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a b s t r a c t

Computing Occupancy grids with LiDAR data, is a popular strategy for environment representation.
In the last two decades, several authors have proposed different methods to render the sensed
information into the grids, seeking to obtain computational efficiency or accurate environment
modeling. However, no comparison regarding their performance under object detection in autonomous
driving applications has been found in the literature. As a result, this work compares six representative
LiDAR scan rendering strategies in a quantitative manner. To that end, a novel quantitative evaluation
framework for occupancy grids is proposed. It addresses the two main steps of object detection:
object segmentation and features estimation, proposing a meaningful procedure, repeatable with other
OG approaches. The code of this evaluation framework is available in https://git-autopia.car.upm-
csic.es/open_source/occupancy_grid_object_detection_evaluation.git.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Occupancy grid (OG) is a widely explored technique in mobile
obotics. Under this framework, the estimated environment is di-
ided into multiple grid cells that represent a portion of the space
nd contain an occupancy value representing the probability of
eing occupied by an obstacle. OGs provide different advantages:
i) data fusion of several sensors can be easily accomplished at a
ell level, (ii) arbitrary-shape objects can be correctly represented
nd (iii) the occupancy state reflects not only the probability of
eing occupied but also of being free or unknown. In autonomous
riving applications it is commonly computed aiming to obtain a
ow level representation of the environment from which other
asks can be launched, e.g. object detection and tracking, drivable
pace estimation, simultaneous localization and mapping (SLAM),
tc.
This work focuses on LiDAR scan rendering into Cartesian oc-

upancy grids and evaluates the results from an object detection
erspective in the field of autonomous driving. Some examples of
G based approaches fulfilling these conditions are [1–5].
In the literature, the two most popular strategies to accom-

lish scan rendering are line-drawing [6–9] and polar grid based
10–13] algorithms.

Nevertheless, different authors have proposed the application
f other methods or variations looking for less computational
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cost or a more precise representation of the information. To
the authors’ knowledge, there is no work in the state of the
art comparing the results of these strategies using Autonomous
Driving Applications criteria.

The performance of scan methods and OGs is commonly evalu-
ated by visual inspection and based on theoretical advantages. But
this type of evaluation is not acceptable for a reliable comparison.
Moreover, works that evaluate the OG using quantitative results
tend to strongly rely on highly controlled or simulated scenarios
to obtain ground truth reference maps. Alternatively, other works
focus in non-general posterior algorithms, such as path planning
or environment mapping, from which measurable results can be
obtained and, thus, infer the quality of the OG.

For these reasons, the main contributions of this article are:

• A comparison of six methods to render LiDAR data into OGs.
• A new evaluation method for OGs from an object detection

autonomous driving perspective.

The remainder of this article is structured as follows. Section 2
presents the state of the art related with OGs scan rendering algo-
rithms and OGs evaluation methods. In Section 3 the proposed OG
evaluation method is explained. Section 4 introduces the six scan
rendering methods evaluated and Section 5 provides the details
related to the OG framework implementation. Experimentation
results are shown in Section 6. Finally, Section 7 provides some
concluding remarks and an outlook to future work.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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. State of the art

.1. Scan rendering strategies for occupancy grids

This work focuses on the comparison of algorithms that render
iDAR measurements into 2D occupancy grids. As will be shown
hrough this section, different decisions arise when addressing
his task and researches approach them differently in order to ob-
ain more computational efficiency, a more accurate description
f the environment or a balance between both.
The algorithms found in the literature can be grouped into two

ain strategies depending on the shape assumed for the laser
eam: those modeling it as a thin line and those modeling it as
n angular sector; henceforth, these will be referred as line-based
nd angular-based strategies, respectively.
This shape assumption is one of the main criteria when choos-

ng a scan rendering strategy since it directly affects the number
f cells covered by each beam. Line-based algorithms only update
ells traversed by the beam’s centerline. As a result, given the
ommon rotational acquisition process of LiDAR sensors, farthest
ells may be updated by one or none beams. The uncovered
ells can be considered as a drawback of these methods as they
ay affect the data fusion and posterior tasks, such as matching,
bjects’ shape estimation or path planning algorithms [10,11]. On
he contrary, angular-methods are usually intended to correctly
odel the rotational acquisition by updating the full grid space,

hus avoiding this problem [10,14]. However, as beams are mod-
led with an angular width wider than the real one, potential
rong-updated cells and possible object miss-detection might
ppear [6,13].
It is not clear from the literature whether the update of strictly

raversed cells or the fulfill of the whole field of view yields better
esults. Moreover, different approaches based on these two shape
ssumptions exist, being the most representative ones described
elow.

.1.1. Line-based algorithms
Probably the most known line-based method is the Bresen-

am’s algorithm [15]. It was originally designed for rendering
ines in images (line-drawing algorithms), but it has been suc-
essfully applied in the field of OGs [6,8,9], becoming one of the
ost popular strategies given its low computational cost.
Nevertheless, since the objective of these algorithms is to

roduce an acceptable visual line and not to find out all cells truly
raversed, some cells can be missed. In contrast, traversal algo-
ithms are specifically designed for this task [16]. Computational
equirements are slightly higher, but the guarantee of updating
very cell is considered as an advantage in some works, such
s [16–18].
Also, with the intention of obtaining more accurate models,

everal authors have weighted the influence of the beam over
ach updated cell. Xiaolin Wu’s algorithm [19] weights the cells
traddling the line according to their distance to it. Similarly, [20]
ncluded weights that take into account both, the number of
eams traversing the cell and the distance traveled across it.
ther authors seek to model the uncertainty of impacts posi-
ion by additionally modeling cells around it using a weighted
ccupancy probability accordingly to an uncertainty ellipse [7,21].

.1.2. Angular-based algorithms
It is common to find applications which represent LiDAR data

n polar grids because it leverages on the rotational acquisition
rocess of LiDAR sensors, e.g. [22]. Indeed, in the field of OGs it is
he most representative angular-based algorithm. First, the LiDAR
ata is renderized into an OG divided in terms of distance and
2

angle. Then this polar OG is transformed into the desired Carte-
sian OG [10,11,13,23]. This approach is used by many authors
not only because it is consistent with the characteristics of LiDAR
data, but also because it solves the uncovered cells problem of
the line-based algorithms. However, transformation from polar to
Cartesian grid is a computationally expensive task.

In order to reduce the associated load, [24] assumed that
beams do not overlap between them and that they cover a spe-
cific angular sector, being the cells gathered by each sector up-
dated with respect the corresponding beam.

As for the line-based algorithms, other authors seek to intro-
duce more accurate models. [14] also modeled the uncertainty
around the impact with an uncertainty ellipse. Likewise, [25]
argued that the occupancy confidence may be maximum along
the beam centerline and decrease with the distance in the other
directions.

As it can be seen, different methods claiming for theoretical
advantages or acceptable simplifications can be found in the
literature. The objective of this work is to evaluate their results
from the perspective of object detection in autonomous driving
applications.

2.2. Occupancy grid evaluation

The performance of OGs is typically evaluated by visual in-
spection. Nevertheless, this type of evaluation is highly subjective,
perceived patterns may not significantly affect the real quality
of the OG, while valuable differences may be hardly detected. In
order to compare the results obtained from different methods, a
quantitative evaluation has to be perform. Such evaluation can be
carried out from two perspectives: (i) cell-wise analysis and (ii)
application specific analysis.

2.2.1. Cell-wise analysis
Cell-wise analysis evaluates the estimated OG at a cell level,

independently of the application. In this way, the value estimated
for each cell is compared with its respective ground truth value,
therefore a ground truth OG is required. Different metrics relying
on this ground truth OG can be found in the literature. [26]
used the Cross-correlation and Map Score methods in order to
measure the similarity between two maps. [27,28] binarized the
occupancy state and applied the well-known classification scores
Precision and Recall. In the case of OGs including dynamic states
(DOGs) similar evaluation scores can be applied by classifying
occupied cells into dynamic or static [29,30].

The cell-wise analysis aims at providing a standardized ac-
curacy measurement, since it can be employed despite of the
posterior applications. However, for the same reason, the ob-
tained conclusions can be uncorrelated with the OG usefulness.
Moreover, facts such as the representation of the vegetation or
the evaluation of scenes with occlusions makes the computation
of ground truth OGs hardly achievable for real-world scenarios.
Indeed, the above mentioned works take advantage of simulation
environments or specific and controlled real-world scenarios.

2.2.2. Application specific analysis
Application specific analysis focuses on the results obtained

from an specific application which is fed by the OG. In this context
conclusions are less generalizable, but can be evaluated in a
more meaningful way and are correlated with the application’s
objective.

[26,27] extended the cell-wise analysis by assessing the results
of a path planning algorithm and road boundary estimation algo-
rithm respectively. Nevertheless, the evaluation of these tasks is
not easily performed in a extensive quantitative manner. More-
over, their conclusions may not be transferable to object detec-
tion. DOG based works such as [30,31] performed specific tests
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here cells of a single vehicle are clusterized and the error of its
peed is evaluated. [32] made a similar evaluation including addi-
ional velocity metrics and addressing multiple vehicles using the
ublic dataset Argoverse [33]. Nevertheless, this evaluation only
ddresses a single specific feature of object estimation. Works
ncluding further tasks such as [3], where dynamic obstacles are
etected with oriented bounding boxes, or [2], where road-users
re tracked and classified at an object-level, can perform eval-
ations based on the already well-established object detection
nd tracking metrics, such as [34]. Nevertheless, these metrics
equire an object-level representation, which OGs do not provide
ithout additional steps, such as object segmentation and state
stimation.
As can be noted, no-standardized quantitative evaluation for

Gs focused on object detection in the field of Autonomous
riving Vehicles has been found in the literature. Therefore, this
rticle aims at providing a repeatable evaluation method that in-
ers objects from OGs and applies scores based on the well-known
bject-detection metrics.

. Occupancy grid evaluation method

Perception for autonomous driving has well-established
enchmarks for object detection and tracking, e.g. [34,35]. Nev-
rtheless, OGs represent objects as a group of independent cells
ithout the object-level representation that these benchmarks
equire. Moreover, in OGs, object’s location and shape are mainly
odeled by the footprint captured by the sensor, being common

o find objects described by one or more groups of cells which
re smaller than the objects’ real size. Transforming this cell-level
epresentation into an object-level description is a complex task
ithout a common procedure. Additionally, object-level estima-
ion involves two key aspects: (i) object detection capability and
ii) object features quality.

Taking this into account, the proposed evaluation framework
eeks to be adequately extensive and to provide conclusions
ransferable to other object-level strategies by: (i) evaluating
ultiple aspects concerning frequent clustering issues and
bject-level features, (ii) selecting the scores and algorithms
ased on widely used criteria and (iii) employing different tools
o evaluate the same feature from different perspectives.

Therefore, the objective of this section is to present a strategy
or object segmentation and object features estimation in order
o evaluate the OG quality from an object estimation perspective.
he objects estimated by this strategy are not intended to be
he best estimations achievable but a repeatable process that
llows to measure how easy and accurately these tasks can be
erformed. In this connection, the proposed scores are based
n well-established object detection scores but adapted to the
valuation purpose.

.1. Ground truth data

The proposed evaluation relies on a dataset containing LiDAR
ata along with a ground truth of the objects in the scene. The
tate of these objects, henceforth named as Ground Truth Objects
GTO), consists of (i) a 2D oriented bounding box and (ii) a
elocity vector.

.1.1. Footprint quality reference
As explained the introduction of this Section, in OGs objects

re mainly modeled by the footprint captured by the sensor,
ith variations depending on the scan rendering method and
he historical data. Given the importance of the footprint, an OG
valuation from an object perspective should take it into account.
hus, if LiDAR points corresponding to the objects are labeled by
3

Fig. 1. Example of convex hulls computed from LiDAR points and the IoU
obtained between it and the ground truth bounding box.

the ground truth, a reference of the expected object-estimation
quality can be computed.

The quality with which a sensed footprint models the real
shape and location of an object is computed as the Intersection
over Union (IoU) between the bounding box of the ground truth
and the convex hull of the impacts on the object. Henceforth, this
reference metric is denoted as IoU(PC). The higher the IoU(PC)
value, the better the object is described and the better results
from object estimation are expected. Fig. 1 shows a bounding box
confronted with two different footprints. Better object shape es-
timation is expected in the left one, where IoU(PC) is significantly
higher.

3.2. Object detection capability

This evaluation aims to measure how easily objects can be
segmented from the OG.

3.2.1. Object segmentation method
Object segmentation from OGs is an essential task for object

detection and multiple approaches can be found in the literature.
These can be divided in three groups: (i) clustering based on
neighboring cells feature similarity [5], (ii) additionally guided by
objects extracted in previous frames [2] and (iii) based on neural
networks [36].

Given that OGs are a discretization of the space, most of
object segmentation methods employ proximity criteria between
occupied cells. For example, from the just cited works, [5] cluster-
izes cells using a Density-based Spatial Clustering of Applications
with Noise (DBSCAN) [37]. [2] extracts objects using tracks infor-
mation, but the obtained clusters can be additionally expanded
by evaluating adjacent cells. [36] uses a connected component
algorithm during training data generation.

Therefore, a simple but generalizable distance-based cluster-
ing is employed to segment objects from the OG. Henceforth,
these objects are referred as Distance-based Clustered Objects
(DCO).

Cells with an occupied value higher than the threshold αocc
are clusterized with the Connected Components Clustering al-
gorithm [38]. An 8-connected neighborhood kernel is employed
assuming that: (i) compact objects are more easily detected and
better described and (ii) object merging is minimized at its most.

Since this evaluation addresses scenarios with pedestrians,
which can be represented by few cells, clusters are accepted
despite of their size. Nevertheless, given that in OGs it is common
to find noisy occupied cells in occluded areas, only clusters which
have been observed in the current frame are accepted.

For every accepted cluster, the convex hull of the cells is
computed, representing, in a consistent way with the OG’s model-
free estimation, the estimated location and shape. In addition to
that, if dynamic states are also estimated by the OG, e.g. DOGs,
a label concerning its dynamic state – dynamic or static – is
calculated with respect the weighted average velocity of all cells
and the threshold value vstatic .

Therefore, DCOs are defined by: (i) the number of clustered
cells, (ii) the convex hull of the clustered cells and (iii) a label

concerning its dynamic classification.
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.2.2. Detection function
The detection function determines which GTOs are considered

s detected and by which DCO. This is an important process that
ust be defined with respect the evaluated framework. In OGs it

s common to find objects split in groups or with small footprints.
herefore, detection functions based on distance between centers
r IoU, as the ones used in [34,35], may not be suitable. On the
ther hand, LiDAR data is accurate and provides measurements
f occupied and free. As a result, an accurate description of the
nvironment is expected, i.e. occupied space in the location of
iDAR-sensed objects and free space where beams have passed
hrough.

A GTO is therefore considered as detected if it overlaps with
he cells of at least one DCO, i.e. if occupied space has been
odeled in its position. If more than one DCO overlaps the GTO,

he one with highest IoU is associated, being the IoU computed
etween the bounding box of the GTO and the convex hull of the
ells of the DCO.

.2.3. Detection scores
The detection scores are divided in three groups: (i) occupancy

etection capability score, (ii) quality clustering score and (iii)
ynamic segmentation score.
The Occupancy Detection Capability Score (ODCS) measures

the probability of estimating occupied space in the objects loca-
tion. It is the most basic indicator and it is based on the idea that
if occupied space has been estimated, then object’s information
can be inferred. Using the detection function presented above,
the number of detected GTOs (ndetected) is computed. The ODCS
elates the number of detected GTOs with the total number of
TOs (nGTO):

DCS =
ndetected

nGTO
(1)

ODCS is a permissive score which does not take into account
relevant clustering phenomenons, such as noise, split or merge,
which may harm the estimation and posterior steps, e.g. filtering
or data association. Hence, in order to measure the quality of
the extracted objects three Quality Clustering Scores (QCS) are
proposed:

• Quality clustering noise score (QCSnoise): it is a common
practice in clustering tasks to define a minimum size in
order to consider a cluster as reliable. Therefore, a score
measuring the probability of wrongly considering a DCO as
noise is defined: every detected GTO is labeled as noise if
the number of cells of its associated DCO is less than the
threshold ncells. The noise score is computed as:

QCSnoise = 1 −
nnoise

ndetected
(2)

where nnoise is the number of objects labeled as noise.
• Quality clustering merge score (QCSmerge): objects close to

each other can be merged into a single one, thus obtaining a
bad object segmentation of both. A detected GTO is labeled
as merged if its associated DCO overlaps with others GTOs
or if its area A is far smaller than the area of its associated
DCO (seeking to control the merge with objects un-labeled
by the ground truth, e.g. vegetation):
A[GTO]

A[DCO]
< βmerge (3)

being βmerge ∈ [0, 1]. Therefore, the merge score is computed
as:

QCSmerge = 1 −
nmerged

ndetected
(4)

where n is the number of objects labeled as merged.
merged

4

• Quality clustering split score (QCSsplit ): as explained, when
working with LiDAR data it is common to find objects di-
vided into several parts, e.g. the rear and the roof of a vehicle
might be detected individually. For this reason, OGs are
prone to object splitting. However, it should also be taken
into account since object splitting may lead to wrong objects
estimations and can provide a good indication of the objects
compactness. A GTO is labeled as split if it is overlapped by
more than one DCO. The split score is computed as:

QCSsplit = 1 −
nsplit

ndetected
(5)

where nsplit is the number of objects labeled as split.

These three QCS are jointly represented as the Joint Quality
lustering Score (JQCS), which expresses the probability that a re-
iable and representative object segmentation has been obtained:

QCS =
1
3

3∑
i=1

QCSi (6)

The JQCS measures the quality of the obtained clusters in
terms of how good the clustering step has been performed, but
it does not provide information about how representative are
the obtained clusters of the actual object’s size and location.
Therefore, in addition to the above three metrics, the IoU between
the bounding box of every detected GTO and the convex hull
of its associated DCO is computed (refer to the aforementioned
explanation in Section 3.1.1):

mIoUproximity =
1

ndetected

ndetected∑
i=1

IoUi (7)

Lastly, as segmentation of dynamic obstacles is a common
outcome of OGs [2,3], a score measuring the ability of correctly
differentiating between static and dynamic obstacles is proposed.
Every detected GTO is considered as: Dynamic True Positive (DTP)
if the GTO and its associated DCO are both dynamic, Dynamic
False Positive (DFP) if the GTO is static and the DCO is dynamic,
Dynamic True Negative (DTN) if both are static and Dynamic
False Negative (DFN) if the GTO is dynamic but the DC is static.
A binary dynamic label is associated with every detected GTO
(see Section 3.2.1), from which the F1 score, which measures the
classification accuracy taking into account Precision and Recall, is
computed:

FDyn
1 =

2DTP
2DTP + DFP + DFN

(8)

3.3. Object features quality

After object segmentation, each group of cells is represented at
an object-level by set of features, usually: position, size, heading
and velocity. This evaluation aims at measuring how easy is to
obtain good object features from the OG given an ideal clustering.

3.3.1. Ideal object segmentation
Seeking to decouple from the segmentation task and avoid in-

herent clustering problems – merge and split – an ideal clustering
is applied by taking advantage of the ground truth’s bounding
boxes. Thus, occupied cells gathered by the GTOs bounding boxes
are clusterized. Then, these clusters are expanded to neighboring
unclusterized cells with a 8-connected neighborhood kernel, be-
ing this process performed it times. Henceforth these extracted
objects are referred as Ideally Clustered Objects (ICO). Again,
only objects which have been observed in the current frame are
accepted and each GTO overlapping with the cells of an ICO is
considered as detected.
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For each ICO, an object-level representation is generated.
Shape and location are represented by a minimum oriented
bounding box. This bounding box is computed applying a search-
based algorithm that selects the best-fitting box based on a
variance minimization criteria — a minimum rectangle gathering
all cells is computed for every angle and the one that minimizes
the variance on the distance between the cells and the rectangle’s
borders is selected [39]. The dynamic state is expressed by the
module and the angle and it is estimated as the average of all
the cells’ velocity weighted with respect the occupied value.
Lastly, the oriented bounding box is the common object-level
representation, but, as explained in Section 3.2.1, the convex-hull
is consistent with the OG model-free representation. Therefore,
despite it is not a typical object-level feature, the convex hull of
the clustered cells is obtained in order to calculate the IoU metric
(7) with ideal clustering.

Therefore, ICOs are defined by: (i) a bounding box with center,
orientation and size, (ii) a velocity vector defined by module and
angle and (ii) the convex hull formed by its cells.

3.3.2. Object features scores
Similarly to the scores of the public dataset nuScenes [34],

the following object-level metrics are computed for the detected
GTOs:

• Mean Absolute Translation Error (MATE) and Mean Square
Translation Error (MSTE): the location error is defined by the
Euclidean distance between the bounding boxes centers.

• Mean Absolute Scale Error (MASE) and Mean Square Scale
Error (MSSE): the error in the estimated scale is computed
as (1 − IoUboxes), being IoUboxes the IoU between the GTOs’
bounding boxes and the ICOs’ bounding boxes, after location
and orientation alignment.

• Mean Absolute Velocity Error (MAVE) and Mean Square
Velocity Error (MSVE): the error on the velocity module is
defined as the absolute velocity module difference.

• Mean Absolute Velocity Orientation Error (MAVOE) and
Mean Square Velocity Orientation Error (MSVOE): the error
on the velocity orientation is calculated as the absolute yaw
angle difference between the velocity vectors. It is only
computed for dynamic objects (vGTO > vstatic)

• Mean Absolute Box Orientation Error (MABOE) and Mean
Square Box Orientation Error (MSBOE): the error on the
orientation of the estimated bounding box is defined as the
minimum yaw absolute angle difference between the four
possible headings of the bounding boxes.

The five mean absolute errors (MAE) are jointly represented
as the Joint Feature Mean Score (JFMS):

JFMS =
1
5

5∑
i=1

(
1 − min

(
1,

MAEi
Emax
i

))
(9)

where Emax
i refers to the maximum acceptable error for each

object-level metric.
And the five mean square errors (MSE) are jointly represented

as the Joint Feature Mean Square Score (JFMSS):

JFMSS =
1
5

5∑
i=1

(
1 − min

(
1,

MSEi
(Emax

i )2

))
(10)

Additionally, as in Section 3.2, the IoU between the GTOs
ounding box and the convex hull of the objects ideally cluster-
zed is computed and summarized as the average mIoU .
ideal

5

3.4. Overall score

Five different scores have been proposed in order to measure
the quality of the OG from an object estimation perspective: (i)
number of detections (ODCS), (ii) clustering easiness (JQCS), (iii)
accuracy of the dynamic segmentation (FDyn

1 ), (iv) object features
stimation easiness (JFMS) and (v) quality of the modeled foot-
rint (mIoU). Depending on the developer, each task may have
igher or lower relevance. Nevertheless, in order to express the
verall result with a single understandable score, the following
bject Estimation Score (OES) is proposed:

ES = ODCS
1
4

(
JQCS + FDyn

1 + JFMS + mIoU
)

(11)

being:

mIoU =
1
2

(
mIoUproximity + mIoUideal

)
(12)

4. Scan rendering methods evaluated

From the scan rendering methods introduced in Section 2.1,
three line-based and three angular-based methods have been
chosen for evaluation according to three main motivations: (i)
fast computation, (ii) model accuracy and (iii) balance between
computation speed and model accuracy. Table 1 summarizes their
main advantages and disadvantages of the selected methods and
Fig. 2 provides an illustrative example of their implementation .

4.1. Line-based methods

4.1.1. Line-drawing based method
Bresenham’s line-drawing algorithm [15] is selected as rep-

resentative of computationally efficient line-based methods —
an example of a fast OG implementation can be found in [6].
When applying this method, the space traveled by the beam is
approximated as a rasterized line with width equal to the cell’s
size (see Fig. 2(a)). Notice that some cells truly traversed by the
center of the beam are missed. All cells are considered equally,
thus equally weighted.

4.1.2. Traversal based method
Traversal algorithms are considered as computationally afford-

able but accurate, as all the cells traversed by the beam are
considered, compare Figs. 2(a) and 2(b). Again, all cells are equally
weighted. In this work cells are selected if the beams’ angle is
within the minimum and maximum angles of the cell. A variant
with lower computational cost can be found in [16].

4.1.3. Weighted-line based method
Xiaolin Wu’s algorithm [19] is chosen for line-based accurate

model — an OG application of this method can be found in [18].
This algorithm computes all the beam’s straddling cells and as-
signs to each one a weight depending on its proximity to the
beam’s centerline. As a result, information loss is reduced and the
certainty with which the beam influences the cell is modeled.

4.2. Angular-based methods

4.2.1. Beam-by-beam method
The work of [24] named as Beam-by-beam is selected as repre-

sentative of fast angular-based algorithms. This approach makes
two assumptions: (i) beams do not overlap and (ii) each cell is
modeled only by one beam, the one whose field-of-view (FOV)
gathers its center. Notice that these assumptions do not stand for
beams of different sensors or, in the case of multi-layer sensors,
for beams of different layers. The FOV of a beam is delimited
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Table 1
Scan rendering methods selected for evaluation and their main motivation.
Methods Motivation Advantages Disadvantages

Line-drawing Fast computation High computational efficiency. Some cells truly traversed can be missed.
All cells are equally weighted.

Traversal algorithm Balance Computationally efficient.
All traversed cells are selected.

All cells are equally weighted.

Weighted line Model accuracy All cells straddling the beam are selected.
Cells are weighted depending on its proximity
to the beam.

Low computational efficiency.

Beam-by-beam Fast computation High computational efficiency. Each cell is assumed to be influenced by a single beam.
All cells are equally weighted.

Polar grid Balance Fast computation capable.
Consistent with LiDAR acquisition process.

Double discretization, first into the polar grid and then
into Cartesian grid.
All cells are equally weighted.

Weighted angular sector Model accuracy Cells inside the angular sector are weighted
depending on its proximity to the center of
the beam.

Lowest computational efficiency.
Fig. 2. Illustrative example of the tested methods: (a) Line-drawing based method, (b) Traversal based method, (c) Weighted-line based method, (d) Beam-by-beam
based method, (e) Polar grid based method and (f) Weighted-angular based method. Occupancy probability is drawn in gray-scale. Laser beams are drawn as thin
red cones. For the angular-based methods, the area covered by each beam is colored with bluish lines. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
b

g

by bisectors formed with its contiguous beams. This algorithm
was originally designed for LiDAR sensors with constant angular
steps, but this condition may not be met by other sensors or if
ego-motion correction is applied to the point cloud. In this case,
the area covered by each beam is variable and a security upper
threshold should also be included. An example of the resultant
algorithm is shown in Fig. 2(d), where bluish lines denote the
width of the beams.

4.2.2. Polar grid based method
Polar grid based methods are considered a balance between

ccuracy and computational cost. First, an OG centered on the
ensor’s origin and dividing the environment in terms of radial
istance and angle is computed. Then, this OG is transformed
nto the final Cartesian OG. An example of polar occupancy grid
an be found in [11]. The initial polar representation is accurate
ith respect to laser range-finders usual functioning, but the
ransformation from polar to Cartesian coordinates is a complex
ask — it has been extensively studied in [10], the sampling
ethod is employed in this work.

.2.3. Weighted-angular based method
Modeling the beams as wide angular sectors presents the

rawback that not truly sensed cells can be also updated. In order
o address this problem, an algorithm inspired by [14,25], named
eighted-angular sector, is considered in this evaluation.
Each beam is modeled as an angular sector with constant

ngular width. Cells gathered inside this area are weighted using
Gaussian probability density function, relative to the angular
roximity between the cells’ center and the beam’s centerline.
6

Since angular weighting may dismiss radially-closer cells, cells
directly traversed by the centerline of the beam receive full
confidence. The computation of this weight βc is as follows:

βc
=

{
1 θ c,min

≤ θ z
≤ θ c,max

g(θ c, θ z) otherwise (13)

eing:

(θ c, θ z) = exp
(

−0.5
(θ c

− θ z)2

σ 2
θ

)
(14)

where θ c and θ z refer to the angle of the center of the cell and
the angle of the beam respectively, and θ c,min and θ c,max denote
the minimum and maximum angles of the cell. σθ defines the
standard deviation computed accordingly to the beam’s angular
width.

Fig. 2(f) shows an example of the result obtained. The bluish
angular sectors denote the reach of the angular standard devia-
tion.

5. Implementation details

This section introduces the OG framework with which the six
scan rendering methods are tested. The necessary details for their
integration are provided.

5.1. Occupancy grid framework overview

Different OG frameworks can be found in the literature
[40–43]. The selected framework is based on the DOG proposed
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n [43]. This approach is popular in autonomous driving object
etection and tracking tasks [1,3,4,36], since it properly fulfills the
equirements of driving scenarios: (i) real-time estimation of ego-
ehicle’s surrounding environment, (ii) fast modeling of occupied
nd free spaces and (iii) robust modeling and estimation of
bjects’ dynamics. It includes three main steps: (i) grid prediction,
ii) observed occupancy grid calculation and (iii) grid estimation
pdate. In order to estimate the dynamic state of the cells, a
article filter is included by linking the particles’ weight to the
ells’ occupancy value.
Two important considerations must be taken into account

ereinafter: (i) the observed occupancy grid is computed taking
nto account all the available sensed information at the current
rame; (ii) the occupancy of cells is represented in terms of
he Dempster–Shafer Theory (DST) of Evidence [44,45] instead
f in terms of occupancy probability. This is done in order to
ifferentiate between unknown cells and cells with conflicting
stimations.

.2. Observed occupancy grid computation

The computation of an observed OG relies on two processes:
i) the sensed data rendering and (ii) the data fusion. Scan render-
ng methods compute the cells which are updated by each beam,
ut a single cell can be updated by multiple beams, for example
hen using multi-layered sensors. In this case, the occupancy
stimations of the different beams have to be fused.
This data fusion is addressed following the strategy proposed

n [46]. Each beam provides two values: the occupancy distribu-
ion and a confidence measurement for the modeled occupancy
istribution. The estimations from multiple beams updating the
ame cell can be fused as a weighted average:

(Oc
|z1, . . . , zn) =

(
n∑

i=1

wc(zi)

)−1 n∑
i=1

wc(zi)P(Oc
|zi) (15)

here P(Oc
|zi) and wc(zi) are the occupancy probability and the

onfidence measure estimated for the cell c by the measurement
of the ith beam, respectively; and n defines the number of
eams updating the cell. The computation of P(Oc

|zi) and wc(zi)
s detailed in Section 5.3.

The resultant fused estimation is then expressed in terms of
ST, being the frame of discernment the occupied and free events
Ω = {O, F}). This way, each cell contains a mass for occupied
(O) and a mass for free m(F ) computed as:

(Oc) = W · P(Oc
|z) (16)

(Lc) = W ·
(
1 − P(Oc

|z)
)

(17)

eing W the overall confidence:

= min

(
1,

n∑
i=1

wc(zi)

)
(18)

Fig. 3(a) shows an example of the occupancy distribution and
onfidence measurement modeled for a single beam and Fig. 3(b)
hows its representation in terms of DST.

.3. Occupancy distribution and confidence measurement

The occupancy distribution and the confidence measurement
re calculated based on the sensor model. In this work, an inverse
ensor model taking into account the noise in the measurement
s employed. The two most common approaches are the Dirac
odel and the Gaussian model. Other more elaborated sensors
odels can be found in [40,47]. The Dirac model sets only the cell
7

Fig. 3. Illustrative example: (a) occupancy probability and confidence measure
computed for a single beam, and (b) representation in terms of DST.

gathering the impact as occupied. On the contrary, the Gaussian
model defines the occupancy as a Gaussian function depending
on the distance between the center of the cell and the impact.
[10] proposed to choose the Dirac model when the uncertainty
in the measurement is far smaller than the cell’s size and the
Gaussian model in the opposite case. Opposite opinions can be
found in terms of neglecting the uncertainty. [9] applies discrete
values of occupied, free and unknown (Dirac model) seeking for a
faster OG generation. On the other hand, [40] suggests to enlarge
the value of uncertainty parameters since models tend to ignore
some features and dependencies, for example, in the context of
OGs, these may be the uncertainty on the localization or the
discretization error. Therefore, both methods are tested in this
work.

5.3.1. Dirac model
The Dirac model assumes that the uncertainty on the mea-

surement is negligible and the occupancy distribution P(Oc
|z)

takes therefore discrete values separated by the cell gathering the
impact C z :

P(Oc
|z) =

{
0 if (c ̸= C z and dc < dz)
1 otherwise (19)

wc(z) =

{
βc

· wocc if (c = C z)
βc

· wfree if (c ̸= C z and dc < dz)
0 if (c ̸= C z and dc > dz)

(20)

here dz denotes the distance measured by the beam and dc

he distance towards the center of the cell c. wfree and wocc are
esign parameters that define the maximum confidence for a free
nd occupied measurement, respectively. βc corresponds to the
nherent weighting of the applied method.

In practice, this model can be directly applied for line-
rawing, traversal and polar grid based approaches, but not
or weighted-line, beam-by-beam and weighted-angular sector
ased approaches. For the weighted-line based approach, the cell
airing cell C z is also considered as occupied and fully confident.
or the methods beam-by-beam and weighted-angular, a first 1D
iscretization along the beam centerline has to be performed;
hen, each 2D cell obtains its corresponding occupancy and con-
idence values based on its radial distance. Fig. 4 illustrates the
rocess.
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Fig. 4. Illustrative example of the Dirac model for the methods beam-by-beam
and weighted angular sector.

5.3.2. Gaussian model
The Gaussian model assumes that the uncertainty on the mea-

surement is not negligible and therefore models the occupancy
distribution P(Oc

|z) and the confidence measurement wc(z) as a
aussian function along the beam’s centerline:

(Oc
|z) =

{
g(dc, z) if (dc ≤ dz)
1 if (dc > dz) (21)

c(z) =

{
βc

· max
(
wfree, g(dc, z)

)
if (dc ≤ dz)

βc
· min (wocc, g(dc, z)) if (dc > dz) (22)

being:

g(dc, z) = exp
(

−0.5
(dc − dz)2

σ 2

)
(23)

here σ is the standard deviation of the measurement’s uncer-
tainty.

In contrast to the Dirac approach, this model can be directly
pplied in all the methods.

.4. Height and ground points filtering

LiDAR sensors provide a large amount of data. Nevertheless,
ot all of it is valuable for OG representation.

• Ground filtering: A great percentage of the laser-beams
impact on the ground and not on relevant obstacles. There-
fore, a ground-obstacle segmentation step has to be per-
formed before modeling the Observed OG. In this work the
Channel-based with median filter approach proposed in [48]
is used. For beams hitting the ground, Eqs. (20) and (22) are
substituted by (24) and (25).

wc(z) =

{
βc

· wfree if (c ̸= C z and dc < dz)
0 otherwise (24)

wc(z) =

{
βc

· wfree if (dc − s ≤ dz)
0 otherwise (25)

where s is the size of the cell.
• Height filtering: LiDARs with several layers emit laser-beams

with different pitch angle (vertical inclination), capturing
information at different heights. In this work, information
captured above hmax is dismissed. For this purpose, when
updating a cell, the height of the beam at the cell’s center is
computed.

6. Experiments

This section describes the set of experiments performed in
rder to compare the six evaluated scan rendering methods and
howcase the usefulness of the evaluation proposed.
Experimentation is conducted with the public dataset

uScenes [34]. The subset mini is selected since it provides four
hundred labeled samples from ten different representative urban
scenes. Laser data was captured by a 32-layer LiDAR sensor
mounted on top of the vehicle. The FOV covers 360◦ around the
ehicle and with an angular resolution, between beams of the
ame layer, of approximately 0.33◦. Fig. 5 shows a frame example.
 b

8

Fig. 5. nuScenes frame example. LiDAR data is drawn with colored dots
depending on its class-label, and the ground truth labeled objects, with the
corresponding bounding boxes and velocity vectors in green. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

6.1. Implementation details

Hereunder, the implementation details related with the OG
computation and benchmark evaluation are given.

The selected parametrization has been experimentally ad-
justed. The values chosen for the six OGs seek to obtain compact
and well defined footprints. The evaluation parameters are de-
fined intended to be strict with the clustering process and to
bound significantly high errors that can be obtained from new
objects entering in the field of view or poorly representative
footprints.

• DOG general parameters: The grid is centered on the ego-
vehicle, covering a FOV of 360◦ around. Because of parallel
programming reasons the size of the grid is defined as
512 × 512, being the cells size is set to 0.15 m (the large and
width length are therefore 76.8 m). 221 particles are used for
cell’s dynamic state estimation.

• Observed OG: For the beam-by-beam method, the maxi-
mum bisector allowed is 0.5◦. The polar grid resolution is
also set as 0.5◦ with a radial resolution of 0.15 cm. In the
weighted-angular strategy a standard deviation σθ = 0.25◦

is selected. The standard deviation for the Gaussian model
is set as 0.075 m. The maximum confidence parameters for
free and occupied space are set as wocc = 1 and wfree = 0.3.
Lastly, the height threshold is defined as hmax = 1.5 m.

• Ground truth data: The evaluation is performed with respect
to the detection of vehicles and pedestrians within the range
of the OG. Additionally, in order to avoid detection problems
caused by wrong obstacle-ground point cloud segmentation,
only objects with at least three laser impacts labeled as
obstacle are taken into account.

• Evaluation: The occupied threshold is conservatively set as
αocc = 0.1. The ideal clusters are expanded it = 3 times. The
thresholds to consider a DCO as noise, merged and dynamic
are set to ncells = 3, βmerge = 0.6 and vstatic = 1 m/s,
respectively. The maximum acceptable errors are set to:
Emax
TE = 5 m, Emax

SE = 1, Emax
VE = 5 m/s and Emax

VOE = 180◦

and Emax
BOE = 45◦.

.2. Qualitative evaluation

A qualitative evaluation seeking to illustrate (i) the differences

etween line-based and angular-based algorithms and (ii) the
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Fig. 6. OGs examples: (a) line-drawing Dirac based OG and (b) polar Gaussian
ased OG. Occupancy is represented in gray-scale, ground truth bounding boxes
re drawn in green and the dashed blue circle denotes a distance range of 15
. (For interpretation of the references to color in this figure legend, the reader

s referred to the web version of this article.)

easibility of the proposed evaluation method, is shown in this
ection.
Since visual inspection of OGs is complex and subjective, and

he most notable differences are caused by the line/angular shape
ssumption, this qualitative evaluation is performed comparing
he considered two most popular but opposing methods: line-
rawing method with Dirac model and polar grid method with
aussian model.

• Line-drawing Dirac OG: this strategy models occupancy only
along the centerline of the beam and assigns discrete values
– occupied, free and unknown – to the traversed cells.

• Polar Gaussian OG: this strategy first discretizes beams’ data
in angular sectors which, all together, cover the 360◦ FOV,
and then models occupancy along these angular sectors
assigning continuous values.

As is mentioned in Section 1, the decision of fulfilling the
ncovered space between beams with the data of these beams
s a matter of discussion in the literature. Given the rotational
ehavior of common LiDAR sensors, the farther the radial distance
he bigger the space between beams. As it can be seen in Fig. 5,
ith the nuScenes LiDAR’s setup the captured information is
ense at short distances, e.g. 15 m, and becomes relatively sparse
t distances farther than 30 m. The obtained OGs at both ranges
re shown in Figs. 6 and 7.
At a range of 15 m, the distance between beams of the same

ayer is approximately 0.08 m, less than the size of a cell. There-
ore, closer cells are covered by one or more laser beams and
oth methods provide similar results despite of their beam’s
hape assumption. Indeed, the main differences are caused by
he Dirac/Gaussian models. In the Line-drawing Dirac OG, objects’
ootprints are thinner and cells have high occupied values, while
n the Polar Gaussian OG, objects are thicker but blurred.

At farther distances, the space between beams increases, e.g.
pproximately 0.17 m at 30 m, and more notable differences
ppear between the two methods. When applying line-based
can rendering algorithms, the space between beams is mod-
led as unknown. Thus, an irregular free space estimation and
on-compact objects are generated. On the contrary, when ap-
lying angular-based algorithms the space between beams is
pproximated by the angularly close estimated occupancy values.
herefore, a smoother occupancy distribution is obtained, but
bject’s shapes are slightly enlarged and distorted.
This difference can be noticed in the vehicles of Fig. 7. The

olar Gaussian OGmodels the upper car with a compact footprint,
eading to a better object segmentation by distance-based clus-
ering (blue line). On the contrary, when estimating the oriented
9

Fig. 7. Example of OG at farther distance: (a) line-drawing Dirac based OG
and (b) polar Gaussian based OG. The red dashed line denotes the range of
30 meters from the LiDAR sensor. Ground truth bounding boxes are drawn in
green, the estimated bounding box with ideal clustering in magenta and the
estimated convex hull with proximity clustering in blue. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

bounding boxes, the line-drawing Dirac OG obtains better results,
since it does not distort the L-shape and I-shape captured by the
LiDAR.

Fig. 8 shows another scene where the detection benchmark
is illustrated. Every road user in this scene is counted as de-
tected since occupied space has been modeled inside its bounding
boxes. However, the quality of each detection is not the same.
For example, vehicle (1) is clearly detected by the LiDAR and,
therefore, a good object representation is achieved in both OGs,
which is correctly modeled by the IoU score. Nevertheless, addi-
tional clusters are also obtained inside the GTO’s bounding box,
which is taken into account in the split score. On the contrary,
vehicle (2) is correctly segmented from the footprint perceived
by the LiDAR. No merge or split effects appear, but this detec-
tion barely provides information and, therefore, obtains a low
IoU value. Lastly, pedestrian (3) is correctly segmented in the
line-drawing Dirac OG but is merged with the buildings in the
polar Gaussian OG. This object is counted as detected for both
because occupied space has been modeled in its location and by
applying further segmentation steps – e.g. particle labeling – it
may be correctly segmented. However, its clustering quality score
is strongly penalized by the merge and IoU scores.

Fig. 9 shows the object features quality evaluation. As it can be
seen, similar visual results are obtained from both methods, being
the most notable difference the oriented bounding box estimated
for vehicle (1). In the case of the line-drawing Dirac based OG,
the number of occupied cells is not enough to accomplish a good
orientation estimation. This example is intended to show the fea-
sibility of the features estimation process, but also the usefulness
of the reference metric IoU(PC). The bounding box estimation
strongly relies on the footprint captured by the sensor, thus errors
in location and shape are expected to increase inversely with
IoU(PC).

As it has been shown, obtaining conclusions from qualitative
evaluation is complex. The different methods may produce differ-
ent results, but these discrepancies may imply an advantage or
a disadvantage depending on the case. For example, employing
the Gaussian model and the angular-shape assumption seeking
to model more occupied space can be an advantage in situations
such as Fig. 7(b), since objects are more easily identified. How-
ever, it also may promote noise, e.g. the vehicle (1) of Fig. 8.
Similarly, a more conservative approach, where only the cells
gathering the impacts are classified as occupied, may provide a
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Fig. 8. Object detection capability evaluation. (a) Line-drawing Dirac based OG
and (b) Polar Gaussian based OG. The OG is colored with respect the results
of the distance-based clustering method applied for object segmentation and
the GTO’s bounding boxes are colored following the clustering quality scores
explained in Section 3.2: red for noise, orange for merged, yellow for split and
green for correctly detected clusters. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Object features evaluation. (a) line-drawing Dirac based OG and (b) polar
Gaussian based OG. Cells are colored with respect the DOG obtained, free and
unknown cells are drawn in gray-scale, occupied cells are drawn in black if
classified as static or with colors corresponding to their orientation, if dynamic.
The estimated oriented bounding boxes and velocity vectors are represented in
blue, the ground truth bounding boxes are drawn in green if the IoU(PC) is
higher than 0.35 and in purple if not. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

better representation of the objects real shapes (see Fig. 7(a)),
but it may also lead to a reduced number of occupied cells with
which an acceptable oriented bounding box adjustment cannot
be obtained.

6.3. Quantitative evaluation

As exposed in Section 6.2, visual conclusions are hardly achiev-
able and differences between methods can lead to both advan-
tages and disadvantages. Therefore, in order to obtain concluding
results, a quantitative evaluation has to be performed. In the fol-
lowing, the DOGs resulting from the six scan rendering methods
tested are evaluated using the proposed evaluation method.
10
Table 2 shows the obtained results corresponding to the object
detection capability evaluation. As it can be seen, all methods
detect approximately the same number of objects.

Nevertheless, DOGs employing the Gaussian model with the
weighted-line, polar grid and weighted-angular methods tend to
perform the best with respect the scores of noise, split and IoU
and the worst with respect the merge score. On the contrary,
DOGs employing the Dirac model and line-drawing, traversal and
beam-by-beam methods behaves reversely. These results can be
explained by the amount of occupied space modeled by each
strategy. Line-drawing and Traversal based methods with Dirac
model only set as occupied the cells gathering the laser-impacts.
As a result, they tend to model thin occupied spaces and unknown
or free gaps between occupied cells (see Fig. 7). The beam-by-
beam approach performs similarly because the assumption that
each cell is only updated by one beam per layer makes that, at
closer distances, some information is dismissed and objects can
also be modeled with non-occupied gaps in between. While these
facts benefit the objects differentiation (nmerged), they also result
n less representative footprints (nnoise, nsplit , mIoUproximity).

Regarding the dynamic classification (FDyn
1 ), the variations on

he scan rendering method does not severely affect the dynamic
stimation performed by the DOG’s underlying particle filter,
ut, again, the Gaussian model seems to perform slightly better.
able 3 summarizes the results obtained for the object features
valuation. Notice that the MAVOE score is only computed for
ynamic objects (vGTO > vstatic) and the MABOE score does
ot include pedestrians, only vehicles. It can be also seen that,
ith an ideal clustering, all DOGs present similar object feature
stimation capabilities. Note that the Gaussian model performs
etter than the Dirac model and that slightly better results are
btained by the weighted-line, polar grid and weighted-angular
ased methods. Nevertheless, there is no strategy which stands
ut the others significantly in all metrics.
Lastly, Table 4 shows the OES, summarizing the overall result.

t can be easily noticed that methods employing the Gaussian
odel performs better. With this model, differences between the

ine and angular-based methods are minor, but there is a clear
endency to obtain better results when seeking for more accurate
can rendering methods.
Fig. 10 shows the obtained results derived from the footprint

aptured by the LiDAR sensor — IoU(PC) metric. It can be seen
ow the quality of the clustering (JQCS) decreases as the IoU(PC)
ncreases. This can be explained by the fact that objects perceived
ith small footprints are unlikely to be split or merged, contrary
o objects with higher footprints (see the vehicles in Fig. 8).
onversely, the object features estimation (JFMS) improves with
he IoU(PC). This is an expected result since the JFMS is computed
ith ideal clustering and the best the object is described, the
asier the object’s features estimation is. Note in this connection
hat capturing the complete footprint facilitates the estimation of
he center point and size. Regarding the quality of the estimated
ootprint (IoU), the results obtained with both clustering methods
ncrease with the quality of the footprint captured by the sensor.
he results obtained for the ideal clustering (dashed lines) show
hat in general the OG representation enhances the object’s shape
nd location estimation with respect the LiDAR footprint. At the
aximum IoU(PC) values, grid representation results decreases
rimarily because occupied space is modeled outside the GTOs
ounding boxes. In contrast, the results for the proximity clus-
ering (solid lines) shows that the obtained clusters in general
erforms worse than the IoU(PC). This is mainly explained be-
ause the obtained clusters do not gather all the occupied space
odeled for the object, i.e. clustering split, while the IoU(PC) is
omputed with ideal clustering. Overall, the polar grid, weighted-
ngular and weighted-line based methods with Gaussian model
end to obtain the best results in general.
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Table 2
Detection capability quantitative evaluation. The results for each score are colored from red (worse) to green (best).

ndetected nnoise nmerged nsplit JQCS mIoUproximity FDyn
1

Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus
Line-drawing 4989 4992 95 19 420 491 2807 2476 0.778 0.801 0.299 0.336 0.851 0.853
Traversal 4987 4993 127 5 358 501 2930 2385 0.772 0.807 0.280 0.343 0.848 0.856
Weighted-line 4993 4990 25 4 484 533 2568 2256 0.795 0.813 0.319 0.349 0.854 0.860
Beam-by-beam 4991 4993 65 12 356 472 2869 2525 0.780 0.799 0.276 0.327 0.844 0.859
Polar grid 4993 4993 29 4 484 578 2507 2237 0.798 0.812 0.322 0.352 0.837 0.847
Weighted-angular 4993 4993 13 3 457 536 2572 2282 0.797 0.812 0.319 0.348 0.843 0.854
Table 3
Object features quality evaluation.

MATE m MASE MAVE m/s MAVOE ◦ MABOE ◦ JFMS JFMSS mIoUideal
Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus Dirac Gaus

Line-drawing 0.543 0.535 0.623 0.586 0.568 0.568 10.510 10.382 4.586 4.552 0.799 0.807 0.875 0.883 0.435 0.459
Traversal 0.540 0.524 0.637 0.586 0.578 0.571 10.752 9.951 4.584 4.367 0.795 0.809 0.870 0.885 0.421 0.466
Weighted-line 0.543 0.531 0.598 0.583 0.563 0.557 10.236 10.021 4.575 4.407 0.805 0.809 0.881 0.885 0.451 0.467
Beam-by-beam 0.553 0.532 0.617 0.592 0.571 0.555 10.699 10.397 5.045 4.868 0.797 0.805 0.876 0.883 0.432 0.459
Polar grid 0.536 0.533 0.589 0.560 0.603 0.574 11.374 10.533 4.664 4.570 0.803 0.812 0.882 0.891 0.455 0.474
Weighted-angular 0.531 0.522 0.593 0.574 0.579 0.566 10.352 10.068 4.722 4.402 0.804 0.811 0.882 0.888 0.456 0.473
Table 4
Overall result summarized with the Object Estimation Score.

Line-drawing Traversal Weighted-line Mono-beam Polar grid Weighted-angular
Dirac 0.698 0.691 0.710 0.694 0.707 0.708
Gaussian 0.714 0.719 0.722 0.714 0.721 0.722
Fig. 10. Evaluation results represented against the IoU(PC) metric.
As explained in Section 2.1 and shown in Fig. 7, the main
ifference between line-based and angular-based scan rendering
ethods is the update of cells not truly traversed by the laser-
eams, a condition which increases with distance. Additionally,
stimation complexity also increases due to the increasing spar-
ity of the LiDAR data. Hence, Fig. 11 shows the results obtained
ith respect the distance to the ego-vehicle. It can be clearly
oticed how as distance increases, the results for the JQCS be-
in to diverge, maintaining the best results the angular-based
ethods, followed by the weighted-line method. This results sup-
ort the statement that fulfilling gaps between beams enhances
he objects’ shape estimation (see Section 2.1 and Fig. 7). This
ncreasing complexity can be perfectly noticed in the object’s
eatures estimation and footprint estimation. Similar conclusions
an be observed, methods based on Polar grid, weighted-angular
nd weighted-line, tend to perform the best in general. It is
nteresting to note that the beam-by-beammethod with Gaussian
odel performs worse in terms of footprint quality (IoU) at closer
istances. However, it is aligned with best angular-based methods
t farther distances. This can be explained by the one beam per
ell assumption, i.e. at closer distances important information
ay be dismissed, but, at farther distances, a cell is at most

pdated by one beam.

11
6.4. Results summary

All tested methods exhibit an acceptable behavior under the
evaluation conditions, but some differences can be appreciated.
The most significant dissimilarities are obtained from the choice
of the selected model for the occupancy distribution and con-
fidence measurement. In general, the Gaussian model provides
significantly better results than the Dirac model, both in the
qualitative and quantitative analysis.

Regarding the difference between using line-based or angular-
based methods, qualitative differences are visually noticeable,
but these are not translated to large quantitative dissimilari-
ties. Angular-based methods perform slightly better at farther
distances, but the line-based method focused on higher model
accuracy – Weighted-line – obtains results alike.

With respect to the election between (i) fast computation,
(ii) balance between computation speed and model accuracy and
(iii) more accurate models; the results are consistent with the
accuracy sought by each strategy. Methods focused on more
accurate models perform better in general. Nevertheless, they
are closely followed by the balanced methods. On the contrary,
methods which make more simplifying assumptions, seeking for

faster computation, perform worse.
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Fig. 11. Evaluation results represented against the distance to the ego-vehicle.
. Conclusion

This work presents a comparison between six LiDAR scan
endering methods specifically selected to evaluate the main
ifferences discussed in the literature. In addition, since no stan-
ardized OG benchmark has been found, an evaluation method
ocused on object detection is proposed.

Firstly, concerning the scan rendering methods, all tested
ethods perform acceptable under the evaluated conditions.
espite visual results, line-based and angular-based methods
ave been found to perform alike regarding the quantitative
esults. More noticeable differences have been found in relation
o the occupancy distribution model, being clearly superior the
aussian model over the Dirac model, and to the accuracy sought
y the scan rendering method, obtaining better results those
esigned for accuracy and worse results those conceived for fast
omputation.
Secondly, an OG evaluation framework, intended to be repeat-

ble with other OG approaches, has been proposed. It addresses
he two main steps of object detection: (i) object segmentation
nd (ii) features estimation. Several metrics are provided and
ummarized into five easily understandable scores and one gen-
ral score. In addition to that, the evaluation considers two fun-
amental factors, e.g. the distance to the sensor and the quality
f the footprint captured by the laser sensor.
Future work will address the evaluation with other LiDAR

ensors and with farther distance ranges in order to provide more
eneralized conclusions.
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