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Paradoxical effects for a one-dimensional periodic potential embedded in a two-dimensional system
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The electronic state at the interface between the Ag(111) surface and NaCl island has been studied. Due to the
lattice mismatch, islands of NaCl grow on Ag(111) with various moiré patterns which lead to a weak periodic
one-dimensional (1D) potential for the electronic state. In contrast to the well-known situation for a purely 1D
system, the ideal two-dimensional system should cause a modulation of the local electronic density for energies
only below and not above the mini band gap corresponding to the periodic potential. However, the experimental
observation by scanning tunneling microscopy and spectroscopy of states reveals such a modulation also in the
forbidden range of energy. Since the particular system allows us to disentangle the effects of local scattering and
those caused by the periodic potential, it could be revealed that the loss of coherence and the mechanism of the
detection by the STM are responsible for the experimentally observed modulation, which should be suppressed
in the case of an ideal system.
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I. INTRODUCTION

The problem of a nearly free two-dimensional (2D) elec-
tron (NFE) gas subjected to a weak periodic potential is both
of principal interest as well as of practical importance be-
cause there is a vast number of physical realizations [1–12].
It has been discussed theoretically for a long time, see, e.g.,
Ref. [1]. 2D electron systems have been intensively studied,
for example, for the interfaces in semiconductor heterostruc-
tures. Atomically precise superstructures for such an interface
state have been realized [4], discussing the prediction by
the Kronig-Penney model [13]. NFE-type surface states are
naturally found at several perfectly ordered crystal surfaces,
e.g., for the noble metals Au(111), Ag(111), and Cu(111)
[5–8]. Depending on the doping, 2D materials, like graphene
or transition-metal dichalcogenides, may also exhibit a nearly
free 2D electron gas [9]. Various one-dimensional (1D) or 2D
periodic potentials may be imposed on perfect 2D systems by
additional adlayers forming moiré patterns because of lattice
mismatch, see, e.g., Refs. [10–12].

Whereas in early experiments using semiconductor het-
erostructures only the total electronic density as a function of
energy could be measured directly, the invention of scanning
tunneling spectroscopy allowed for the study of the local den-
sity of electronic states (LDOS) for electronic surface states
and interface states in the vicinity of the surface [14]. As an
example of a NFE with an intrinsic periodic modulation, the
LDOS of the Au(111) surface with the well-known herring-
bone reconstruction has been studied by Fourier transform

scanning tunneling spectroscopy [15]. The technique works
best if the observed modulations in the dI/dV measurements
are only due to a modulation of the LDOS. For NaCl islands
on the noble metals, Au(111) [16,17], Ag(111) [18,19], and
Cu(111) [20] where the corrugation correlated to the modu-
lation of the LDOS is well below a tenth of an Å interfering
effects can be almost neglected. However, for a larger corru-
gation, e.g., for ordered layers of organic molecules on noble
metals, a more sophisticated analysis is required [21–23].

The present paper deals with the interface state between
a NaCl adlayer and Ag(111). Due to the lattice mismatch
between the hexagonal surface structure of the Ag(111) and
the quadratic one of the NaCl, the islands grow with a large
commensurate supercell. The variation of the position of the
sodium and chlorine atoms relative to the underlying silver
atoms leads to a moiré pattern, which forms a 1D periodic
potential for the 2D interface state. This particular system
enables us to disentangle different effects leading to a mod-
ulation of the LDOS. The findings triggered a theoretical
and numerical study of the problem, thus elucidating prin-
cipal aspects and features of this kind of electronic system.
Indeed, previous experiments describing the emerging elec-
tronic structure due to the interface-state modulations in MgO
on Au(111) [24], NaCl on Ag(111) [18,19,25], and NaCl on
Cu(111) [20] have been mainly explained using the text book
models for a 1D electronic system under a weak periodic
potential. However, the measured modulation of the LDOS
with the period of the weak potential persists for energies well
above the band gap opened by the 1D potential, contrary to the

2469-9950/2023/107(15)/155418(15) 155418-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1924-8615
https://orcid.org/0000-0001-7808-0395
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.155418&domain=pdf&date_stamp=2023-04-14
https://doi.org/10.1103/PhysRevB.107.155418


KIRA KOLPATZECK et al. PHYSICAL REVIEW B 107, 155418 (2023)

model’s prediction that there should be almost no modulation
of the LDOS in that energy range at all. Our paper reveals
that the experimental observations by us and other groups
cannot be explained by applying the model of an ideal free
2D electron gas embedded in a 1D periodic potential. Only if
the limited coherence of the involved electronic state and the
detection mechanism by scanning tunneling spectroscopy are
included, can the experimental findings be rationalized.

II. EXPERIMENT

Experimental details

The experiments as well as the sample preparation were
carried out under ultrahigh vacuum conditions. The Ag(111)
substrate surface was cleaned in situ by several cycles of
Ar+-ion sputtering with a kinetic energy of 2.6 keV and a
sputtering current density of ∼25 μA

cm2 for 30 min and annealing
to 530 ◦C by thermal radiation for 10 min. Subsequently, NaCl
was deposited onto the Ag(111) surface from a Knudsen cell
operated at 565 ◦C while the sample was kept at ∼40 ◦C. To
control the evaporation rate, a quadrupole mass spectrometer
was used.

The measurements shown in this paper were performed
with a home-built low-temperature scanning tunneling mi-
croscope, working at 8 K, cooled by liquid helium. The bias
voltage was applied to the sample while the tunneling cur-
rent was measured at the tunneling tip. The electrolytically
etched tungsten tips were cleaned under vacuum conditions
by electron bombardment and field emission in front of a
copper surface in the cold STM. The data were acquired by
using the open-source software GXSM [26]. For further image
processing, the software programs WSXM [27] and IMAGEJ
[28] were used.

III. RESULTS

When NaCl layers grow on Ag(111), the square lattice
aligns with one axis of the hexagonal lattice of the silver.
However, a commensurate layer is not possible with the ideal
and nondistorted lattices. For very small islands, the stress and
strain can be accommodated. Extended areas form a superlat-
tice with rather large commensurate supercells. Since not all
the atoms of the NaCl layer are located in ideal positions on
the substrate, a moiré pattern with parallel lines occurs. As can
be seen in Fig. 1, several different patterns may be observed
depending on the size, the aspect ratio, and the orientation of
the islands. It should be noted that the corrugation observed
in the topographic images is only about δzP−P = 0.015 Å,
which is very little compared to the height of the island of
�z = 3.5 Å [19]. Hence, a shaded representation of the data
has been chosen to make the corrugation visible.

Figure 2 displays tentative models for islands I and II, in-
dicating how the NaCl layer is arranged on the silver surface.
It turns out that for most orientations of the NaCl islands,
alternating stripes occur with the Cl− and the Na+ ions resting
either nearly on top or on a bridge position. The distance
between the stripes may vary between about 20 Å and 30 Å.
Figure 2(c) displays the hexagonal lattice of the silver and the
square lattice of the NaCl. For the latter, both the primitive and
commonly used c(

√
2X

√
2) unit cells are given. Please note

FIG. 1. Three different islands of NaCl on Ag(111) showing
moiré patterns. The “star” in the lower left corner of each fig-
ure indicates the axes of the unit cell of the Ag(111) lattice. For
each island, the orientation and the period of the stripe patterns is
different. The left side displays topographic images, the right the
corresponding dI/dV maps, which represent the LDOS for the given
bias voltage which is applied to the sample. For the topographic
images, a shaded representation has been chosen to emphasize the
corrugation on the island, which is minute relative to the height
of the NaCl islands. (a) Topography of island I, Ut = 0.28V and
It = 500 pA. (b) dI/dV map of island I, Ut = 0.24V, It = 500 pA,
period p = 22.5 Å. (c) Topography of island II, Ut = 0.33V , It =
500 pA. (d) dI/dV map island II, Ut = 0.30V , It = 500 pA, period
p = 20.15 Å. (e) Topography island III, Ut = 0.22V , It = 800 pA.
(f) dI/dV map island III, Ut = 0.25V , It = 800 pA, period p = 27 Å.

that only the two adjacent layers at the interface are shown,
although the NaCl islands are formed by a double layer.
Moreover, the undistorted NaCl lattices without relaxation are
drawn.

A tentative model for island I is obtained if the square
lattice of the NaCl aligns with one axis of the Ag lattice. A
8
√

2×
√

2 supercell in terms of the quadratic NaCl lattice is
formed, which is commensurate. This arrangement requires
only a little relaxation with an expansion along the short axis
of 2.3% and a compression of 0.3% along the long axis of the
unit cell for the superstructure marked by the green rectangle
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FIG. 2. Simplified models for the arrangement of NaCl on
Ag(111) without relaxation of the atomic positions. Only the silver
and the NaCl layer at the interface are shown. The silver atoms are
given by the open circles, the Na+ ions by the red, and the Cl−

ions by the blue circles. (c) Hexagonal lattice of the silver and the
square lattice of the NaCl. For the latter, both the primitive and the
commonly used c(

√
2X

√
2) unit cells are given. (a) If the lattices

align, a 8
√

2×
√

2 superlattice is formed. A supercell is marked by
the green rectangle. The shading indicates the alternating stripes of
nearly top or bridge sites. (b) Tentative model for island II with
a small rotation of the NaCl lattice relative to the silver lattice. A
possible supercell is indicated in green.

in Fig. 2(a). It comprises two of the alternating stripes of
nearly top or bridge sites. Hence, the observed period is p =
22.5 Å, half the length of the supercell. This type of island has
a rectangular shape; the edges are given by the principal axis

of the NaCl lattice, one of them being aligned with an axis of
the silver lattice. Density functional theory (DFT) calculations
to understand the impact of the moiré pattern on the interface
state are presented below.

Figure 2(b) yields a tentative model for the geometry of
island II. It is more complicated because the square lattice of
the NaCl is rotated by about 4◦ relative to the Ag lattice. Only
a minimal distortion of the NaCl lattice is needed to form a
commensurate supercell indicated by the green parallelogram.
The period of the stripes is p = 20.15 Å, hence somewhat
smaller than for island I. The shape of the island is irregular.
The edges are partially aligned to the NaCl lattice, partially to
the Ag lattice.

For all three islands of Fig. 1, a series of measurements for
different tunneling voltages have been performed. The dI/dV

images show a strong variation as a function of the tunneling
voltage. In the following, we will focus on island II because
the inclination of the moiré pattern relative to the sides of the
islands helps to separate the observation of the modulation of
the LDOS caused by the moiré pattern from the one resulting
from reflections at the step edges.

Figure 3 shows for island II how the LDOS of the un-
occupied states develops as a function of energy in steps of
0.1 eV between 0.23 eV and 0.43 eV. Only the data for
five energies are displayed—the complete data set with all 21
images is given in the Appendix A. The gray scale represents
the normalized differential conductance dI

dV
/ I

V
such that the

absolute value as well as the variation of the measured dI/dV

can be compared for the different tunneling voltages [29].
As can be seen, the average of the normalized differential
conductance on the NaCl island continuously decreases with
increasing energy. For further discussion of this data set, only
the normalized conductance will be used.

The inner region of the island is dominated by a periodic
modulation which exhibits exactly the same period for all
energies. Superposed to this modulation and to be discussed
in more detail below, the formation of standing waves in the
vicinity of the edges can be seen. To disentangle the different
modulations, the Fourier transform of each picture was calcu-
lated as displayed on the right side of Fig. 3. The dashed white
circles mark the two spots which refer to the period of the
pattern caused by the periodic potential. While their intensity
may vary, their position is fixed, independent of the energy.
The scattering at point defects within the island and the edges
of the island leads to the more or less circular structure, which
grows with increasing energy. It corresponds to the energy
contour in k space.

To analyze the periodic modulation far from the edges, for
each energy the average over a large area has been evaluated
in Fig. 4. In the upper part of the figure, the direction and
the area are indicated where the data were deduced. The
average has been calculated over 550 lines perpendicular to
the moiré pattern. In the middle of the figure, the line averages
are displayed as a function of energy. To visualize the lateral
modulation more clearly, the mean value has been subtracted
for each energy. The blue horizontal line helps to visualize
the change of the phase of the periodic pattern which occurs
around E = 0.265 eV. At bias voltages below 0.26 V, the
maxima in the LDOS lie in the minima of the topography
(where the surface appears less high in the STM image). In
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FIG. 3. dI

dV
/ I

V
measurements representing the density of states

for island II at five different energies. The given voltages refer to
the sample bias. The left side shows the real-space signal, the right
side the corresponding Fourier transform. The latter indicates that
the position of the two spots marked by the dashed white circles is
independent of the energy. The full data set for 21 different energies
is given in the Appendix A.

contrast, for bias voltages above 0.27 V, the maxima of the
LDOS fall on the maxima of the topography. This is what one
expects in case of a 1D nearly free electron gas and a peri-
odic potential exhibiting a first band gap at around 0.265 eV.
That implies that the maxima in the topography correspond

FIG. 4. Analysis of the dI/dV signal as function of position.
(a) dI/dV data for island II at E = 0.32 eV. For further evaluation,
the marked area has been selected and averaged along the rows.
(b) The result as function of energy. (c) The corresponding modu-
lation amplitude as function of energy. The black squares show the
result without and the red dots with corrections, accounting for the
small variation of the distance between the tunneling tip and the
sample as function of the lateral position.

to maxima in the potential for the nearly free electron gas as
well.
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For further discussion, we consider the relative modulation
of the LDOS as a function of the lateral position x,

a(E ) = LDOS
(

x = p

2

)

− LDOS(x = 0)

LDOS
(

x = p

2

)

+ LDOS(x = 0)
, (1)

where we assume that the maxima and minima are located at
the maximum and the minimum of the potential or vice versa.
That leads to

LDOS(x, E ) = LDOSave(E )

[

1 + a(E ) cos

(

2π

p
x

)]

, (2)

where LDOSave(E ) is the LDOS averaged over (one
period of) the periodic potential. For a = 1, it follows
that LDOS(x, E ) ∝ cos2( π

p
x), for a = −1, LDOS(x, E ) ∝

sin2( π
p

x), and for a = 0, LDOS(x, E ) does not depend on x.
For a more quantitative comparison to the numerical calcu-

lations for each line dI/dV ∝ 1 + a2D(E ) cos( 2π
p

x) has been
fitted. The black squares in Fig. 4(c) display a2D(E ) as a
function of energy.

Since the images of dI/dV as a function of position are ob-
tained in constant current operation of the STM, the distance
between tip and sample is continuously readjusted to maintain
a constant tunneling current. As can be seen in Fig. 1, there
is a tiny periodic variation ±�z with the periodicity of the
moiré pattern because the total tunneling current is related to
the integral over the density of electronic states from the Fermi
level up to the energy given by the tunneling voltage according
to Ref. [30]. Hence, for comparison to the numerical calcula-
tions performed for constant distance between tip and sample,
a small correction of the data is required. Therefore, �z(E )
was evaluated and the measured dI/dV data were multiplied
by f = e

−2α�z(E )·cos( 2π
p

x), where an estimated decay length of
α = 1 Å−1 for the exponential distance dependence of the
tunneling current is used. �z(E ) slowly varies with the energy
exhibiting at maximum ±0.008 Å at E = 0.27 eV. Hence, f

is close to one, deviating by ±1.6% at maximum. The red dots
in Fig. 4(c) show the corrected data for a2D(E ) as a function
of energy. This enhances the measured periodic modulation at
energies below the gap of the subband and slightly reduces it
above.

Figures 3 and 4 are deduced from a large area but only a
limited set of energies. To obtain a complementary set of data,
dI/dV curves as a function of energy but for a limited number
of positions on the surface have been measured. Figure 5(a)
displays several curves at positions near the maximum (red)
or minimum (blue) of the lateral potential. As already found
for the data set of Fig. 3, the average dI/dV signal decreases
with growing energy above E = 130 meV. In contrast to the
data displayed in Figs. 3 and 4, the data have been acquired at
constant distance between tip and sample but at various lateral
positions while the tunneling voltage was swept. Figure 5(b)
displays the aggregated information. The black line shows
the average over two lateral periods. Again, for each energy,
LDOS(x, E ) = LDOSave(E )[1 + a2D(E ) cos( 2π

p
x)] has been

evaluated. The red and blue curves show line sections of the
obtained hypersurface for x = 0 and x = p/2. Figure 5(c)
displays the relative modulation a2D(E ).

FIG. 5. (a) dI/dV measurements at 12 given positions—the po-
sition has been stepwise displaced along the arrow from the red
to the blue position. (b) For the full data set along the arrow, the
LDOS(x, E ) [Eq. (2)] was evaluated and the LDOS(E )ave is given
by the black line. The red line shows LDOS(E )ave(1 + a2D(E )), the
blue LDOS(E )ave(1 − a2D(E )). (c) Normalized modulation ampli-
tude a2D(E ).
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FIG. 6. Step edge induced modulation of the LDOS on the island
of NaCl on Ag(111) studied in Figs. 3 and 4 at three different ener-
gies. To enhance the features, the effect of the periodic potential was
removed by Fourier filtering. (a) at E = 0.23 eV, (b) at E = 0.28 eV,
(c) at E = 0.33 eV. (d) Line scans along the lines indicated by the
arrows. The change of the wavelength of the modulation as function
of energy is clearly visible.

It is interesting to compare for the same NaCl island the
modulation induced by the lattice mismatch with the silver
to the standing wave patterns of the interface state caused by
point defects and step edges. The experimental data, e.g., of
Fig. 3, contain an incoherent superposition of both contribu-
tions. The part due to the periodic potential can be simply
removed by suppressing the two spots in the Fourier trans-
form of the data marked by the dashed white circles and
transforming the data back in real space. For three energies,
Fig. 6 displays the corresponding dI/dV patterns which clearly
exhibit the characteristic features of standing electron waves.
The line scans perpendicular to the right edge of the island
shown in Fig. 6(d) reveal how the wavelength of the standing
waves varies as a function of energy. The analysis for the full
data set can be used to evaluate the dispersion relation for
the interface state presented in Fig. 7. The onset of the latter
was determined by dI/dV spectroscopy (see, e.g., Fig. 5) to
E0 = 92 meV. The blue curve is given by the relation E (k) =
E0 + h̄2

2m||
k2. The best fit is obtained for an effective mass of

m|| = 0.56 me with the electron mass me, which is in good
agreement with previous work [18,19,25]. A close inspection
of the standing waves reveals a reduced coherence because
the oscillations decay faster than expected for the ideal case,
as the distance to the defect grows. According to Refs. [8,31],
the modulation of the LDOS for limited coherence may be

described by LDOS ∝ (1 − e
− 2x

L� J0(2k0x)), where J0 is the
zeroth Bessel function, x is the distance to the step edge,
k0 is the wave vector for the given energy, and L� is the

FIG. 7. E (k) for the interface state as derived from the reflection
at step edges.

phase coherence length. The comparison of calculations for
different values to the experimental data provides a best fit
for L� ≈ 100 Å. As discussed below, this value will become
important for the discussion of the modulation of the LDOS
caused by the 1D periodic potential.

IV. THEORETICAL BACKGROUND

A. 1D

We first consider an electronic system subjected to a peri-
odic potential V (x) in one dimension. It can be described by a
Bloch function

ψn,kx
(x) = eikxxun,kx

(x), (3)

where un,kx
(x) is the periodic part of the Bloch function in x

with an eigenvalue En,kx
for the energy; n denotes the elec-

tronic band, kx is the wave vector. Due to its periodicity, the
function can be expressed as a Fourier series,

un,kx
(x) =

∑

G

C
kx

n,Ge−iGx, (4)

where Ck
n,G are the coefficients for the Fourier component

given by G = 2πnG/p with an integer number nG and the
period of the potential p. For an ideal system without defects,
the local density of states will be given by

LDOS(x, E ) =
∑

n,kx

|un,kx
(x)|2δ(E − En,kx

)

=
∑

n,kx

⎛

⎝

∑

G1,G2

C
kx∗
n,G1

C
kx

n,G2
ei(G1−G2 )x

⎞

⎠δ(E − En,kx
).

(5)

We intentionally write the two summations separately because
the inner sum represents the summation of the coherent con-
tributions for a given energy and wave vector, whereas the
outer sum incoherently adds the result of the inner sum for the
different electronic bands and wave vectors.
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FIG. 8. (a) Energy versus kx for a one-dimensional almost free electron subjected to a weak periodic potential for an effective mass
meff = 0.56me, a period of p = 20.15 Å, and a potential height of V0 = 0.03 eV. The gray area indicates the first band gap. (b) a1D versus
energy. For energies below the gap, the modulation of the density of states as function of x is opposite in phase, above the gap in phase with
the potential.

For a weak potential, bands separated by band gaps will be
formed, see, e.g., the Kronig-Penney model [13]. Figure 8(a)
shows the energy of the first two bands versus kx for the first
Brillouin zone as well as the band gap.

If we assume a periodic potential, which is symmetric
around x = 0 and has its maximum at x = 0, e.g., V =
V0 cos( 2π

p
x), V0 being the amplitude of the potential, the

LDOS exhibits a periodic modulation in x. The modulation
is small unless the energy is close to a band gap. To a good
approximation it may be assumed to be sinusoidal.

For the relative modulation of the LDOS for the nearly
free electron gas, one obtains a1D(E ) displayed in Fig. 8(b) as
function of energy. To facilitate the comparison to the exper-
imental results, we have offset the energy by E0 = 0.092 eV,
which is the energy of the band minimum of the interface
state. As discussed in the Appendix B, the modulation is given
to a good approximation by a1D ≈ 2C

kx

0 C
kx

G=2π/p (for kx > 0).
For energies below the first band gap, a1D is negative, i.e.,
the maxima of the wave function and the LDOS lie in the
minima of the potential. For energies above the gap, a1D is
positive.

B. 2D

If the electron gas is extended to two dimensions, we have
�k = (kx, ky). The solution of the Schroedinger equation is
given by the product of two independent solutions ψ (x, y) =
ψ (x)ψ (y), where ψ (x) is the wave function discussed above
and ψ (y) is the solution for a free electron. The band structure
for kx persists. The total energy is given by the sum

E
n,�k = Ex + Ey = En,x(kx ) +

h̄2k2
y

2m||
, (6)

where En,x(kx ) is the energy for the part of the solution in
the x direction already discussed for the 1D case and m|| is

the effective electron mass for the NFE. If the average over
k vectors for a given total energy is considered, there is no
band gap anymore because the y direction may contribute an
arbitrary energy.

Figure 9(a) displays for energies below (blue dots) and
above (red dots) the 1D band gap, pairs of kx and ky contribut-
ing to the LDOS. The new LDOS is the same as Eq. (5) with
an extra summation over ky. En,kx

is replaced by E
n,�k .

Figure 10 displays the LDOS as a function of position
and energy obtained by solving the Schroedinger equation nu-
merically. It reveals that at low energies only the coefficients
Ck

n,G with G = −2π/p, 0, 2π/p contribute, leading to a pe-
riod of p in the LDOS. For higher energy (E > 0.27 eV),
those contributions vanish and only coefficients for higher n

contribute. The resulting modulation is relatively weak but
it contains contributions of G = 4π/p and G = 6π/p. For
a consistent discussion, we will only consider the relative
modulation of the LDOS, a2D(E ) with a period p. Hence,
LDOS ∝ 1 + a2D(E ) cos( 2π

p
x). The continuous green line

in Fig. 11 displays a2D(E ) as a function of energy. For
energies below the gap, it behaves rather similarly to the
1D case. It starts at almost zero and approaches a minimal
value at an energy slight below the gap. However, in con-
trast to the 1D case, it stays close to zero and exhibits no
maximum.

The results may be qualitatively understood by looking at
the pairs of kx and ky selected by the delta function δ(E −
E

n,�k ) in the extension to 2D of Eq. (5). They contribute with
the a1D(E ) corresponding to the kx value. Figure 9(a) displays
possible pairs of kx and ky in k space for an energy below
(blue dots) and above (red dots) the first band gap (for kx). It
is important to note that for energies below the gap, Ex will
be below the gap as well and all the pairs of kx and ky stem
from the the first band (for kx), contributing to the LDOS with
a negative a1D. Figure 9(b) shows a1D(kx ) by the open blue
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FIG. 9. (a) Pairs of kx and ky below (blue) and above the first band gap (red), i.e., at energies of E = 0.235 eV and E = 0.290 eV. The
continuous lines of constant energy were interpolated between the numerically calculated values. The underlying gray scale displays Pcoh(�k),
the weight for the contribution by the pair of kx and ky. (b) Contribution to the modulation by a1D for the different ky. The open squares display
the results for the ideal 2D scenario, the filled triangles for the quasi-2D scenario, the full circles for the scenario including both the quasi-2D
and the limited phase coherence.

squares. Hence, a2D(E ) is negative and the LDOS will exhibit
a modulation with a minimum at x = 0, as can be seen in the
Figs. 10 and 11.

However, if the total energy is larger than the gap energy,
the situation is more complex because Ex may be below or
above the band gap. As a consequence, there are contributions

FIG. 10. Numerical calculation of the LDOS as function of lateral position and energy for the ideal 2D system (a), the quasi-2D system
including the tunneling process (b), and the quasi-2D system, including the tunneling process and the limited phase coherence (c). (d)–(f)
Corresponding line scans for each scenario on a maximum (red) and minimum (blue) of the periodic potential. For better comparison to the
experimental data presented below, a band offset of E0 = 0.092 meV has been included.
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FIG. 11. Comparison between the numerical calculation of the
modulation amplitude a(E ) of the LDOS as function of lateral posi-
tion and energy for the ideal 2D system (green), the quasi-2D system
including the tunneling process (red) and the quasi-2D system in-
cluding the tunneling process and the limited phase coherence black
line. The blue line displays the modulation according to Fig. 4, the
red circles according to the data of Fig. 5.

to the sum in the LDOS from the first and the second bands,
e.g. for E = 0.29 eV there are contributions from the first
electronic band ranging from about ky = 0.08 to 0.17 Å−1 and
from the second one ranging from about ky = 0 to 0.06 Å−1,
as indicated in Fig. 9(a) by the filled red circles. Figure 9(b)
shows the value of a1D(E ) for the different ky. The contri-
butions are strongest if kx is close to the domain boundary.
The part of the first band leads to a branch with negative
sign, the one for the second band to a positive branch. For
the ideal system, all pairs of kx and ky equally contribute and
a calculation reveals that for energies above the band gap the
modulation will almost vanish as shown in Figs. 10(a) and
10(d), and by the green line in Fig. 11.

However, the experimental results presented above reveal
a modulation in the observed LDOS, which exhibits an about
equal strength but an antiphase below and an in-phase contri-
bution above the energy of the band gap.

C. Quasi-2D

In a physical experiment, the properties of a 2D system
are observed if the system is confined in the third dimen-
sion to a narrow space above and below a plane. The LDOS
shows a rapid decay with growing distance from this plane.
In the presented experiment, the tip of a scanning tunneling
microscope probes the LDOS in the exponential decay into the
vacuum above the surface. Let us assume that the 2D electron
system is confined to the plane z = 0, then the periodic part of
the Bloch function u

n,�k (x, z) contains exponentially decaying
components in z which have to be included in the Fourier
series. The vacuum side z > 0 is given by

u
n,�k (x, z) =

∑

G

C
kx

n,Ge−iGxe−ξ (G,k,En,k )|z|. (7)

The function decays exponentially with the decay coefficient
ξ (nG, �k, En,k ), given by

ξ (G, �k, E�k ) =
√

2m⊥(eφ − E
n,�k )

h̄2 + m⊥
m‖

(

(kx − G)2 + k2
y

)

.

(8)

Here, φ is the work function, E
n,�k is the band energy for

the 2D electron state n, �k, m⊥ is the effective mass for the z

coordinate, and m‖ for the x y coordinates. The decay in z is
a filter of high spatial frequencies since the second exponen-
tial in Eq. (7) rapidly decreases for larger values of G. This
captures the typical effect of losing resolution as the STM tip
moves away from the surface [30].

Figures 10(b) and 10(e) display the LDOS as calcu-
lated from Eq. (7) based on the numerical solution of the
Schrodinger equation using φ = 3 eV, m⊥ = me, and m‖ =
0.56 me for a distance of 8 Å between the tip and the sam-
ple surface, which roughly corresponds to the experimental
parameters. The filtering of higher spatial frequencies is quite
obvious, contributions for higher values of G are absent even
for energies above the first band gap. Again, a lateral mod-
ulation of the LDOS is found which exhibits minima at the
position of the maxima of the potential if the energy is below
the band gap. However, now a lateral modulation of the LDOS
is found, which is in phase with the potential for energies
above the band gap, qualitatively recovering the features of
the above experimental data.

The effect is due to the complex interplay of the contri-
butions for G = −2π/p, 0, 2π/p. The lateral modulation of
the LDOS is due to the interference term with the product for
the two G = 0 and G = 2π/p (or G = −2π/p and G = 0).
The contribution of the periodic potential affects the decay
coefficient given by Eq. (8) for G = ±2π/p such that it be-
comes smaller with increasing wave vector kx and does not
depend much on ky (see Appendix C for details). As can be
seen in Fig. 9(a) for energies above the band gap, there are
contributions of the first band with kx ranging from zero to
the zone boundary and from the second band with kx from
some intermediate value to the zone boundary. Hence, as
shown in Fig. 9(b) by the red triangles, the latter are less
attenuated in average and the contributions no longer cancel.
The modulation amplitude ā2D as function of energy is plotted
by the red curve in Fig. 11. The effect on the LDOS can also
be seen Figs. 10(b) and 10(e).

Quantitatively, the experimental amplitude a2D is larger
than the one found with the above theory. One more effect
is needed to account for the complete behavior of the experi-
mental data.

D. Effect of limited spatial electronic coherence

It is well-known that in a real experiment the phase co-
herence will be limited. This has been discussed, e.g., for the
Shockley-type electronic surface states on the noble metals
[8,31,32]. The Fourier transform, Eq. (4), can be seen as the
composition of electronic plane waves along the x direction.
Indeed, it takes into account the scattering of the periodic
potential and includes effects such as Bragg scattering. Elec-
tronic decoherence then will play a role in how these plane
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waves compose. Let us use the reduced density matrix to study
this [33]:

ρ̂k =
∑

G1,G2

|k − G1〉〈k − G2|
〈

�k
G1

∣

∣�k
G2

〉

. (9)

This expression is based on the states |k − G〉 that correspond
to each Fourier component of Eq. (4). However, the environ-
ment is included in the states |�k

G2
〉 that have to be taken into

account to consider how interactions with the environment
lead to decoherence of the 2D electronic state. Only when
G1 = G2, the environment induces a change in the electronic
state. Let us rename the coefficient to

〈

�k
G+q

∣

∣�k
G

〉

= f (q, k), (10)

such that f (q = 0, k) = 1.
Projecting the reduced density matrix in real space and

taking into account the energy distribution of each state, we
can evaluate the total local density of states that is used in the
Tersoff-Hamman picture of STM [30]:

LDOST (x, y, E ) =
∑

n,�k

(

∑

G1,G2

C
k∗

x

G1
C

kx

G2
ei(G1−G2 )x

× e−(ξ (G1 )+ξ (G2 ))|z| f (G1 − G2, k)

)

× δ(E − E
n,�k ). (11)

The observed LDOS mainly results from the lowest G

values because the coefficients Ck
G are very small for higher

G values (see Appendix B). Moreover, the higher spatial fre-
quencies are damped by the stronger exponential decay into
the vacuum.

Essentially, only the diagonal terms with G1 = G2 and
f (q = 0, k) = 1 as well as the two of-diagonal pairs G1 −
G2 = ± 2π

p
contribute. We set Pcoh(k) = 〈 fG1 =G2,k〉 for the lat-

ter. Hence, the double sum over G in Eq. (11) can be separated
in a diagonal (G1 = G2),

D
n,�k =

∑

G1=G2

Ck∗
G1

Ck
G2

ei(G1−G2 )xe−(ξ (G1 )+ξ (G2 ))|z|

=
∑

G

∣

∣Ck
G

∣

∣

2
e−2ξ (G)|z|, (12)

and a nondiagonal (G1 = G2) part:

N
n,�k =

∑

G1 =G2

Ck∗
G1

Ck
G2

ei(G1−G2 )x e−(ξ (G1 )+ξ (G2 ))|z|.

Finally, we obtain

LDOST (x, y, E ) =
∑

n,�k

(D
n,�k + Pcoh(�k)N

n,�k )δ(E − E
n,�k ).

This may be rewritten, using the complete sum over the G’s:

LDOST (x, y, E )

=
∑

n,�k

(Pcoh(�k)S
n,�k + (1 − Pcoh(�k))D

n,�k )δ(E − E
n,�k ),

(13)

where S
n,�k = D

n,�k + N
n,�k . Hence, the resulting LDOS has a

contribution given with the probability Pcoh for a coherent pro-
cess and one with the complementary probability (1 − Pcoh )
for processes with loss of coherence.

Phenomenologically, the different processes caused by the
environment leading to a loss of the phase information can
be accounted for by the phase coherent length L� of an
electron in the 2D state [31]. The interference of the wave
functions causing the modulation of the LDOS by the peri-
odic potential depends on the ratio between the period of the
potential and the coherence length. Relevant is the effective
coherence length given by the component of the coherence
length perpendicular to the periodic potential L�,eff = kx

|�k|L�.

It is important to note that this leads to a different weight for
the contributions to the oscillations of the LDOS, depending
on the direction of the wave vector. Following Bürgi et al. [31]
yields the probability for a coherent process,

Pcoh(�k) = e
− 2p

L�,eff = e
− 2·p·

√

1+
( ky

kx

)2

L� , (14)

where p is the period of potential V (x) and L� the phase
coherence length. Figures 10(c) and 10(f) display the results
of the numerical calculation using Eqs. (13) and (14). The
coherence length has been estimated to L� = 100 Å from the
decay of the standing waves at step edges, as discussed above.
The relative modulation amplitude ã2D as a function of energy
is plotted by the black curve in Fig. 11. Obviously, the reduced
coherence results in less interference, which is clearly visible
below the energy gap. However, above the gap it merely
affects the pattern which is out of phase with the modula-
tion of the potential and the in-phase contribution dominates
the incoherent sum. As a consequence, it exhibits an about
equal negative and positive amplitude below and above the
gap energy in agreement with the experimental observation,
although the overall modulation amplitude is reduced because
of the processes which destroy the coherence.

The findings for MgO on Au(111) [24] or NaCl on Cu(111)
[20] and Ag(111) [18,19,25] have been mainly explained us-
ing the textbook models for a 1D electronic system with weak
periodic potential. In contrast to the 1D model, it was observed
that modulation of the LDOS with the period of the potential
persists for a large range of energy above the band gap. This
was attributed to the embedding of the 1D potential in the 2D
electron gas. However, it was overlooked that this completely
contradicts the prediction for an ideal system of this kind,
which should show no modulation of the LDOS in that energy
range at all.

E. DFT calculations

The numerical simulation of the modulation of the LDOS
requires a model for the potential seen by the electrons of
the interface state between Ag(111) and NaCl. To obtain an
estimate for the magnitude of the potential, DFT calculations
were performed. The VASP code was used with Projected
Augmented Waves (PAW) atom potentials and the Perdew-
Burke-Ernzerhof (PBE) exchange and correlation functional
[34–36]. A 8

√
2×

√
2 unit cell was built on the Ag(111)

surface to accommodate a NaCl bilayer. The size of the unit
cell is determined by the mismatch of the respective lattice
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FIG. 12. DFT results of a NaCl bilayer on Ag(111). (a) NaCl
layer corrugation due to the matching of the NaCl layer with the
Ag(111) substrate. Despite the small value of the corrugation (∼0.02
Å), there is a 1D potential created along the y axis by this corrugation.
(b) One-electron potential created by the interaction of the NaCl bi-
layer with the Ag(111) substrate. (Compared to the model presented
in Fig. 2 the x, and y axes are interchanged.)

parameters. Here, we used the PBE-DFT values for silver and
NaCl, 4.08 Å and 3.99 Å, respectively. This is in agreement
with the experimental observations above.

Figure 12(a) shows the periodic structure formed by the
above unit cell. There is a natural 1D pattern along the x

axis that is formed by the coincidence of Na and Cl atoms
on certain Ag(111) sites. This leads to a physical corrugation
of the layers as shown in Fig. 12. The potential induced
by the NaCl layer on the electronic structure of Ag(111) is
assumed to be due to the mutual interaction between layer
and substrate. We evaluated it by taking the difference of the
one-electron Kohn-Sham potential of the full system, NaCl
on Ag(111), minus the potential of the NaCl layer, minus the
potential of the Ag(111) substrate. This mutual potential is
depicted in Fig. 12(b) and shows the period of the unit cell
with a peak-to-peak value of ∼10 meV, showing that a NaCl
bilayer effect on the substrate’s electronic layer is indeed in
the range of tens of meV as assumed in the theory section.

V. DISCUSSION

The system NaCl on Ag(111) studied in this paper is one
example for a nearly free 2D electron gas embedded in a
1D potential. Systems like the herringbone reconstruction of
the Au(111) surface [15–17] or layers of organic molecules
on Ag(111) [23] exhibit a strong corrugation, which makes
it rather difficult to extract the LDOS from dI/dV measure-
ments [22]. Islands of inorganic material like NaCl or MgO
may grow on (111) surfaces of noble metals with very little
corrugation manifesting in moiré patterns, which occur be-
cause large supercells are formed to accommodate the lattice
mismatch. However, the accommodation of atoms of the ad-
sorbate layer in different positions of the substrate causes a
periodic potential which is important for the electronic in-
terface state. Therefore, those systems are ideal to study the
effect of a 1D potential on the nearly free electron gas of the
interface state by scanning tunneling spectroscopy.

The findings for MgO on Au(111) [24] or NaCl on Cu(111)
[20] and Ag(111) [18,19,25] have been mainly explained us-
ing the textbook models for a 1D electronic system with weak
periodic potential. In contrast to the 1D model, it was observed
that modulation of the LDOS with the period of the potential
persists for a large range of energy above the band gap. This
was attributed to the embedding of the 1D potential in the 2D
electron gas. However, it was overlooked that this completely
contradicts the prediction for an ideal system of this kind,
which should show almost no modulation of the LDOS in that
energy range at all.

The presented theoretical description of the 2D system
shows that to explain the observation by us and other groups
as well, the detection mechanism by the tunneling microscope
and the limited spatial coherence need to be included. Ac-
cording to Refs. [8,37], the main cause for the latter is the
electron-electron scattering. The tunneling process and the
decoherence favor the contributions to the LDOS which cor-
respond to the LDOS of the purely 1D system. In particular, it
explains why for energies above the band gap the modulation
of the LDOS with maxima on the maxima of the 1D potential
is not canceled by the contribution from wave vectors with
a component mainly parallel to the valleys or ridges of the
potential. Based on the numerical solutions of the Schrodinger
equation, the LDOS to be observed by the tip of the STM has
been calculated, including the spatial coherence length. The
latter was evaluated from the decay of standing electron waves
at step edges to L� ≈ 100 Å. Figure 11 shows the comparison
between the numerical calculations of the modulation ampli-
tude for the different scenarios sketched above (green, red,
and black lines) and the experimental results based on dI/dV

measurements presented in Figs. 4 and 5 (red dots and blue
line). The green line displays the ideal 2D system predicting
that there should be almost no visible modulation for energies
above the band gap. For the red line, the spatial filtering by the
tunneling process between the tunneling tip and the sample
has been accounted for. Finally, the black line displays the
calculations including, in addition, the limited spatial coher-
ence. The experimental results extracted from the data shown
in Fig. 4 are given by the red dots, those from the data of Fig. 5
by the continuous blue line. The agreement is not perfect, but
the essential features of the experiment are reproduced. The
comparison to the experimental observation provides the best
agreement for a modulation of the periodic potential of about
�Ep−p = 30 meV. This is about the same magnitude as given
by the DFT calculations as well as the potential for the surface
state found on the herringbone reconstruction of the Au(111)
surface [38].

The moiré pattern of NaCl islands exhibits different pe-
riods and orientations depending on island size and other
parameters which are related to the dynamic of the growth.
For the present paper, we focused on a NaCl island on
Ag(111) which is large enough to observe the modulation of
the LDOS far from the edges and which exhibits a periodic
potential that is not oriented parallel to one of the edges. See
Supplemental Material [39] for the calculation of the standing
waves caused by step edges in the presence of a periodic
potential at an arbitrary angle. Hence, the interplay between
standing waves of the 2D electrons caused by scattering at
any kind of defects, like point defects or step edges, and the
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modulation of the LDOS exhibiting the period of the potential
which is observed for the infinite and defect-free system can
be disentangled. The first type occurs for all energies above
the band onset except the mini band gap caused by the pe-
riodic potential, and shows the dispersion E (k) of the nearly
free electron gas, while the second is dispersionless. For sys-
tems of finite size, it can be difficult to distinguish the different
contributions. This has led to the false conclusion [24] that this
electronic state shows the normal parabolic dispersion below
the band gap and no dispersion above, leading to a vertical
line in the E(k) diagram.

VI. SUMMARY

The investigation of the LDOS of a 2D system subjected to
a 1D periodic potential reveals two kinds of modulations. One
type is caused by the interaction with defects, e.g., point or
line defects. They reveal an energy-dependent period which
is described by the dispersion relation of the 2D state. In
contrast for a defect-free system, the LDOS exhibits a periodic
modulation with a period of the periodic potential which is
independent of the electron energy. Our experimental results
confirm a series of observations for a nearly free 2D electron
gas interacting with a 1D periodic potential, e.g., for the her-
ringbone reconstruction on Au(111), MgO islands on Au(111)
[24], or NaCl islands on Cu(111) [20]. The interaction leads
to the formation of subbands and a periodic modulation of
the density of states found for energies below and above the
corresponding band gap. As one would expect for a pure
1D system, for energies below the gap the maxima in the
LDOS are located between the maxima of the periodic po-
tential and on the maxima for energies above. However, the
latter observation contradicts the prediction for an ideal 2D
system because the out-of-phase and in-phase contributions
should almost cancel. To explain the discrepancy, different
effects have to be considered. The observation by scanning
tunneling spectroscopy leads to a filtered result because the
tunneling probability for electrons depends on the wave vector
of the electrons. That leads to the reduction of contribu-
tions at higher spatial frequencies slightly enhancing the 1D
character of the system. However, the effect is too small to
fully explain the observations. We propose that the apparent
one-dimensionality of these systems is largely caused by the
limited spatial phase coherence of the electronic states. This
reduces the contribution of k vectors with the major compo-
nent parallel to the rows. This can also be interpreted as a
longer effective path for the interference between the rows of
the periodic potential.

In short, for an ideal system, such a periodic modulation
should only be found below the band gap of the subbands
caused by the periodic potential. However, the experimental
observation reveals an even stronger modulation above the
gap. This can be explained if the limited phase coherence is
included in the description of the processes.
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APPENDIX A: FULL DATA SET OF DI/DV IMAGES

OF ISLAND II

Figure 13 shows the LDOS of the unoccupied states for
island II as a function of energy in steps of 0.1 eV between
0.23 eV and 0.43 eV. The gray scale represents the normal-
ized differential conductance dI/dV / I/V. The corresponding
Fourier transform of each picture is displayed on the right side
of each subfigure.

APPENDIX B: APPROXIMATE RELATION

BETWEEN THE C
kx

G
AND a1D

To understand the observations, it is helpful to look at the
interplay of the coefficients C

kx

G . It should be noted that for
the given symmetry, the imaginary part is zero. Hence, it is
sufficient to consider the real part. Furthermore, we restrict the
wave vector to kx > 0. The values for kx < 0 are obtained by
interchanging G and −G. Figure 14 displays the coefficients
for G = − 4π

p
,− 2π

p
, 0, 2π

p
, 4π

p
as a function of energy for the

first, the second, and the beginning of the third band.
For the following discussion, we set G̃ = 2π

p
. As can be

seen to a good approximation, only C
kx

0 and C
kx

G̃
contribute.

Hence, one obtains

|un,kx
(x)|2 =

∣

∣C
kx

0 + C
kx

G̃
e−iG̃x

∣

∣

2
(B1)

=
∣

∣C
kx

0 ei G̃
2 x + C

kx

˜̃G
e−i G̃

2 x
∣

∣

2
(B2)

=
(

C
kx

0

)2 +
(

C
kx

G̃

)2 + C
kx

0 C
kx

G̃
eiG̃x + C

kx

0 C
kx

G̃
e−iG̃x

(B3)

=
(

C
kx

0

)2 +
(

C
kx

G̃

)2 + 2C
kx

0 C
kx

G̃
cos G̃x. (B4)

In consequence, only the interference term 2C
kx

0 C
kx

G̃
cos G̃x

leads to a modulation of the LDOS. To understand the origin
of the modulation as function of x, it is to a good approxi-
mation sufficient to consider the product 2C

kx

0 C
kx

G̃
. For the 1D

situation, it directly follows that a1D = 2C
kx

0 C
kx

G̃
. For n = 1, it

is negative and approaches −1 when the energy approaches
the first band gap. For n = 2, it is positive, starts with +1 at
the band edge, and decreases with growing energy. It should
be noted that the same is obtained for negative kx by replacing
C

kx

G̃
by C

kx

−G̃
.

APPENDIX C: ATTENUATION OF THE CONTRIBUTION

TO THE MODULATION OF THE LDOS BY THE DECAY

OF THE WAVE FUNCTION INTO THE VACUUM

By placing E
n,�k from Eq. (6) into Eq. (8), one finds for the

exponent describing the decay into the vacuum:

ξ (G, �k, E�k )

=

√

√

√

√

2m⊥(eφ −
(

En,kx
− h̄2k2

x

2m||

)

h̄2 − 2
m⊥
m‖

kxG + m⊥
m‖

G2.

For a nearly free electron system, δ(kx ) = (En,kx
− h̄2k2

x

2m||
)

will be small and the major variation of ξ as function of kx

results from the term −2 m⊥
m‖

kxG. Based on the approximate

relation between the C
kx

nG and a1D discussed above, to first
approximation the effect of ξ needs to be considered only for
G = 0 and G = 2π/p or G = 0 and G = − 2π

p
for kx < 0. As

can be seen from the formula, kx and −kx will yield the same
ξ . Hence, the contribution to the modulation of the LDOS

FIG. 15. Ratio ā1D/a1D as a function of kx for an energy of
E = 0.305 eV.
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boils down to

ā1D ≈ 2C
kx

0 C
kx

G e
−(ξ (G=0,kx )+ξ (G= 2π

p
,kx ))z

.

Since approximately ξ (G = 0, kx ) does not depend on kX , one
obtains for the attenuation by the tunneling junction:

ā1D/a1D ∝ e
2 m⊥

m‖
kxnGz

.

Figure 15 shows the ratio ā1D/a1D of the full calculation as a
function of kx for the pairs of kx and ky for E = 0.305 eV from
Fig. 9. It displays the exponential increase with increasing
kx predicted by the approximation above. Only close to the
energy of the band gap, deviations due to δ(kx ) become sig-
nificant. As a consequence, the negative contribution from the
first band to ¯a2D for small kx has less weight than the positive
one of the second band at higher kx. Hence, a modulation of
the LDOS in phase with the modulation of the potential is
predicted for electron energies above the first band gap.
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