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1  |  INTRODUC TION

Coloration is ubiquitous in nature and plays a significant role in ani-
mal communication, e.g., in the context of pollination, predator– prey 
interactions, or mating (Cuthill et al., 2017; Endler & Mappes, 2017; 

Postema et al., 2022). Colorful traits are often studied in the con-
text of sexual selection where they are seen as handicaps that 
seem not to increase longevity or fecundity, so they are potentially 
not favored by natural selection. Conspicuous colorful patches— 
displayed mainly by males— would rather allow to attract mates or to 
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Abstract
In many species, offspring display conspicuous coloration already early in life, even 
though they might be very vulnerable to predation at this stage. However, most at-
tention has been drawn to the conspicuous plumage displayed by adult individuals in 
a sexual context, while other signaling functions have been explored much less. Here, 
we investigated whether the yellow breast plumage of blue tit (Cyanistes caeruleus) 
nestlings shows patterns of condition dependence and hence signals individual qual-
ity, as has been described for adult birds. During three consecutive breeding seasons, 
we, therefore, explored the association between nestling body mass and three color 
components of the yellow breast plumage (i.e., UV chroma, carotenoid chroma, and 
total brightness), considering both within and among nest effects. Variation in carot-
enoid chroma was not related to body mass. However, UV chroma and total bright-
ness varied with body mass on an among- nest level, suggesting that they might signal 
aspects of genetic quality or parental rearing capacity. Interestingly, we also found a 
within- nest effect of body mass on total brightness, suggesting that this is a good can-
didate for a condition- dependent signal within the family. Thus, other family members 
could rely on brightness to adjust their behavioral strategies, such as feeding behavior 
in parents. Our study thus reveals that certain color components of the yellow breast 
plumage might signal different aspects of offspring quality, and they might have a cor-
related signaling value across life- history stages.
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discourage	potential	competitors	(Andersson,	1994). Hence, colorful 
ornaments are thought to function as signals of quality to reliably in-
form conspecifics about, for example, condition (Hill, 2011), immune 
status	(Rodríguez-	Ruiz	et	al.,	2020),	or	parasitic	burden	(Megía-	Palma	
et al., 2016). Then, honesty in signaling traits is achieved through 
associated	costs	to	produce	and	maintain	them	(Andersson,	1994).

However, there are conspicuous colorful traits that are also ex-
pressed in sexually non- mature or even in newborn individuals. In 
these cases, coloration is displayed in a non- sexual selection con-
text	 (West-	Eberhard,	1983) at one of the most vulnerable stages 
in life. These traits have often been explained as by- products of 
selection acting on colouration in adults, at least when both off-
spring and adults display the same traits (similar to female orna-
ments, which, initially, were only interpreted as correlated effects 
of	selection	in	males;	see	discussion	by	Amundsen,	2000; see also 
Doutrelant et al., 2020;	 West-	Eberhard,	 1983). However, given 
the low- heritability estimates of certain colorations (Charmantier 
et al., 2017; Class et al., 2019; Drobniak et al., 2013), offspring col-
oration may have important signaling functions in itself like signal-
ing quality or need to parents. For example, the occurrence of natal 
coats in primates— distinct from adult fur— seems to have evolved to 
solicit greater maternal care (Higley et al., 1987).	In	birds,	American	
coot (Fulica americana) parents preferentially feed the most orna-
mented offspring (Lyon et al., 1994).	 Another	 example	 is	 nestling	
gape coloration, a trait that is adjusted to parent visual performance 
(Avilés	 &	 Soler,	 2009) that reflects offspring need (Kilner, 1997; 
but see Heeb et al., 2003), and that ultimately mediates parental 
feeding	 decisions	 (Gotmark	&	Ahlstrom,	1997; Kilner, 1997; Saino 
et al., 2000). There is also some evidence that offspring signals could 
be perceived by other family members to mediate sib– sib interac-
tions (Dreiss et al., 2016, 2017; Roulin et al., 2000).

Yet,	while	evidence	on	the	adaptive	function	of	offspring	orna-
ments in the context of parental care is accumulating, little is known 
about how honesty in these signaling traits can be achieved. The 
expression of structural ornaments such as plumage colouration 
requires a substantial investment of resources such as carotenoids, 
and thus, they can inform parents and other family members (such 
as siblings and breeding helpers) about individual quality (Caro 
et al., 2016; Hinde & Kilner, 2007; Morales & Velando, 2013). Like in 
a sexual selection context, honesty can be achieved if the offspring 
pay a cost for displaying or maintaining such signaling traits, which 
prevents cheating (handicap principle; Zahavi, 1977). Therefore, 
nestling coloration has the potential to evolve as a condition- 
dependent signal to which other family members respond (honest 
signaling models, Fromhage & Henshaw, 2022; Godfray, 1991, 1995; 
Laidre	&	Johnstone,	2013). Contrastingly, nestlings may also display 
color traits that function in a sexual context if these are not replaced 
before sexual maturity. For example, the tail coloration of blue tit 
nestlings, unlike other plumage patches, is not replaced after the 
first year (Peters et al., 2007; Svensson, 1992).

A	 good	 model	 system	 to	 study	 whether	 conspicuous	 nestling	
plumage coloration shows similar patterns of condition dependence 
in both offspring and adults is the carotenoid- based coloration of 

the yellow breast plumage of blue tits (Cyanistes caeruleus). Blue tit 
adults exhibit both UV/blue crown feathers and yellow breast feath-
ers. In adults, UV/blue coloration might function as a sexual signal 
(Parker, 2013), as it reflects condition (Delhey et al., 2006) and shapes 
the parental investment of mates (Limbourg et al., 2013a, 2013b). 
Similarly, yellow breast feathers reliably reflect aspects of individual 
quality such as parasite burden (del Cerro et al., 2010), parental capac-
ity	(García-	Navas	et	al.,	2012), and laying performance (Midamegbe 
et al., 2013). Furthermore, the UV chroma of adult breast plumage 
functions as a signal in parental interactions during offspring care 
(García-	Campa	et	al.,	2022). Blue tit nestlings do not exhibit the UV/
blue crown coloration, but there is some evidence that two color pa-
rameters	of	the	yellow	breast	plumage,	carotenoid	chroma	(Johnsen	
et al., 2003)	and	UV	chroma	(Jacot	&	Kempenaers,	2007; Morales & 
Velando, 2018), co- vary with nestling body mass. Moreover, family 
members rely on nestling UV chroma to adjust their decision rules 
over parental investment. Concretely, nestlings with experimentally 
blocked UV color beg more during feeding rates and in sib– sib com-
petitive interactions (Morales & Velando, 2018). In addition, when 
resources are limited, parents favor chicks with higher UV chroma, 
thus,	presumably	those	of	high	quality	 (García-	Campa	et	al.,	2021; 
Morales & Velando, 2018). It is possible that the different compo-
nents of colouration reveal different aspects of individual quality 
(Candolin, 2004), as they involve different dimensions of avian color 
perception	(Jacot	&	Kempenaers,	2007): reflectance in the ultravio-
let region of the spectrum (UV chroma; a measure of the contribu-
tion of UV to the total reflectance), carotenoid- based reflectance 
(carotenoid chroma; which reflects the amount of carotenoid pig-
ments deposited in feathers, as it represents the relative reflectance 
around the absorbance peak of carotenoids), and total reflectance 
(brightness). Hence, in order to understand the signaling function of 
yellow breast plumage colouration in blue tit nestlings, it is valuable 
to investigate the different color components as well as their rela-
tionships with condition.

In this study, we first explored the associations between UV- 
chroma, carotenoid chroma, and total brightness of blue tit nestling 
yellow breast feathers. Then, we investigated the relationship of 
each of the three color components with body mass in three con-
secutive	breeding	seasons.	We	hypothesized	that	only	individuals	in	
good condition (i.e., nestlings with higher body mass) would be able 
to achieve, in particular, a higher reflectance in the ultraviolet region 
of the spectrum, as this has been experimentally demonstrated pre-
viously (Morales & Velando, 2018). Furthermore, as multiple chicks 
per nest were measured, we tested whether any effect of body 
mass on coloration was due to an among- nest or a within- nest ef-
fect, which, to our knowledge, has not been explored to date. The 
within- nest effect allows testing whether chick coloration varies 
according to within brood differences in body mass, reflecting con-
dition dependence at the nest level. The among- nest effect in turn 
would show whether the correlation of body mass and coloration 
is due to, for instance, genetic effects, parental quality effects, or 
other (common) environmental effects at the nest level. If nestling 
yellow plumage functions as a signal in intra- family interactions, we 
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expect a within- nest effect of body mass on coloration, since this 
would allow other family members to assess individual quality rela-
tive to other siblings in the nest. The interaction between the within 
and the among- nest effect then again would allow testing whether 
the strength of condition dependence is influenced by brood iden-
tity. Unraveling the relationships between offspring colouration 
and body mass at the among- nest and within- nest level is hence 
of great importance to better understand the signaling function of 
coloration.

2  |  MATERIAL S AND METHODS

2.1  |  General methods

The study was carried out in the locality of Miraflores de la 
Sierra,	Madrid,	central	Spain	(40°48′N,	03°47′W)	throughout	the	
breeding	seasons	of	2017,	2018,	and	2019.	We	studied	a	blue	tit	
population breeding in nest- boxes in a deciduous forest, mainly 
dominated by Pyrenean oak (Quercus pyrenaica).	 At	 the	 begin-
ning of the breeding season, we started visiting nest- boxes every 
week to record the onset of nest construction. Then, we checked 
them	every	2–	3 days	to	record	laying	and	hatching	dates	(hatching	
day = day 0). On days 11 (in 2019) or 12 (in 2017 and 2018), that is, 
once blue tit nestlings had mostly developed yellow breast feath-
ers (Peters et al., 2007), we measured feather coloration and body 
mass (see a detailed explanation in Color measurements below). On 
these days, we also took blood samples (in 2017) and 3– 5 breast 
feathers per nestling for molecular sexing (see below). Blue tit 
nestlings exhibit yellow breast feathers, which they molt about 
2 months	 after	 fledging,	 during	 the	 post-	juvenile	 molt	 (Cramp	
& Perrins, 1993). Interestingly, blue tit nestlings are sexually di-
morphic	 in	 the	 yellow	 breast	 feathers	 at	 early	 stages	 (Johnsen	
et al., 2003), whereas these differences disappear as adults (Hunt 
et al., 1998). This pattern is different from other color traits such 
as the upper- tail feathers, which are sexually dimorphic both in 
adults (Hunt et al., 1998)	 and	 nestlings	 (Johnsen	 et	 al.,	 2003). 
Yellow	 breast	 feathers	 reflect	 light	 both	 in	 the	 long-	wave	 band	
of the reflectance spectrum (yellow- to- red wavelengths between 
550	 and	 700 nm)	 and	 in	 the	 ultraviolet	 (UV)	 region	 (Shawkey	 &	
Hill, 2005).

2.2  |  Color measurements

We	measured	breast	 plumage	 coloration	with	 a	 portable	 spectro-
photometer	 (Jazz,	 OceanOptics©)	 connected	 to	 a	 Pulsed	 Xenon	
Light	 Source	 (Jazz	PX	 lamp	OceanOptics©).	 For	 each	nestling,	we	
took three consecutive measurements relative to a white stand-
ard and perpendicular to the feather surface, using an external 
probe	 fitted	 with	 a	 plastic	 cylinder	 to	 standardize	 the	 measuring	
distance	 and	 exclude	 ambient	 light.	We	 then	 obtained	 the	 reflec-
tance	 spectra	 between	320	 and	700 nm	using	CLR	program	v	 1.1	

(Montgomerie, 2009).	We	excluded	 the	 first	part	of	 the	 spectrum	
(300–	320 nm)	in	order	to	avoid	noisy	reflectance	values.

We	 then	 calculated	 three	 objective	 color	 parameters:	 (i)	 total	
brightness	 (i.e.,	 average	 reflectance	 between	 320	 and	 700 nm;	
adapted	 from	Jacot	&	Kempenaers,	2007), (ii) UV chroma (i.e., re-
flectance in the UV wave- band region of the spectrum divided 
by the total reflectance of the spectrum in the avian visual range 
(R320– 400/R320– 700);	adapted	from	Johnsen	et	al.,	2003) and (iii) carot-
enoid chroma (i.e., an estimation of the carotenoid content of yellow 
breast feathers (R700– R450/R700), since carotenoids highly absorb in 
450 nm;	Shawkey	&	Hill,	2005). For each color parameter, we then 
calculated the mean of the three consecutive color measurements 
sampled per nestling.

We	 measured	 the	 plumage	 colouration	 of	 1837	 nestlings	 (n 

2017 =	 672;	n 2018 =	 639;	 n 2019 =	 526)	 of	which	 945	were	males	
and	892	females.	We	excluded	two	nestlings	in	the	analysis	due	to	
a missing value in the carotenoid chroma and an outlier in the UV 
chroma (=0.12). Due to the experiments performed in parallel stud-
ies,	color	measurements	were	taken	at	 the	age	of	12 days	 in	2017	
and	2018	and	11 days	in	2019.	On	the	day	of	color	measurement,	we	
also	weighted	each	nestling	to	the	nearest	0.01 g	with	an	electronic	
Pesola spring balance.

In 2017, we provided blue tit females with extra lutein pig-
ment	prior	to	and	during	egg	laying	(for	details,	see	García-	Campa	
et al., 2020). However, nestlings of lutein supplemented moth-
ers did not differ in coloration from control nestlings (one- way 
ANOVA	test;	total	brightness:	F1,670 = 2.13; p = .15; UV chroma: 
F1,669 = 0.29; p = .59; carotenoid chroma: F1,670 = 0.02; p = .89). In 
the 2018 season, we reduced the yellow UV chroma of one blue tit 
parent (indistinctly males and females) at the nest on the second 
week	of	nestling	age	 (García-	Campa	et	 al.,	2022a). Nonetheless, 
parental UV chroma did not have an effect on offspring color pa-
rameters	 (one-	way	 ANOVA	 test;	 total	 brightness:	 F1,521 =	 0.61;	
p = .44; UV chroma: F1,521 = 1.20; p = .28; carotenoid chroma: 
F1,521 = 0.78; p =	 .38).	Additionally,	 in	2017	and	2018,	we	cross-	
fostered full clutches among nests at the end of incubation. Thus, 
among- nest differences in the relationship between color and 
condition could be partly explained by the rearing effects of the 
foster nest.

2.3  |  Molecular sexing

DNA	was	extracted	from	blood	samples	(in	2017)	and	3–	5	feather	
pins (in 2018 and 2019) using the Qiagen DNeasy Blood and Tissue 
kit (Qiagen Inc.). Sex identification was performed by polymerase 
chain	reaction	(PCR)	amplification	of	the	CHD-	W	and	CHD-	Z	genes	
with primers P2 and P8, following Griffiths et al. (1998) with a few 
modifications.	An	initial	denaturizing	step	at	94°C	for	4	min	30 s	was	
followed	by	40 cycles	of	94°C	during	30 s,	49°C	during	45 s	and	72°C	
during	45 s.	A	 final	 run	of	72°C	during	10	min	completed	the	pro-
gram.	Amplification	was	carried	out	in	a	total	volume	of	10	μL. Each 
PCR sample contained: 2 μL	DNA,	0.08 μL Taq polymerase (TaKaRa 
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BIO Inc.), 0.8 μL	dNTP	2.5 mM,	0.5	μL of each primer 10 μM, 1 μL of 
10x PCR buffer and 5 μL	of	sterilized	distilled	water.

2.4  |  Statistical analyses

We	used	R	4.1.0	(R	Core	Team,	2020) for statistical analyses. First, 
to explore how the color parameters were inter- related, we per-
formed correlations between UV chroma, carotenoid chroma, and 
brightness both at the individual level and at the nest level (the lat-
ter using mean values of color parameters). Second, we fitted three 
linear mixed models with a normal distribution of errors using the 
lmer function in the “lme4” package (Bates et al., 2015) to determine 
the relationships between body mass and each of the three color 
parameters.	We	assumed	normality	 in	all	 cases	after	checking	 the	
residual plots, given also the robustness of mixed models to viola-
tions	of	normality	assumptions	 (Schielzeth	et	al.,	2020). The mod-
els included as fixed effects the average body mass of the brood 
(=among- nest effect), the deviation from the average body mass of 
the brood (=within-	nest	effect),	and	their	interaction.	We	included	
in	addition	year	(2017,	2018,	and	2019),	nestling	sex,	brood	size,	and	
the interactions between year and nestling sex, average body mass 
and	year,	average	body	mass	and	brood	size,	and	nestling	sex	with	
the deviation from the average body mass. Backward elimination for 
nonsignificant interactions (α = .05) was used to build the minimal 
models.	We	also	included	nest	ID	as	a	random	intercept	and	the	in-
teraction between nest ID and the deviation from the average body 
mass (=within- nest effect) as a random slope.

3  |  RESULTS

3.1  |  Associations between color parameters

At	 the	 individual	 level,	 yellow	UV	 chroma	 of	 nestlings	was	 positively	
correlated with total brightness (r = .35; p < .001;	n = 1835) and nega-
tively with carotenoid chroma (r =	−.54;	p < .001;	n = 1835). In contrast, 
there was no relationship between carotenoid chroma and brightness 

(r =	−.010;	p = .70; n =	1835).	When	analyzing	the	correlations	of	these	
color parameters for each sex separately, the results were consistent. 
Yellow	UV	chroma	of	nestlings	was	positively	correlated	with	total	bright-
ness both in males and females (r males =	.36;	p males < .001;	n males = 945; 
r females =	.36;	p females < .001;	n females = 834) and negatively with carot-
enoid chroma (r males =	−.54;	p males < .001;	n males = 945; r females =	−.50;	
p females < .001;	n females = 834). Moreover, there were no relationships 
between carotenoid chroma and brightness neither in males and females 
(r males =	−.030;	p males =	.36;	n males = 945; r females =	−.010;	p females = .84; 
n females = 834).

When	running	the	correlations	of	color	parameters	at	the	nest	
level, mean yellow UV chroma was positively correlated with mean 
total brightness (r = .55; p < .001;	n = 234; Figure 1a) and negatively 
with carotenoid chroma (r =	 −.50;	 p < .001;	 n = 234; Figure 1b). 
Moreover, the relationship between carotenoid chroma and bright-
ness was marginally significant and negative (r =	 −.14;	 p = .030; 
n = 234; Figure 1c).

3.2  |  Condition dependence

We	found	a	significant	among-	nest	effect	of	body	mass	on	yellow	
UV chroma (F1,223.31 =	8.26;	p = .0044; Table 1). Broods in which the 
average nestling mass was higher had higher levels of UV chroma 
than broods with on average lower nestling body mass (Figure 2a). 
However, we did not find a significant within- nest effect of body 
mass on UV chroma (F1,189.18 = 2.81; p =	.096),	so	that	nestlings	with	
lower than average body mass in their brood did not have lower UV 
chroma than their siblings (Figure 3a; see also Figure S3).	 Yellow	
UV chroma was significantly affected by the interaction between 
year and nestling sex (F2, 1544.02 = 5.15; p = .0059; Figure S1). UV 
chroma was higher in females than in males in all the seasons (all 
Post- Hoc tests: p < .001).	In	females,	UV	chroma	was	higher	in	2017	
than	 in	 the	other	2 years,	and	 it	did	not	differ	between	2018	and	
2019 (p = .23). The same effect was found for males, but, unlike 
females, the difference between 2018 and 2019 was almost sig-
nificant (p = .051). The rest of the interactions were not significant 
(all p > .11).

F I G U R E  1 Correlations	between	yellow	breast	feather	color	parameters	(mean	nest	values)	measured	in	blue	tit	nestlings:	(a)	UV	chroma	
versus total brightness, (b) carotenoid chroma versus total brightness, and (c) UV chroma versus carotenoid chroma.
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We	did	not	find	among-	nest	(F1,225.19 = 0.22; p =	.64)	or	within-	
nest effects (F1,1159.48 =	1.96;	p =	 .16)	of	body	mass	on	carotenoid	
chroma (Table 1; Figure 2b,c; see also Figure S4). Carotenoid chroma 
significantly differed among years (F2,218.55 = 9.02; p < .001)	 and	
sexes (F1,1642.16 = 73.48; p < .001),	being	higher	in	2017	than	in	the	
other	 2 years	 (Post-	hoc	 tests:	 p < .001),	 and	 being	 higher	 in	males	
than in females. The rest of the interactions were also not significant 
(all p > .63).

Interestingly, we found significant both among- nest 
(F1,226.76 = 5.22; p = .023) and within- nest effects (F1,1330.31 = 21.37; 
p < .001)	 of	 body	mass	 on	 total	 brightness	 (Table 1). Thus, broods 
with higher than average body mass displayed brighter yellow co-
lourations (Figure 2c), and those nestlings with a higher body mass 
relative to the average body mass of their brood displayed brighter 

yellow coloration than their siblings (Figure 3c; see also Figure S5). 
Total brightness was significantly affected by the interaction be-
tween year and nestling sex (F2,1620.65 =	6.09;	p = .0023; Figure S2). 
Total brightness was higher for male nestlings than for female 
nestlings in years 2017 and 2019, while there was not a significant 
difference in 2018 (Post- Hoc test: p = .28; Figure S2).	All	other	inter-
actions were not significantly different (all p > .30).

4  |  DISCUSSION

Here, we explored whether the conspicuous coloration of blue tits 
nestlings could signal quality, by investigating its relationships with 
body mass both at the within-  and the among- nest level. Indeed, as 

UV chroma Brightness Carotenoid chroma

Intercept coef. =	139.50 ± 10.26 coef. =	21.02 ± 2.22 coef. =	615.20 ± 34.01

Within-	nest	effect	
of body mass

coef. =	0.68 ± 0.40
F1,189.18 = 2.81
p =	.096

coef. =	0.51 ± 0.11
F1,1330.31 = 21.37
p < .001

coef. =	2.58 ± 1.85
F1,1159.48 =	1.96
p =	.16

Among-	nest	
effect of body 
mass

coef. =	2.72 ± 0.95
F1,223.31 =	8.26
p = .0044

coef. =	0.47 ± 0.21
F1,226.76 = 5.22
p = .023

coef. =	−1.46 ± 3.13
F1,225.19 = 0.22
p =	.64

Year	(2017) coef. =	11.69 ± 1.09
F2,220.81 = 57.73
p < .001

coef. =	3.28 ± 0.24
F1,221.84 =	98.26
p < .001

coef. =	−14.71 ± 3.59
F1,218.55 = 9.02
p < .001

Nestling sex 
(Males)

coef. =	−2.33 ± 0.22
F1,1577.95 =	109.65
p < .001

coef. =	0.34 ± 0.07
F1,1625.84 = 23.05
p < .001

coef. =	10.26 ± 1.20
F1,1642.16 = 73.48
p < .001

Brood	size coef. =	0.70 ± 0.38
F1,231.04 = 3.39
p =	.067

coef. =	0.01 ± 0.08
F1,239.62 = 0.015
p = .90

coef. =	−0.31 ± 1.27
F1,237.59 =	0.060
p = .81

Year	*	Nestling	
sex

coef. =	−0.87 ± 0.30
F2,1544.02 = 5.15
p = .0059

coef. =	0.32 ± 0.10
F1,1620.65 =	6.09
p = .0023

Note:	We	included	nest	ID	as	a	random	intercept	and	the	interaction	between	nest	ID	and	the	
deviation from the average body mass of the brood (=within- nest effect) as a random slope. 
Reference levels are “2017” for year effects and “males” for sex effects.

TA B L E  1 Final	mixed	models	exploring	
the condition- dependence of color 
parameters. Significant effects are marked 
in bold.

F I G U R E  2 Among-	nest	effect	of	body	mass	(i.e.,	average	body	mass	of	the	brood)	on	(a)	UV	chroma,	(b)	carotenoid	chroma,	and	(c)	total	
brightness of yellow breast feathers measured in blue tit nestlings. Regression lines and ±95% confidence intervals (blue shaded area) are 
shown.
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has	 already	 been	 suggested	 (Jacot	&	Kempenaers,	2007;	 Johnsen	
et al., 2003; Morales & Velando, 2018), we found that certain color 
components of nestling yellow breast feathers reflected body mass. 
This pattern was particularly relevant for UV chroma and total 
brightness. Hence, these traits could act as condition- dependent 
signals beyond a sexual selection framework, around which most 
previous work has focused (e.g., del Cerro et al., 2010; Doutrelant 
et al., 2008, 2012; Ferns & Hinsley, 2008; Ferrer et al., 2015;	García-	
Navas et al., 2012; Hidalgo- Garcia, 2006; Midamegbe et al., 2013; 
Senar et al., 2002). Furthermore, our approach allowed us to explore 
the potential of the three color components as quality signals both 
within- nest and among- nest contexts.

4.1  |  Associations between color parameters

We	found	a	negative	association	between	carotenoid	chroma	and	
UV chroma of yellow breast feathers, in line with previous results in 
other	study	populations	(Johnsen	et	al.,	2003, 2005). This negative 
association may be due to the fact that higher amounts of carotenoid 
pigments in the feathers partly conceal feather structures, which re-
sults in lower UV reflectance. Moreover, we found that total bright-
ness was strongly and positively associated with UV chroma, but not 
with carotenoid chroma. Hence, the overall reflectance of yellow 
breast coloration indicates to a large extent the reflectance in the 
UV region of the spectrum. This is particularly relevant in our model 
system, since UV coloration is more easily perceived by cavity- 
nesting	birds	than	carotenoid-	based	reflectance	(Avilés	et	al.,	2006; 
Hunt et al., 2003;	Wȩgrzyn	et	al.,	2011;	Wiebe	&	Slagsvold,	2009).

4.2  |  Condition dependence: Nestling color as an 
honest signal of quality

While	the	color	expression	of	the	nestlings'	yellow	breast	feathers	
showed condition dependency, this effect differed for the three 
color parameters under study. Furthermore, the contribution of 

among- nest effects (which encompass a combination of genetic ef-
fects, parental quality effects, or other common environmental ef-
fects) and within- nest effects (reflecting the relative differences in 
body mass among all the nestlings raised in the same brood) also 
varied between the color parameters.

We	 found	 a	 significant	 among-	nest	 effect	 of	 body	 mass	 on	
yellow UV chroma. Broods with higher mean body mass also had 
higher	mean	UV	chroma.	This	effect	was	independent	of	brood	size.	
Interestingly, UV chroma could reflect genetic effects (e.g., see UV/
blue chroma: Charmantier et al., 2017), parental rearing capacity 
(Senar et al., 2002), food stress (Siefferman & Hill, 2005), or par-
asite infection (del Cerro et al., 2010; Hill, 2006, 2022), which we 
cannot separate in our study. However, we did not find differences 
in UV chroma between nestlings of the same brood (within- nest ef-
fect). This suggests that, at the intra- brood level, family members 
might not use UV chroma as a reliable signal of body mass. This 
was unexpected since we have experimentally demonstrated in 
the study population that chicks with reduced UV chroma gain less 
body mass (Morales & Velando, 2018) and that this trait is used as a 
signal	during	intra-	family	interactions	(García-	Antón	et	al.,	In press; 
García-	Campa	 et	 al.,	 2021; Morales & Velando, 2018). Moreover, 
cavity- nesting passerines are especially good at detecting changes 
in	UV	 reflectance	 (Avilés	et	al.,	2006; Hunt et al., 2003;	Wiebe	&	
Slagsvold, 2009), which points to UV chroma as a promising candi-
date for a signal inside cavities.

However, the current study reveals that total brightness has 
more potential as a quality signal within nests (as indicated by the 
significant within- nest effect of body mass) but that it nonetheless 
reflects UV chroma. Indeed, brightness is an achromatic component 
that may be particularly relevant for hole- nesting bird species that 
are	breeding	under	 low-	light	 conditions.	Accordingly,	 previous	 ex-
perimental reductions of UV chroma have entailed significant reduc-
tions	 in	 total	 brightness	 (see	 reflectance	 spectra	 in	García-	Campa	
et al., 2021; Morales & Velando, 2018). Had these previous studies 
aimed at reducing total brightness (and not only UV chroma), they 
would have likely found stronger effects in intra- family interactions. 
Indeed, given the large within- nest effect of body mass on juvenile 

F I G U R E  3 Within-	nest	effect	of	body	mass	(i.e.,	individual	deviation	from	the	brood	average)	on	(a)	UV	chroma,	(b)	carotenoid	chroma,	(c)	
total brightness of yellow breast feathers measured in blue tit nestlings. Regression lines and ±95% confidence intervals (blue shaded area) 
are shown.
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brightness, parents could rely on this trait to adjust their feeding 
strategies	 within	 their	 brood	 (García-	Campa	 et	 al.,	 2021; Mas & 
Kölliker, 2011; Morales & Velando, 2018). Therefore, total brightness 
could have evolved as a condition- dependent trait to signal nestling 
quality to other family members.

Furthermore, the fact that the feathers were collected at differ-
ent ages from the nestlings (i.e., day 11 in 2019 and day 12 in 2017 
and	2018)	needs	to	be	discussed.	Although	breast	 feathers	are	al-
most developed at this age, they are still growing (Peters et al., 2007). 
Thus, coloration could be reflecting feather growth (e.g., see 
Keyser & Hill, 1999, in blue grosbeaks, Guiraca caerulea; Badyaev & 
Landeen, 2007, in male house finches, Haemorhous mexicanus) rather 
than condition. Nonetheless, we controlled for year in the analyses, 
which partly accounts for the age difference, and we found that 
feather coloration in 2017 was overall much different than in the 
other	2 years.	In	addition,	it	is	expected	that	feather	growth	is	faster	
in nestlings in better condition. Therefore, although we cannot dis-
card that coloration reflected feather growth to a certain extent, this 
was in turn likely modulated by condition. In addition, our findings 
show that there were among- nest effects of nestling body mass on 
total brightness. Unlike UV chroma, it is less likely that brightness 
functions as a signal of genetic quality, since it shows low herita-
bility (e.g., see Charmantier et al., 2017 for blue tit adults and Class 
et al., 2019 for nestlings). However, it may reflect parental quality 
effects or other (common) environmental effects (e.g., food stress 
or parasite infection, see above). Surprisingly, there were neither 
among-  nor within- nest effects of nestling body mass on carotenoid 
chroma, in contrast to a number of previous studies supporting 
that this color component is condition- dependent in nestling blue 
tits (Delhey et al., 2006, 2010;	Jacot	&	Kempenaers,	2007;	Johnsen	
et al., 2003, 2005). One possibility is that differences in the calcu-
lation of carotenoid chroma used across studies ((RUV peak –  R450)/
RUV peak in Bleiweiss, 2004;	Jacot	&	Kempenaers,	2007; and (R700 –  
R450)/R700	in	Johnsen	et	al.,	2005) explain this inconsistency. Besides, 
since this color parameter is strongly dependent on dietary carot-
enoid availability, it might contain a strong environmental compo-
nent, which is, however, not captured at the nest level.

4.3  |  Differences between the sexes

We	also	found	a	consistent	effect	of	nestling	sex	on	the	three	color	
parameters	analyzed,	 in	accordance	with	previous	studies	(Jacot	&	
Kempenaers, 2007;	Johnsen	et	al.,	2003, 2005). Females expressed 
higher mean values for yellow UV chroma than males, whereas we 
detected the opposite pattern for carotenoid chroma and brightness 
(even though UV chroma and brightness are strongly and positively 
associated).	While	the	blue	tit	was	one	of	the	first	species	in	which	
a sexual dimorphism in crown UV- based plumage color was docu-
mented, this has not been found in adult yellow breast feathers (Hunt 
et al., 1998).	It	is	somehow	puzzling	that	the	latter	trait	is	dimorphic	
only in nestlings and juveniles-  since yellow body feathers are molted 
a few months after fledging (Cramp & Perrins, 1993; Schoppe, 1977). 

Thus, parents could potentially rely on both carotenoid- chroma and 
total brightness to discriminate offspring sex while adjusting their 
feeding strategies. Indeed, in other study populations, blue tit males 
and	females	receive	different	food	items	(García-	Navas	et	al.,	2014) 
or the total amount of investment (Dickens & Hartley, 2007). In ad-
dition, fledging yellow plumage could play a signaling role in family 
flocks that are formed immediately after fledging (Stenning, 2018) 
and during social interactions within flocks (Tschirren et al., 2005). 
These sex- specific patterns clearly need further study.

5  |  CONCLUSIONS

We	show	that	yellow	breast	feathers	could	function	as	a	condition-	
dependent signaling trait in nestling blue tits, given the observed 
associations	with	body	mass.	While	total	brightness	and	UV	chroma	
(but not carotenoid chroma) seem to reflect genetic or other com-
mon environmental effects (=among- nest effects), total brightness 
could also act as an honest signal during intra- family interactions 
(=within- nest effect). Intriguingly, plumage color was a sexually di-
morphic trait in nestlings, in contrast to the situation in adults, which 
is at current difficult to explain. It urges further studies to identify 
possible diverging selective pressures for males and females in the 
nestling and post- fledgling periods.
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