𝑐  index. Hence, a total of 2p+1 parameters are fitted for each BHA.  196 

Building the model: Model descriptors and statistics 197 

Before building the model, we explored the potential collinearity effects between the 198 

predictors as detailed next. First, the correlation coefficients ri,j between two predictors, 199 

namely Xi and Xj, were computed. Second, correlation t-tests were done to evaluate whether 200 

the predictors have a significant linear relationship. The t-statistic tTS,ij associated with each 201 

combination of predictors is calculated as: 202 
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𝑡𝑇𝑆,𝑖𝑗 = 𝑟𝑖,𝑗 √𝑛−2√1−𝑟𝑖,𝑗2  ,            (4) 203 

where n is the size of the sample. The statistics follows a t-distribution with n - 2 degrees of 204 

freedom  tTS,ij  t n-2. Finally, if the two predictors were correlated, the degree of collinearity 205 

between them was evaluated using the variance inflation factor, defined as:  206 

𝑉𝐼𝐹𝑗 = 11−𝑟𝑗2  ,                       (5) 207 

where the parameter rj indicates the coefficient of determination of the variable j regressed on 208 

the remaining predictors. If VIFj is less than 2.5, we considered that collinearity was not 209 

significant and both predictors could be used to build the model24. 210 

After inspecting the collinearity between predictors, we tested the regression coefficients 211 

separately for each BHA in order to select the predictors included in the final model. The 212 

significance for the regression coefficients was assessed using the t-test. Since these tests can 213 

be very conservative, we applied the forward stepwise estimation method to decide whether a 214 

candidate predictor must be included in the model, as follows. First, we selected the predictor 215 

with the highest correlation coefficient with the infection index. Then, this predictor and the 216 

infection index are fitted to a linear regression. As the model is linear, we use the adjusted 217 

coefficient of determination, r2
adj, to evaluate the goodness of the fit. In our case, this 218 

coefficient represents the percentage of the variation in the infection index that can be 219 

explained by the variation in the predictors, taking into account the size and the number of 220 

independent variables in the model. Next, the predictor that has the highest correlation with 221 

the infection index was added to the linear model and r2
adj, was recomputed. The F-test 222 

statistics was used to decide whether the addition of the remaining predictor made a 223 

significant contribution to the model. The F-statistic was calculated as: 224 

𝐹𝑘2−𝑘1,𝑛−𝑘2−1 = (𝑆𝑆𝑅2−𝑆𝑆𝑅1) (𝑘2−𝑘1)⁄𝑆𝑆𝐸2 (𝑛−𝑘2−1)⁄  ,                              (6) 225 

where the sub-indexes 1 and 2 correspond to the models with the remaining predictor 226 

removed or added, respectively. The terms SSR and SSE indicate the sum of the squares due 227 

to regression (i.e., the variability of Ic explained by the regression) and the sum of the squares 228 

due to error (i.e., the variability of Ic not explained by the regression) for the corresponding 229 

models. Finally, n represents the size of sample and k the amount of predictors used in the 230 
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corresponding linear regression. The F-statistic is inspected at confidence level > 90 %.  If 231 

the F-value is significant at this confidence level (p-value  0.1), the model improves 232 

significantly with the addition of the new predictor, which is maintained in the model. The 233 

final model includes all predictors that passed this partial F-test. 234 

Additionally, the final model was assessed using the joint F-test. This test allows deciding 235 

whether the linear regression used in the model provides a better fit to the observations than a 236 

model with no predictors (intercept-only model). The test statistic, which is denoted by F, has 237 

a Fisher distribution and is calculated as:   238 

𝐹 = 𝑆𝑆𝑅𝑆𝑆𝐸 (𝑛−𝑘−1)𝑘 ,             (7) 239 

where SSR, SSE and n are defined in Eq. (6) and k is the amount of predictors in the model. 240 

For each BHA, the linear fit to the data allows obtaining the F-statistic along with its 241 

corresponding p-value for that statistic. If the p-value was higher than a 0.05 significance 242 

level, we concluded that there is enough statistical evidence that the final model fits the 243 

observations better than the intercept-only model.  244 

Finally, the assumptions inherent to the linear regression model were analysed through the 245 

residuals from the fitted model; statistical tests were implemented to complement the 246 

graphical information of the residual plots. In this way, the Kolmogorov-Smirnov (K-S) test 247 

was conducted at a 95% confidence interval in order to examine if the residuals are normally 248 

distributed25. Thus, the test statistic was computed to evaluate whether the gap between the 249 

empirical and normal (hypothesized) distributions of the residuals is significant at the 250 

considered confidence interval. In addition, the White test for heteroscedasticity26 at 95% 251 

confidence level was applied to assess if the regression errors have a non-constant variance. 252 

If the p-value associated with the test statistic, which follows a Chi-square 2 distribution, is 253 

smaller than the significance level of the test, then the statistic is not significant and there is 254 

no evidence of heteroscedasticity in the final model. 255 

Model validation during the setup period 256 

The final model was internally validated for the setup period, from September 1 to November 257 

18, 2020, through the implementation of the leave-one-out cross-validation (LOOCV) 258 

method. Note that the time for this validation has been shifted backwards due to the 259 

characteristic lags for P and RH found in the correlation analysis, as introduced in Eq. (3). In 260 
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the LOOCV procedure, the infection index Ic for the day i (Ic,i) was excluded and the model 261 

was fitted using the remaining data. During this process, each of these training subsets 262 

provided an individual model, which was expected to be slightly different from the original 263 

one, and each model was used to predict the infection index Ic,[i] with the i-th case removed 264 

from the sample. The prediction error for each model was computed as e[i] = Ic,i - Ic,[i]; it is a 265 

measure of how close the prediction is to the observation when this observation is omitted. 266 

The absolute percentage error in each measurement was obtained scaling each prediction 267 

error against its corresponding observed value, that is APE[i] =100·| Ic,i - Ic,[i] |/ Ic,[i] .Then, the 268 

overall performance of the model was estimated using the mean of the absolute percentages 269 

calculated previously (MAPECV). The prediction error e[i] was also used to estimate the root 270 

mean square of that errors (MAPECV) when the predictions were obtained by cross-validation. 271 

Finally, other statistical parameters were determined from the linear regression fit of the 272 

observed values Ic,i to the cross-validated ones Ic,[i]. A significance test was implemented to 273 

evaluate the deviations of the slope and the y-intercept to the expected values, which are 1 = 274 

1 for the slope and 0 = 0 for the y-intercept, respectively. The linear fit allows to compute the 275 

R-squared of the cross-validation, q2
CV . The F-test of overall significance was performed to 276 

investigate whether the predictions obtained from the predictor variables, explain a 277 

significant part of the variance observed in the responses compared to data obtained from a 278 

model with no predictors.  279 

The statistical parameters obtained by the application of the LOOCV method were compared 280 

to the corresponding ones obtained from the data used to build the model. Table 1 281 

summarizes the expressions of the statistical parameters used for construction and validation 282 

of the model27.  283 
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Model building and External validation LOOCV (Internal validation) 

𝑀𝐴𝑃𝐸 = 1𝑛 ∑ 𝐴𝑃𝐸𝑖𝑛
𝑖=1 = 100𝑛 ∙ ∑ |𝐼𝑐,𝑖  − 𝐼𝑐,𝑝𝑟𝑒𝑑,𝑖|𝐼𝑐,𝑖

𝑛
𝑖=1  𝑀𝐴𝑃𝐸𝐶𝑉 = 1𝑛 ∑ 𝐴𝑃𝐸[𝑖]𝑛

𝑖=1 = 100𝑛 ∙ ∑ |𝐼𝑐,𝑖  − 𝐼𝑐,[𝑖]|𝐼𝑐,𝑖
𝑛

𝑖=1  

𝑅𝑀𝑆𝐸 = √∑ 𝑒𝑖2𝑛𝑖=1𝑛 = √∑ (𝐼𝑐,𝑖  −  𝐼𝑐,𝑝𝑟𝑒𝑑,𝑖)2  𝑛𝑖=1 𝑛  𝑅𝑀𝑆𝐸𝐶𝑉 = √∑ 𝑒[𝑖]2𝑛𝑖=1𝑛 = √∑ (𝐼𝑐,𝑖  − 𝐼𝑐,[𝑖])2  𝑛𝑖=1 𝑛  

𝑟2 = 1 − ∑ (𝐼𝑐,𝑖  − 𝐼𝑐,𝑝𝑟𝑒𝑑,𝑖)2  𝑛𝑖=1∑ (𝐼𝑐,𝑖 − 𝐼𝑐̅ )2𝑛𝑖=1  

𝑟𝑎𝑑𝑗2 = 1 − (1 − 𝑟2) 𝑛 − 1𝑛 − 𝑘 − 1 

𝑞𝐶𝑉2 = 1 − ∑ (𝐼𝑐,𝑖  −  𝐼𝑐,[𝑖])2  𝑛𝑖=1∑ (𝐼𝑐,𝑖 − 𝐼𝑐̅ )2𝑛𝑖=1  

Table 1. Summary of the expressions used to determine the statistic parameters (MAPE, RMSE and standard R-284 

squared r2 and its adjusted version r2
adj) in the internal and external model validations (left), and the internal 285 

cross-validation using the LOOCV method (right). 286 

Model validation during the forecast period 287 

The generalization of the final model was investigated using independent meteorological and 288 

health datasets for the period until February 2021. This forecast period, which includes the 289 

pandemic’s third wave in Catalonia, allows testing the predictive ability of the model in each 290 

of the BHAs. Mobility and social restrictions in Catalonia decreased at the end of November, 291 

2020, but the increase of positive cases led to new restrictions on mobility (including curfew 292 

at night) and restrictions in bars, cafes and restaurants. The number of positive cases was 293 

maximum around January 15, 2021, followed by a decrease in the number of infections, 294 

falling to the levels before the onset of the third wave in February. On the other hand, 295 

vaccination in Catalonia began on December 27, 2020. The percentage of people who had 296 

received their first vaccine was low (< 10 %) until February, and increased to about 30% by 297 

the end of April 2021. Despite this minor fraction of vaccinated population and the reset of 298 

some mobility limitations, we have used the data from November 19, 2020, to February 2, 299 

2021, to validate the final model for all eight BHAs. 300 

The validation for this forecast period was done using the same procedure as described for 301 

the internal validation. First, the values of the infection index Ic,i during this time period were 302 
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calculated from the health data time series. Second, the predicted values Ic,pred,i were 303 

estimated from the linear regression model. Third, the predicted and observed values were 304 

compared and the statistical significance of the linear fit, the slope and the intercept were 305 

assessed. Finally, the prediction errors for each value of Ic,i were computed as the differences 306 

between observed and predicted values, ei = Ic,i - Ic,pred,i, normalized by  each observation Ic,i 307 

in order to obtain the mean absolute percentage error of the external validation (MAPE). 308 

Additionally, the same statistical parameters estimated for the internal validation were 309 

calculated to assess the overall performance of the final model with this new dataset, 310 

including r2
ext, r2

ext,adj and RMSE (Table 1). 311 

Results 312 

Seasonality of COVID-19 in Catalonia 313 

The first and second COVID-19 outbreaks in Catalonia took place respectively in March-314 

April and October 2020. Both outbreaks have been assessed through the number of positive 315 

PCR cases, normalized in terms of population and area, and the contagious or infection index 316 

Ic (see Methods) (Fig. 2). Values of Ic higher than 1 indicate that the number of positive cases 317 

at any day are higher than the summation of all positive cases during the previous 10 days, 318 

characterizing situations of high transmissibility for small number of infections. Note that the 319 

range of normalized PCR cases varies substantially between locations, from maximum values 320 

in excess of 3.5 per 105 inhab km2 for the most populated values, decreasing to peak values 321 

about 0.05 cases per 105 inhab km2 in the least populated BHAs. However, the peak infection 322 

indexes ranged between about 1 and 6, with larger and more intermittent peaks in the least 323 

populated BHAs.  324 

The Spanish first state of alarm lasted between March 14 and June 21, 2020, with strict social 325 

interaction and mobility restrictions. After this last date and until the end of October, these 326 

measures were similar to the pre-pandemic period, leveraged by non-pharmaceutical 327 

interventions (NPI) like minor mobility restrictions and compulsory face mask. In the 328 

absence of lockdown, an increase of the SARS-CoV-2 transmissivity has been found to occur 329 

in areas of high-density population28, likely related with environmental factors19.  330 

During the first pandemic wave, the Barcelona (BCN-10A) reached the highest number of 331 

confirmed cases with 3.9 cases per 105 inhab km2 followed by Sant Vicenç dels Horts (SVH-332 

2) and Sant Just Desvern (SJD) with 3.7 and 1.9 cases per 105 inhab km2, respectively. These 333 
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maxima were reached before the Spanish government banned all non-essential activities on 334 

March 14. Following this first lockdown and coinciding with the lowest percentage of 335 

mobility registered during 202029, the number of confirmed cases sharply decreased in all 336 

BHAs. During the first half of April the number of positive cases descended progressively for 337 

Gava (GVA-2), Rubi (RUB-3), Terrassa (TRS-E) and Lleida (LLEI-2) (Fig. 2b,e,f,g), 338 

whereas for the remaining BHAs (with the highest density population) there were still several 339 

intermittent important peaks (e.g. BCN-10-A and SJD, Fig. 2a,c). In the second half of April 340 

the number of cases reduced drastically, flattening the curve for all BHAs and leading to a 341 

gradual leverage of social restrictions and an increase in mobility. In June 2020, when most 342 

of the mobility restrictions had stopped, the number of positive PCR remained low, not 343 

exceeding 0.5 cases per 105 inhab km2. The single exception was LLEI-2, which reached 1.5 344 

cases per 105 inhab km2 (Fig. 2g). In this particular case, the enhancement in virus 345 

transmission was associated with seasonal agricultural workers living in overcrowded 346 

conditions, which acted as reservoirs and further spreaders of the infection due to socio-347 

economic conditions30. 348 
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 349 

 350 

Figure 2. (a-h) Temporal evolution during 2020 of the number of COVID-19 cases in the eight selected Catalan 351 

BHAs, presented both in terms of the normalised number of cases N̂PCR,+ as determined through the PCR 352 

positive tests (red line) and the rate of infections Ic (blue line). In each panel, the grey shaded areas indicate the 353 

first and the second pandemic wave periods and the vertical dotted lines delineate the duration of the main social 354 

and mobility restrictions imposed in Catalonia due to the COVID-19 disease.  355 
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During this first wave the infection index Ic remained low, indicating that the government 356 

measures were effective to prevent contagion. In contrast, several high Ic peaks appeared 357 

intermittently during summer (Fig. 2) without any major response on the standardised PCR, 358 

with the exception of LLEI-2 (Fig. 2g). This suggests that there were irregular infection 359 

episodes taking place although the initial low numbers of infected people and the 360 

intermittency of these events did not allow the number of infected people to grow. It could be 361 

argued that the weather conditions were neither favourable to spread the infection but, 362 

because of the extremely high mobility during this period, this is very difficult to assess. 363 

During the second pandemic wave, the highly-populated Barcelona metropolitan area (SVH-364 

2 and BCN-10A) showed again the highest values, respectively with 1.7 and 2.7 cases per 105 365 

inhab km2, although these values were lower than during the first pandemic (Fig. 2a,d). In 366 

contrast, in the coastal town of Tarragona (TRG-2) values reached 0.07 per 105 inhab km2, 367 

higher than during the first wave (Fig. 2h). The normalized number of positive PCR cases 368 

behaved similarly in all BHAs, rising in the second half of September and peaking in late 369 

October. Throughout summer, the Ic index remained intermittent and relatively high in all 370 

BHAs except Terrassa (TRS-E) and Rubi (RUB-3). The mobility restrictions remained low 371 

until the end of October, therefore the increase in COVID-19 transmission may be associated 372 

with weather conditions31,19; indeed, during this time period, several cold fronts circulated 373 

from west to east in a row, a typical autumn scenario (see Figs. S1 and S2, Supplementary 374 

information). 375 

Correlation between weather variables and the infection index 376 

In order to explore the role of weather on the second COVID-19 wave in our study region, we 377 

analyse the time-lagged correlations between local infection indicators and weather data for 378 

each of the eight BHAs. We use nine daily-averaged atmospheric variables for each BHA, 379 

during the period from September 1 and November 15, 2020 (see Methods). The initial 380 

selection of humidity and temperature was based on previous research on Sars-Cov-2 and 381 

other respiratory viruses such as influenza, which explored the impact of seasonal variations 382 

of these variables on virus survival in the environment or on host susceptibility32,33,34. 383 

Additionally, we include solar radiation, precipitation, surface pressure, minimum and 384 

maximum temperature, daily thermal amplitude and mean temperature difference between 385 

consecutive days. 386 
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The evolution of the normalised number of cases and the infection index can be compared 387 

with changes in the atmospheric variables as it is shown in Fig. 3 for BCN-10A (see in Fig. 388 

S2, Supplementary information, for all BHAs). Oscillations in surface pressure, temperature, 389 

relative humidity and solar radiation are associated with the passage of cold fronts in this area 390 

(see, for example, the oscillation in September 7 to 10). The time series also reveals 391 

oscillations in the infection index, which apparently appear several days after the atmospheric 392 

changes. We hence explore the correlation of Ic with the entire selected set of atmospheric 393 

variables in order to determine their possible influence on the spread of the virus. 394 

 395 

Figure 3. Time series of daily values of atmospheric variables during the second outbreak (September 1 to 396 

November 15) together with the normalized number of cases (N̂PCR,+) and the infection index ( Ic) for BCN-397 

10A. The atmospheric daily variables are mean temperature (Tmean),  relative humidity (RH), solar 398 

radiation(Rad), precipitation (Prec), surface pressure (P), minimum and maximum temperature (Tmin,Tmax),daily 399 

thermal amplitude (DTA) as well as mean temperature difference between consecutive days (T) . The units for 400 

these variables are indicated in their corresponding axes. 401 

Our results show consistent significant negative correlation between surface pressure (P) and 402 

relative humidity (RH) and the lagged infection index Ic for all BHAs. A negative correlation 403 

indicates that a decrease in P and/or RH enhances the spread of the virus several days later. 404 
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For P -  Ic , the correlation is significant at   99% confidence level in all BHAs for specific 405 

time lags( ). The average cross-correlation coefficient for all BHAs is maximum (CCF  - 406 

0.5) at  = 7 days, although some areas have even higher coefficients at shorter lags (Fig. S3, 407 

Supplementary Information). On the other hand, the statistical significance of RH – Ic 408 

decreases below 99% in four of the BHAs (GVA-2, SJD, SVH-2 and TRS-E) but still 409 

remains significant at   95% confidence level.  In this case, the highest values for the 410 

correlation coefficients (CCF  - 0.35) are obtained for 𝜏 = 3 to 5 days. The other 411 

meteorological variables evaluated do not show consistent correlation scores (Fig. S3, 412 

Supplementary information). In particular, the variables derived from temperature and 413 

precipitation are, in general, poorly correlated with the infection index. Only two BHAs 414 

(LLEI-2 and TRG-2) have significant correlations at the longest lags,  = 10 days. The daily 415 

thermal amplitude is significant at   95% confidence level in five out of the eight BHAs, but 416 

the cross-correlation function for these BHAs has variable time lags. A similar situation 417 

appears in the case of the shortwave solar radiation (Fig. S3, Supplementary information). 418 

 419 

Figure 4. Composite box plots of the cross-correlation coefficients (CCF) of a) surface pressure and b) relative 420 

humidity with respect to Ic as a function of lag time, calculated using the eight reference BHAs. The lower and 421 

upper ends of the box represent the first and third quartiles, respectively, and the median (CCF*)is indicated by a 422 

blue star. The whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the box ends. 423 

Horizontal dashed lines indicate the statistical significance of the coefficients at 95% (red line) and 99% (blue 424 

line) confidence levels. 425 

We may use all eight BHAs to produce a composite box-plot of CCF as a function of time 426 

lag, for either P and RH with respect to Ic  (Fig. 4). For each lag, we select the median of the 427 

CCF box plots (hereinafter CCF *) as the representative value of the set. For both variables, 428 

CCF * shows a well-defined valley where the negative correlation is highest (Fig. 4). Surface 429 
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pressure has the largest absolute correlation at P,min = - 7 days and the relative humidity has 430 

minima at both  RH,min = - 3 days and - 5 days. For both variables, the min values occur at 431 

CCF * significant confidence levels. For surface pressure, CCF * is actually significant at 99% 432 

confidence level for P  [-8, -4]; in particular, the smallest interquartile ranges (IRQ) for the 433 

CCF distributions are in this lag interval (IRQ  0.1), indicative of a minimum dispersion of 434 

the CCF values among the different BHA (see Fig. 4a). The smallest dispersion is found at 435 

P,min   = - 7 days, with IRQ (P,min)   0.05. We conclude that most of the inspected BHAs 436 

show the highest correlations between 𝐼𝑐  and 𝑃 at  P,min = - 7 days. In the case of the relative 437 

humidity, we observe a similar behaviour, but in a range of RH  [-6, -2], although the 438 

confidence level decreases to 95% (Fig. 4b). In this interval, the interquartile range (IQR) for 439 

the CCF coefficients is about 0.2, and the smallest value takes place at RH    - 3 days, with 440 

IRQ (RH,min)  0.1.  These results indicate that the infection index is negatively correlated 441 

with the surface pressure conditions 7 days before and with the relative humidity conditions 3 442 

days before. We conclude that a decrease (increase) in P or RH leads to an increase 443 

(decrease) in Ic and vice versa some 7 and 3 days later, respectively. These values for the time 444 

lags are chosen as the characteristic lags (*) for the surface pressure and the relative 445 

humidity in the study area. 446 

Surface pressure and relative humidity as predictors of COVID-19 variability 447 

The cross-correlation analysis indicates that surface pressure and relative humidity are the 448 

only variables that bear statistical significant correlation with Ic (> 95 % confidence level) in 449 

all BHAs. Hence, we identify them as potential predictors for the time evolution of COVID-450 

19 in Catalonia (Spain), with one single time lag for each predictor over the entire region. 451 

However, the infection index differs substantially between the different BHAs, likely 452 

reflecting specific demographic and geographic characteristics (Fig. 1). Hence, we propose a 453 

multiple linear regression model of the infection index in terms of these two variables, with 454 

the same time lags for all BHAs but allowing for changes in the coefficients as follows (Eq. 3 455 

in Methods): 456 𝐼𝑐,𝑝𝑟𝑒𝑑(𝑡; 𝑃, 𝑅𝐻) = 𝑐0 + 𝑐1 ∙ 𝑃(𝑡 + 𝜏𝑃∗ ) + 𝑐2 ∙ 𝑅𝐻(𝑡 + 𝜏𝑅𝐻∗ )           (8) 457 

where ci  [1,3]  are the model regression coefficients for each BHA, the predictor 1 is the 458 

surface pressure P (measured in hPa) and the predictor 2 is relative humidity RH (measured 459 

as a percentage of absolute humidity relative to the maximum saturation value for that 460 



19 
 

temperature). The temporal variable (t ≥ 0) is the day counter for the selected time period and 461 

*
j is the characteristic for the j predictor. The time-lags between the weather and health 462 

variables cause that the atmospheric time series start and end later than the health time series. 463 

The setup and application of the climate-dependent COVID-19 model is explained in detail in 464 

Methods. Briefly, the model is first developed using the P, RH and Ic time series during the 465 

second outbreak (September 1 to November 15, 2020, for the atmospheric variables and time 466 

lagged for the health variables, the setup period). This includes obtaining common time lags 467 

for all BHAs and individual regression coefficients for each BHA. The model is then used to 468 

forecast Ic (Ic,pred) for an independent dataset (November 19, 2020, to February 2, 2021, the 469 

forecast period). The validations for both the setup and forecast periods are conducted 470 

through the leave-one-out cross-validation (LOOCV) method (see External validation of the 471 

model, Supplementary information). Note that after February 2021, over 10% of the Catalan 472 

population had already received their first vaccine (Chaudhuri et al., 2022)35, likely 473 

undermining the use of more recent data for external validation. The results and statistics of 474 

the model validation are extensively explained in different sections of the Supplementary 475 

document. 476 

Fitting the model Ic predictions to the observations for the setup period (see Model 477 

parameters and statistics, Supplementary information) shows that the two predictors, P and 478 

RH, have a significant contribution to the model (> 90% confidence level) in four of the eight 479 

BHA (BCN-10A, SJD, RUB-3 and LLEI-2). For the other four stations, it turns that one 480 

single predictor, P or RH, is enough to characterize the evolution of Ic. Specifically, the 481 

model does not significantly improve by adding P in TRG-2 or by adding RH in GVA-2, 482 

SVH-2 or TRS-E. The regression coefficients, c1 and c2, are significant at 95% confidence 483 

level in all BHAs and their values vary between [-10, -3] × 10-3   hPa-1  (mean(c1) = -5.90×10-484 
3 hPa-1; std(c1) = 1.90×10-3 hPa-1) and [-4, -1] × 10-3 (mean(c2) = -1.91×10-3 ; std(c2) 485 

=1.12·×10-3). The negative regression coefficients indicate that a decrease (increase) in the 486 

infection index occurs when P and RH increases (decreases) several days before, confirming 487 

the results of the correlation analysis (Fig. 4a,b).  488 

During the pandemic’s second outbreak or setup period, as expected, the model captures well 489 

the general behaviour of Ic. This is confirmed by the significant correlation coefficients (r) 490 

obtained between the Ic,pred and Ic. In particular, RUB-3, TRS-E or BCN-10A exhibit the 491 

highest correlations, with r = 0.67, 0.54 and 0.56, respectively; SVH-2 and LLEI-2 show 492 

correlations higher than 0.5, and the remaining three BHAs show lower yet statistically 493 
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significant correlations (0.3 < r  < 0.5; p-val < 0.01). We conclude that our simple climate-494 

dependent model reproduces the main changes anomalies in the infection index during the 495 

second COVID-19 outbreak in Catalonia (fall 2020).   496 

Forecasting the infection index during the third wave 497 

The pandemic third outbreak started with an increase of the infection rate in early December 498 

2020 but declined to the pre-outbreak levels in January 2021 (Fig. 5). The mobility and social 499 

measures progressively relaxed between late October 2020 and early May 2021, when the 500 

state-of-alarm was revoked; during this period, however, social interactions increased 501 

substantially during the festivities in late December and early January. During this third 502 

wave, the infection rate followed specific features depending on the analysed BHAs. For 503 

example, in BCN-10A, GVA-2 and LLEI-2, there is a clear peak in mid-December followed 504 

by two secondary peaks in late December and early January (Figs. 5a,b,g). However, this is 505 

not the case for SJD, that had peaks of comparable amplitude (Fig.5c), or for TRS-E, where 506 

the situation was reverted and the two secondary peaks took place in December and the main 507 

peak during the New Year’s Eve (Fig. 5f). 508 

We apply our climate-dependent multiple-regression model to the forecast period (November 509 

19, 2020, to February 2, 2021), in order to forecast the infection index for each health area 510 

(Ic,pred) during the pandemic’s third outbreak (Fig. 5). Despite differences in amplitude, most 511 

BHAs illustrate three peaks in Ic during mid- and end-December 2020 and in January 2021 512 

(Fig.5). Outstandingly, the predictions reproduce the basic features in the observed index (Ic) 513 

for most BHAs. The model reproduces quite well the increase of infection index Ic during 514 

mid-December and January in the LLEI-2 (r = 0.33), SJD (r = 0.42), GVA-2 (r = 0.40) and 515 

BCN-10A (r = 0.33). Notice that for GVA-2 and BCN-10A the model simulates the 516 

enhancement of infection rate 5-7 days earlier than in the observations (Fig.5a,b). However, 517 

the model generally fails to reproduce the third peak of Ic at the end of December. For the 518 

remaining BHAs (TRG-2, TRS-E and RUB-3), the correlation remains significant (0.40 to 519 

0.47) when only the second half of the period (December 25 to January 20) is considered 520 

(Fig. 5e,f,h). However, the model fails completely to forecast Ic in SVH-2 for the entire 521 

period, showing even an out-of-phase behaviour between the observed and predicted values 522 

(Fig. 5d).  523 

The relative success of the climate model is remarkable if we consider that the entire forecast 524 

period was very anomalous in terms of limited mobility and social interaction, with 525 
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restrictions until early May but with temporary relaxation during the holiday season. Finally, 526 

it is important to note that when the normalized number of cases is low then the observed and 527 

predicted infection indexes show no significant correlation (p-val > 0.01), as it happens in 528 

several BHAs between November 19 and the end of the year (Fig S7, Supplementary 529 

information). 530 

Discussion 531 

We have explored the effects of weather conditions on the propagation of the coronavirus 532 

SARS-CoV-2 in eight highly-populated basic health areas (BHAs) of Catalonia, in the north-533 

western Mediterranean area, between March 2020 and February 2021. For this purpose, we 534 

have proposed, developed and validated a predictive model that assesses the impact of 535 

weather on the COVID-19 infection rate. The transmission of the virus has been monitored 536 

using a simple parameter, the daily infection index Ic, which is defined as the ratio between 537 

the people infected with the virus at any day and the potential infectious population at that 538 

same day (people infected with the virus during the 10 previous days). Nine weather 539 

variables (mean temperature, relative humidity, solar radiation, surface pressure, daily 540 

thermal amplitude, minimum and maximum temperature, precipitation and mean temperature 541 

difference between two consecutive days) have been explored as the potential environmental 542 

drivers of the virus expansion.  543 

A cross-correlation analysis between each weather variable and the Ic index was done from 544 

September 1 to November 15, 2020, a period of low mobility and social restrictions. The 545 

results of this cross-correlation analysis show significant correlations for  surface pressure (P) 546 

and relative humidity (RH), at confidence levels respectively above 99% and 95%, in all 547 

BHAs; in contrast, all other climatic variables are either poorly correlated with Ic or exhibit 548 

non-coherent correlations. From our knowledge, this is the first time that surface pressure is 549 

proposed as a key factor for virus transmissivity. A predictive model for Ic solely based on P 550 

and RH provides consistent and significant results. The cross-correlation analysis indicates 551 

that the highest correlations occur when Ic lags P and RH by 7 days and 3 days, respectively.  552 
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 553 

Figure 5. Results for the eight BHAs (panels a) through h) ) showing the temporal evolution of the observed 554 

infection Ic index (red lines) and the corresponding predicted Ic,pred values (light lines) as obtained from the 555 

climate model between September 1, 2020, and February 2, 2021. The vertical dashed line on November 18, 556 

2020, delineates the setup and forecast periods. The grey shaded areas indicate selected portions of the forecast 557 

interval with the highest correlation coefficient between the two series. The correlation coefficients for each 558 

time interval are displayed in the upper part of each panel. The symbol ‘+’ indicates time intervals when the two 559 

series are not statistically significant at a minimum 90% confidence level; in several cases it corresponds to time 560 

periods of low normalized number of cases (see Fig. S7, Supplementary information).  The arrows indicate the 561 

main and the secondary observed (red) and predicted (light orange) Ic peaks during the forecast periods. 562 
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We find that during the model setup period, when there were no mobility and social 563 

restrictions and there was not yet a vaccine available, surface pressure P and relative 564 

humidity RH work well as COVID-19 predictors. A multiple-regression model that uses only 565 

five parameters, with time lags obtained from the composite analysis of all eight BHAs, has 566 

predictive capacity with a confidence degree above 95%. In particular, the model regression 567 

coefficients are negative for all health areas, indicating that a decrease of P and RH causes an 568 

increase of the Ic index after several days. The linearity of the model implies that the highest 569 

values of Ic are found between 3 and 7 days after P and RH reach their minima. 570 

The climate-dependent model works reasonably well when applied to the posterior predictive 571 

period, with a predictive skill significant at a 90% level in four out of the eight BHAs (BCN-572 

10A, GVA-2, SJD and LLEI-2), and remaining significant during shorter periods for three of 573 

the other areas (RUB-3, TRS-E and TRG-2; correlation scores between 0.33 and 0.47). This 574 

means that 14% to 45% of the variability of the infection index Ic can be explained by the 575 

weather conditions in the selected eight BHAs of Catalonia during the setup period 576 

(September 1 to November 15), and that 11% to 22% of the infection rate is attributed to the 577 

weather component during the predictive period. The reduction in this latter period is likely 578 

associated to the changing social interaction and mobility measures, much greater than during 579 

the setup period.  580 

The proposed mechanisms for weather-mediated changes in respiratory disease include the 581 

effects of weather on virus survival in surfaces and outdoors, changes in the susceptibility to 582 

the disease, and also variations in human social behaviour. To our knowledge, surface 583 

pressure has not been previously described as a driver of SARS-CoV-2 transmission. The 584 

predictor capacity of surface level pressure on the virus expansion may possibly arise from 585 

both direct and indirect causes. A pressure change is the main indicator for the passage of 586 

low- and high-pressure frontal systems that bring substantial changes in weather, such as 587 

temperature, precipitation or wind velocity. Further, rapid changes in weather conditions may 588 

affect the susceptibility to airborne virus infection with disruption of local mucosal immunity. 589 

An indirect effect may be the weather-related changes in human behaviour. The most evident 590 

is to seek indoor spaces and for much longer time periods under bad weather conditions, 591 

which are in turn more suitable conditions of infection spreading, through increased 592 

persistence of the virus in the air and surfaces36, and enhanced close contacts37. Accordingly, 593 

a scientific report lead by WHO-China commission concluded that 78-85% of transmissions 594 

occurred within household settings during the first wave, suggesting that transmission occurs 595 
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during close and prolonged contact2. Moreover, in enclosed spaces with inadequate 596 

ventilation, small infected droplets and particles can remain suspended for minutes to 597 

hours38,39.  598 

The 7-days lag between a decrease in surface pressure and the onset of a peak of infection 599 

agrees with the incubation period of the SARS-CoV-2 variants circulating during the study 600 

period (mean of 5.7 days and a range between 2-14 days40. The 3-days lag for relative 601 

humidity is more difficult to justify, even if it still lays between the estimated incubation 602 

period bounds. The linear model predicts that dry conditions will favour the propagation of 603 

the virus (an increase in Ic) about 3 days later and wet conditions will tend to inhibit it. Low 604 

humidity has been considered as a key weather factor associated with the transmission and 605 

stability of respiratory viruses such as influenza. This effect has been related to susceptibility 606 

and severity of influenza infection through disruption of local mucosal immunity of the 607 

respiratory tract41,32,12,42, and recent studies support an inverse relation between humidity and 608 

the spreading of SARS-CoV-2, consistent with our findings43,44. However, a recent study45 609 

found that coronavirus have a different pattern of weather susceptibility as compared with the 610 

influenza virus, with an increase of transmission (above 80%) in England and Wales (UK) 611 

during periods of high relative humidity, becoming a better predictor than specific or absolute 612 

humidity. The positive effect of relative humidity towards SARS-CoV-2 infectiousness has 613 

also been found in other studies46,47,15,16,17,48. 614 

The disparity of findings related to humidity suggests that there may be geographically-615 

dependent factors41 that possibly constrain the humidity conditions and the virus response. 616 

Our results show that surface pressure is the most influential weather variable, and indeed 617 

this is probably the main atmospheric indicator for the arrival of frontal systems. Depending 618 

on latitude and location – e.g. west versus east coasts of continents – these systems will 619 

typically arrive from different directions and crossing either land (dry) or sea (wet) regions, 620 

hence driving a decrease or an increase in humidity. This idea fits with our finding that 621 

surface pressure is the main weather driver while relative humidity has a more secondary 622 

role. Something similar could be happening with other possibly secondary variables such as 623 

sunlight radiation, which has been related to susceptibility to SARS-CoV-2 and other 624 

airborne viruses49. 625 

Our results do show that there is a significant role of weather in epidemic outbreaks, although 626 

the lack of immunity (high susceptibility) of a population remains as the main driver50. The 627 

inability of current vaccines and previous infections to fully prevent the infection of new 628 
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SARS-CoV-2 variant and the definitive leverage of social restrictions, increase the interest on 629 

weather conditions. Under this post-pandemic induction phase context, weather conditions 630 

may substantially influence the onset and extend of new waves and outbreaks (as observed in 631 

other respiratory viruses), and even lead to the establishment of seasonal patterns of SARS-632 

CoV-2 infection in the near future. Our results have identified relative humidity and, 633 

particularly, surface pressure as useful predictors to be included in more complex 634 

epidemiological models of the spread of COVID-19 and other respiratory viruses.  635 

 636 

Data availability 637 

The data analyzed during the current study is available in the Catalan Transparency Portal 638 

databases for each data set: automatic weather stations (XEMA) from the Meteorological 639 

Service of Catalonia, https://analisi.transparenciacatalunya.cat/Medi-Ambient/Dades-640 

meteorol-giques-de-la-XEMA/nzvn-apee, and open database of COVID19 record from the 641 

Health Department of Catalonia, https://analisi.transparenciacatalunya.cat/Salut/Registre-de-642 

casos-de-COVID-19-a-Catalunya-per-rea-/xuwf-dxjd. The datasets are also available from 643 

the corresponding authors on reasonable request. 644 

 645 

Authors contribution 646 

J.P.M. wrote the main manuscript text and performed the statistical analysis and the model 647 

experiments. I.V.C. analysed the health and meteorological data and wrote the main 648 

manuscript text. J.L.P. contributed to the conception or design of the work and revised the 649 

main manuscript. M.M.R. made substantial contributions to the conception of the work. 650 

A.O.A. analysed the meteorological data and critically revised the manuscript. X. V. made 651 

substantial contributions to the conception of the work and critically revised the manuscript. 652 

J.R. provided the health data. C.R.G.L. and O.E. critically revised the manuscript. 653 

 654 

Competing interests 655 

The authors declare no competing interests or other interests that might be perceived to 656 

influence the results and/or discussion reported in this paper. 657 

 658 

 659 

https://analisi.transparenciacatalunya.cat/Medi-Ambient/Dades-meteorol-giques-de-la-XEMA/nzvn-apee
https://analisi.transparenciacatalunya.cat/Medi-Ambient/Dades-meteorol-giques-de-la-XEMA/nzvn-apee
https://analisi.transparenciacatalunya.cat/Salut/Registre-de-casos-de-COVID-19-a-Catalunya-per-rea-/xuwf-dxjd
https://analisi.transparenciacatalunya.cat/Salut/Registre-de-casos-de-COVID-19-a-Catalunya-per-rea-/xuwf-dxjd


26 
 

References 660 
 661 

1. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. 662 
Engl. J. Med. 382, 727–733 (2020) 663 

 664 
2. Gomes, C. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 665 

(COVID-19). Braz. J. Implantol Health Sci. 2,12 (2020) 666 
 667 

3. World Health Organitzation World Health Organization (WHO). COVID-19 weekly 668 
epidemiological update https://www.who.int/publications/m/item/weekly-669 
epidemiological-update-on-covid-19---3-august-2022 (2020) 670 
 671 

4. Kirtipal N., Bharadwaj S. & Kang S. G. From SARS to SARS-CoV-2, insights on 672 
structure, pathogenicity and immunity aspects of pandemic human coronaviruses. 673 
Infect. Genet. Evol. https://doi.org/10.1016/j.meegid.2020.104502 (2020) 674 
 675 

5. Tegally, H. et al.  Detection of a SARS-CoV-2 variant of concern in South 676 
Africa. Nature 592, 438–443 (2021) 677 
 678 

6. Hadj Hassine, I. Covid‐19 vaccines and variants of concern: A review. Reviews in 679 
medical virology, 32(4), e2313 (2022) 680 
 681 

7. Sciscent, B. Y., Eisele, C. D., Ho, L., King, S. D., Jain, R. & Golamari, R. R. COVID-682 
19 reinfection: the role of natural immunity, vaccines, and variants. J Community 683 
Hosp Intern Med Perspect, 11(6), 733-739 (2021) 684 
 685 

8. López-Muñoz, I. et al. Secondary Attack Rate of SARS-CoV-2 in vaccinated and 686 
unvaccinated household contacts during viral replacement from Delta to Omicron 687 
variant in Spain. 2022. Emerg. Infect. Dis. 28(10):1999-2008 (2022) 688 
 689 

9. Callaway, E. Beyond Omicron: what’s next for COVID’s viral evolution. Nature, 690 
600(7888), 204-207 (2021). 691 
 692 

10. Fontanet, A., Autran, B., Lina, B., Kieny, M. P., Karim, S. S. A., & Sridhar, D. 693 
SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet, 397(10278), 694 
952-954 (2021) 695 
 696 

11. Lowen, A. C., Mubareka, S., Steel, J., & Palese, P. Influenza virus transmission is 697 
dependent on relative humidity and temperature. PLoS pathogens, 3(10), e151 (2007) 698 
 699 
 700 

12. Marr L. C., Tang J. W., Van Mullekom J. & Lakdawala S. S. Mechanistic insights 701 
into the effect of humidity on airborne influenza virus survival, transmission and 702 
incidence. J. R. Soc. Interface 16:20180298 (2019) 703 
 704 

13. Lowen, A. C., & Steel, J. Roles of humidity and temperature in shaping influenza 705 
seasonality. Journal of virology, 88(14), 7692-7695. (2014) 706 
 707 

14. Sil, A. & Kumar, V. N. Does weather affect the growth rate of COVID-19, a study to 708 
comprehend transmission dynamics on human health. J. Saf. Sci. Resil. 1, 3–11 709 
(2020). 710 

https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---3-august-2022
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---3-august-2022
https://doi.org/10.1016/j.meegid.2020.104502


27 
 

 711 
15. Sarkodie, S. A. & Owusu, P. A. Impact of meteorological factors on COVID-19 712 

pandemic: Evidence from top 20 countries with confirmed cases. Environ. Res. 191, 713 
110101 (2020) 714 
 715 

16. Ahlawat, A., Wiedensohler, A. & Mishra, S. K. An overview on the role of relative 716 
humidity in airborne transmission of SARS-CoV-2 in indoor environments. Aerosol 717 
Air Qual. Res. 20, 1856–1861 (2020). 718 
 719 

17. Islam, A. R. T. et al. Effect of meteorological factors on COVID-19 cases in 720 
Bangladesh. Environ. Dev. Sustain., 1–24 (2020). 721 
 722 

18. Rostami, A. et al. SARS-CoV-2 seroprevalence worldwide: a systematic review and 723 
meta-analysis. Clinical Microbiology and Infection, 27(3), 331-340 (2021). 724 

 725 
19. Smith, T. P. et al. Temperature and population density influence SARS-CoV-2 726 

transmission in the absence of nonpharmaceutical interventions. PNAS, 118(25), 727 
e2019284118 (2021) 728 
 729 

20. Briz-Redón, Á., & Serrano-Aroca, Á. A spatio-temporal analysis for exploring the 730 
effect of temperature on COVID-19 early evolution in Spain. Science of the total 731 
environment, 728, 138811; https://doi.org/10.1016/j.scitotenv.2020.138811 (2020) 732 
 733 

21. Gutiérrez-Hernández, O., & García, L. V. (2020). ¿Influyen tiempo y clima en la 734 
distribución del nuevo coronavirus (SARS CoV-2)? Una revisión desde una 735 
perspectiva biogeográfica. Investigaciones Geográficas, (73), 31-55 (2020) 736 
 737 

22. European Centre for Disease Prevention and Control. Guidance for discharge and 738 
ending isolation of people with COVID-19, 739 
https://www.ecdc.europa.eu/en/publications-data/covid-19-guidance-discharge-and-740 
ending-isolation (2020) 741 

 742 
23. Martín-Vide, J. El Clima. Geografia General dels Països Catalans (ed. Enciclopèdia 743 

Catalana, Barcelona, 1992)  744 
 745 

24. Johnston R, Jones K & Manley D. Confounding and collinearity in regression 746 
analysis: a cautionary tale and an alternative procedure, illustrated by studies of 747 
British voting behaviour. Qual Quant. 52(4), 1957-1976 (2018) 748 
 749 

25. Massey F. J. Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 750 
46, 68–78 (1951) 751 
 752 

26. White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct 753 
Test for Heteroskedasticity. Econometrica. 48 (4): 817–838 (1980) 754 
 755 

27. Ji, Z. G. Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. John 756 
1038 Wiley & Sons (2017)      757 
 758 

28. Martins-Filho, P. R. Relationship between population density and COVID-19 759 
incidence and mortality estimates: A county-level analysis. Journal of infection and 760 
public health, 14(8), 1087 (2021) 761 

https://doi.org/10.1016/j.scitotenv.2020.138811
https://www.ecdc.europa.eu/en/publications-data/covid-19-guidance-discharge-and-ending-isolation
https://www.ecdc.europa.eu/en/publications-data/covid-19-guidance-discharge-and-ending-isolation


28 
 

 762 
29. Henriquez, J., Gonzalo-Almorox, E., Garcia-Goñi, M., and Paolucci, F. The first 763 

months of the COVID-19 pandemic in Spain. Health Policy and Technology, 9(4), 764 
560-574 (2020) 765 
 766 

30. Güell, B. & Garcés-Mascareñas, B. Agricultural seasonal workers in times of Covid-767 
19 in Spain. Advancing Alternative Migration Governance (2020) 768 
 769 

31. Liu, X., Huang, J., Li, C., Zhao, Y., Wang, D., Huang, Z., and Yang, K. The role of 770 
seasonality in the spread of COVID-19 pandemic. Environmental research, 195, 771 
110874 (2021) 772 
 773 

32. Kudo, E., Song, E., Yockey, L. J., Rakib, T., Wong, P. W., Homer, R. J., & Iwasaki, 774 
A. Low ambient humidity impairs barrier function and innate resistance against 775 
influenza infection. PNAS, 116(22), 10905-10910 (2019) 776 
 777 

33. Mu, Y. et al. Transmission of SARS-CoV-2 virus and ambient temperature: a critical 778 
review. Environ Sci Pollut Res 28, 37051–37059 (2021) 779 

 780 
34. Wu, Y. et al. Effects of temperature and humidity on the daily new cases and new 781 

deaths of COVID-19 in 166 countries. Sci Total Environ. 729, 139051 (2020) 782 
 783 

35. Chaudhuri, S., Giménez-Adsuar, G., Saez, M., & Barceló, M. A. PandemonCAT: 784 
Monitoring the COVID-19 Pandemic in Catalonia, Spain. International Journal of 785 
Environmental Research and Public Health, 19(8), 4783 (2022) 786 
 787 

36. Dinoi A. et al. A review on measurements of SARS-CoV-2 genetic material in air in 788 
outdoor and indoor environments: Implication for airborne transmission. Sci Total 789 
Environ.  https://doi.org/10.1016/j.scitotenv.2021.151137 (2022) 790 

 791 
37. Akaishi T. et al. COVID-19 transmission in group living environments and 792 

households. Sci Rep. 11(1), 11616 (2021) 793 
 794 

38. CDC Scientific Brief: SARS-CoV-2 and Potential Airborne 795 
Transmission. https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-796 
cov-2.html (2020) 797 
 798 

39. Chen, B., Jia, P. & Han, J. Role of indoor aerosols for COVID-19 viral transmission: 799 
a review. Environ Chem Lett 19, 1953–1970 (2021) 800 
 801 

40. Salzberger B. et al. Epidemiology of SARS-CoV-2. Infection. 49(2), 233-239 (2021) 802 
 803 
41. Moriyama, M., Hugentobler, W. J., Iwasaki, A. Seasonality of Respiratory Viral 804 

Infections. Annual Review of Virology, 7(1), annurev-virology-012420-022445 805 
(2020) 806 
 807 

42. Yang, W., Elankumaran, S. & Marr L. C. Relationship between Humidity and 808 
Influenza A Viability in Droplets and Implications for Influenza’s Seasonality. PLoS 809 
ONE 7(10): e46789 (2012) 810 
 811 

https://doi.org/10.1016/j.scitotenv.2021.151137
https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html
https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-sars-cov-2.html


29 
 

43. Xie, J. & Zhu, Y. Association between ambient temperature and COVID-19 infection 812 
in 122 cities from China. Sci. Total Environ. 724, 138201 (2020). 813 

 814 
44. Pan, J. et al. Warmer weather unlikely to reduce the COVID-19 transmission: an 815 

ecological study in 202 locations in 8 countries. Sci. Total Environ. 753, 142272 816 
(2020). 817 

 818 
45. Nichols GL, Gillingham EL, Macintyre HL, Vardoulakis S, Hajat S, Sarran CE, 819 

Amankwaah D, Phalkey R. Coronavirus seasonality, respiratory infections and 820 
weather. BMC Infect Dis. 21(1), 1101; https://doi.org/10.1186/s12879-021-06785-2 821 
(2021) 822 

 823 
46. Zheng, H. L., Guo, Z. L., Wang, M. L., Yang, C., An, S.Y. & Wu, W. Effects of 824 

climate variables on the transmission of COVID-19: a systematic review of 62 825 
ecological studies. Environ Sci Pollut Res Int. 28(39), 54299-54316 (2021) 826 

 827 
47. Sil, A. & Kumar, V. N. Does weather affect the growth rate of COVID-19, a study to 828 

comprehend transmission dynamics on human health. J. Saf. Sci. Resil. 1, 3–11 829 
(2020). 830 

 831 
48. Ward, M. P., Xiao, S., & Zhang, Z. The role of climate during the COVID‐19 832 

epidemic in New South Wales, Australia. Transboundary and Emerging Diseases, 833 
67(6), 2313-2317 (2020) 834 
 835 

49. Tang, L., Liu, M., Ren, B., Wu, Z., Yu, X., Peng, C. & Tian, J. Sunlight ultraviolet 836 
radiation dose is negatively correlated with the percent positive of SARS-CoV-2 and 837 
four other common human coronaviruses in the U.S. Sci Total Environ. 751:141816 838 
(2021) 839 
 840 

50. Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E. & Grenfell, B.T. Susceptible 841 
supply limits the role of climate in the early SARS-CoV-2 pandemic. Science. 842 
369(6501), 315-319 (2020) 843 

 844 

https://doi.org/10.1186/s12879-021-06785-2


Figures

Figure 1

(a) Basic health areas (BHAs, delimited in white) and automatic weather stations (orange dots) in
Catalonia. Those BHA selected for this study, with a population density d ³ 500 inhab km2, are drawn in
red.      (b) Bioclimates in Catalonia according to the climatic conditions: Mediterranean coastal,



Mediterranean pre-coastal, Mediterranean continental, Mediterranean pre-Pyrenean, Mediterranean
Pyrenean and Oceanic23 published on the Meteorological Service of Catalonia (MSC).

Figure 2

(a-h) Temporal evolution during 2020 of the number of COVID-19 cases in the eight selected Catalan
BHAs, presented both in terms of the normalised number of cases  as determined through the PCR



positive tests (red line) and the rate of infections Ic (blue line). In each panel, the grey shaded areas
indicate the �rst and the second pandemic wave periods and the vertical dotted lines delineate the
duration of the main social and mobility restrictions imposed in Catalonia due to the COVID-19 disease.

Figure 3

Time series of daily values of atmospheric variables during the second outbreak (September 1 to
November 15) together with the normalized number of cases () and the infection index ( Ic) for BCN-10A.
The atmospheric daily variables are mean temperature (Tmean),  relative humidity (RH), solar
radiation(Rad), precipitation (Prec), surface pressure (P), minimum and maximum temperature
(Tmin,Tmax),daily thermal amplitude (DTA) as well as mean temperature difference between consecutive
days (DT) . The units for these variables are indicated in their corresponding axes.



Figure 4

Composite box plots of the cross-correlation coe�cients (CCF) of a) surface pressure and b) relative
humidity with respect to Ic as a function of lag time, calculated using the eight reference BHAs. The lower

and upper ends of the box represent the �rst and third quartiles, respectively, and the median (CCF*)is
indicated by a blue star. The whiskers extend to the most extreme value within 1.5 IQR (interquartile
range) from the box ends. Horizontal dashed lines indicate the statistical signi�cance of the coe�cients
at 95% (red line) and 99% (blue line) con�dence levels.



Figure 5

Results for the eight BHAs (panels a) through h) ) showing the temporal evolution of the observed
infection Ic index (red lines) and the corresponding predicted Ic,pred values (light lines) as obtained from
the climate model between September 1, 2020, and February 2, 2021. The vertical dashed line on
November 18, 2020, delineates the setup and forecast periods. The grey shaded areas indicate selected
portions of the forecast interval with the highest correlation coe�cient between the two series. The
correlation coe�cients for each time interval are displayed in the upper part of each panel. The symbol ‘+’
indicates time intervals when the two series are not statistically signi�cant at a minimum 90% con�dence
level; in several cases it corresponds to time periods of low normalized number of cases (see Fig. S7,



Supplementary information).  The arrows indicate the main and the secondary observed (red) and
predicted (light orange) Ic peaks during the forecast periods.
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