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Recent advances on water-in-water emulsions in 
segregative systems of two water-soluble polymers
Jordi Esquena

The present paper reviews the most recent knowledge on 
water-in-water (W/W) emulsions formed in aqueous two-phase 
systems based on incompatibility between two polymers. The 
interfaces of these systems are ill-defined, relatively thick, and 
interfacial tensions are extremely low. Consequently, small 
molecules do not adsorb in W/W interfaces and emulsions are 
inherently unstable and the main challenge is achieving a 
proper colloidal stability at long times. The most widely used 
strategy is the addition of particles and/or macromolecules able 
to adsorb at the W/W interfaces, but often the stability of these 
emulsions is still not satisfactory in the long term. More recently, 
stabilization of W/W emulsions has been improved by ionic 
complexation and/or autoaggregation, forming membranes at 
the interfaces. The proper colloidal stabilization of W/W is 
paving the way for novel applications, such as carriers of living 
cells or the development of new 3D cell cultures and cell 
organoids.
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Introduction
The term ‘Water-in-water emulsions’ (abbreviated as W/ 
W emulsions) is commonly used to designate colloidal 
dispersions of one aqueous solution that forms droplets 
into another aqueous solution [1–3]. In segregative sys
tems, the two liquid phases are in thermodynamic 
equilibrium because of the immiscibility between two 

hydrophilic solutes and each phase is enriched in one of 
the two components although saturated with the other 
component [4,5]. A good critical review on segregative 
phase separation has been published recently [5]. Aqu
eous biphasic systems are most often denoted as ‘Aqu
eous Two-Phase Systems’ (abbreviated as ATPS) [6]. 
Biphasic aqueous systems are of great importance due to 
their wide applications in separation, extraction, and 
purification processes of biomolecules and cells, using 
the preferential affinity toward one of the two aqueous 
phases. ATPS are used on an industrial scale for the 
purification of proteins and antibodies, as well as for the 
extraction of water-soluble molecules. Interesting ex
amples are the isolation and purification of viruses 
through extraction and concentration processes in ATPS, 
to allow their detection in environmental samples [7,8]. 
Moreover, W/W interfaces offer interesting advantages, 
such as the high permeability to ions and small hydro
philic molecules, allowing an almost free delivery of 
active components as well as quick responses to osmotic 
pressure differences.

Segregative W/W emulsions have been known for a very 
long time, since first described by M.W. Beijerinck in 
the late XIX century [9]. ATPS focused great interest 
when Albertsson in 1959 discovered its potential for 
extraction and purification processes [10]. Phase segre
gation is a ubiquitous phenomenon that can occur in 
aqueous mixtures of polymer/polymer, polymer/salt, 
salt/salt, and many other combinations of different 
components, as summarized by Pereira and Coutinho 
[11,12]. W/W emulsions based on aqueous mixtures of 
two immiscible polymers are the most widely studied, 
due to their biocompatibility and mimicry of biological 
entities. W/W emulsions based on polymer/salt systems 
have only been sparsely studied [13], and to our 
knowledge, stable W/W emulsions based on aqueous 
mixtures of only two salts have still not been reported. 
However, there is no limitation that prevents the sta
bilization of these types of emulsions, which are not 
inherently different from emulsions based on im
miscible polymer mixtures, and therefore, polymer/salt 
and salt/salt systems could be the focus of future studies. 
The present short review focuses on recent advances in 
W/W emulsions composed of two immiscible polymers. 
Microfluidic methods are also not described in detail in 
the present article, and readers who are interested in this 
topic can consult the excellent reviews published by 
Shum and collaborators [5,14].
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The interfaces of W/W emulsions in segregative systems 
have extremely low interfacial tensions, often from 10-4 

to 10-2 mN/m [15], which is between 3 and 5 orders of 
magnitude lower than in typical oil/water interfaces. The 
interfacial tension in W/W systems decreases to virtually 
zero at the critical point [16], where the compositions of 
the two phases become identical and the interface van
ishes. In addition, the interfacial region of W/W systems 
is relatively wide, thicker than the characteristic length 
of the polymers. Therefore, small molecules do not ad
sorb on such ‘fuzzy’ interfaces since their adsorption is 
not energetically favored against thermal motion (≈kT). 

Consequently, colloidal instability is often the main 
drawback of W/W emulsions in practical applications. 
The proper stabilization of these emulsions remains a 
challenge, and much scientific effort is currently devoted 
to find new methods to achieve long-term stability. 
These methods can be classified in two broad types: (i) 
addition of particles, microgels, or soft entities that are 
large enough to achieve a significant energy of adsorp
tion; and (ii) self-assembly, ionic complexation, and/or 
precipitation at the interface to produce interfacial 
membranes. Recent advances in these two strategies are 
discussed below. 

Stabilization by adsorption of particles at 
water/water interfaces 
The first report of W/W emulsions stabilized by particles 
(Pickering W/W emulsions) was that of Poortinga et al.  
[17]. Nowadays, a great variety of different particles has 
been reported to stabilize W/W emulsions, as reviewed 
by Dickinson [4] and Chao and Shum [5]. However, 
because of the low interfacial tension, relatively large 
particles are required to achieve high adsorption en
ergies that counteract thermal energy. An adsorption 
energy of 20 kT requires a minimum particle diameter of 
≈ 320 nm for spherical rigid particles at 90° contact angle  
[18]. In the case of rod-like or flat platelet-like particles, 
the adsorption is favored, thanks to the increased con
tact area. 

The particles can be very varied, and recent examples 
include cellulose microfibrils or nanocrystals in mal
todextrin-in-dextran emulsions [19,20], β-lactoglobulin in 
dextran and hydroxypropyl methylcellulose aqueous 
mixtures [21], and platelet-like starch nanocrystals in 
PEG-in-dextran (P/D) emulsions [22], among other ex
amples [23–25]. Stabilization of W/W requires an accurate 
control of particle adsorption at the interface (Figure 1). 

Stimuli-sensitive W/W emulsions can be obtained with 
microgel particles [26], unilamellar liposomes [27,28], 
self-assembled polymer micelles [29], or proteinaceous 
soft particles [30] adsorbed on the interface of emul
sion droplets. Nguyen et al. [26] produced pH- 

responsive W/W Pickering emulsions that changed from 
stable to unstable with a small variation in pH, which 
could be modulated by the addition of salts. Dewey, 
Keating, and coworkers showed that P/D or dextran-in- 
PEG (D/P) emulsions can be stabilized by the adsorp
tion of PEGylated liposomes (≈130 nm size) that consist 
of phosphatidyl glycerol [27]. The stabilization me
chanism is mainly electrostatic, as the results indicated 
that effective stabilization occurs with interfaces that are 
not completely coated with liposomes. D/P emulsions, 
stabilized by unilamellar liposomes, were used as mi
croreactors for the synthesis of CaCO3 materials in bio
mimetic mineralization processes [28]. 

More recently, Schmidt, Plucinsky, and coworkers have 
studied the great possibilities offered by temperature- 
sensitive polymer micelles [29]. They synthesized a 
water-soluble double- block copolymer that consisted of 
two hydrophilic chains, poly(N,N-dimethylacrylamide)- 
b-poly(N,N-diethylacrylamide), which self-aggregates 
forming polymer micelles. These micelles had a pre
ferential affinity for the polyethylene glycol (PEG) and 
consequently stabilized D/P emulsions that are highly 
sensitive to temperature, switching on/off the stability of 
emulsions [29]. In a more recent work, they designed 
pH-sensitive W/W emulsions by using pullulan and poly 
(N,N-dimethylacrylamide) (PDMA), as two in
compatible polymers [31,32]. Pullulan-in-PDMA emul
sions were stabilized with poly(2-(dimethylamino)ethyl 
methacrylate)-b-poly(oligo(ethylene glycol) methyl 
ether methacrylate), which forms polymer micelles (ag
gregates of polymer chains) as a function of pH [31]. 

The adsorption of particles in W/W interfaces can be 
controlled by various methods (Figure 1). Gonzalez- 
Jordan, Nicolai, and Benyahia demonstrated that the 
stability of Pickering W/W emulsions greatly depends on 
the balanced affinity of particles between the two liquid 
phases [30]. The adsorption of particles can be modu
lated by varying its surface properties, and thus, emul
sion stability can be controlled. Polystyrene particles 
(PS) were coated with various amounts of whey proteins 
and used to stabilize both P/D and D/P. The most stable 
emulsion (P/D or D/P) depends on the preferential af
finity of the modified PS particles, improving stability 
when preferentially wetted by the continuous emulsion 
phase [30]. 

Accurate control of emulsion stability, switching on/off 
as a function of temperature, can be achieved using 
microgels based on poly(N-isopropylacrylamide) 
(pNIPAM) derivatives. Ravaine, Nicolai, and coworkers 
obtained both P/D and D/P emulsions with pNIPAM 
microgels chemically functionalized with dextran [33]. 
These microgels stabilized D/P emulsions at low tem
peratures, but these emulsions inverted to P/D at tem
peratures higher than the transition point of pNIPAM  
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[33]. Nicolai and coworkers finely tuned the adsorption 
of whey protein microgel particles in pullulan/amylo
pectin interfaces, by adding small amounts of a third 

polysaccharide (alginate, pectin, κ-carrageenan, and xy
loglucan) [34], inducing a migration of the protein mi
crogels from the pullulan phase to the amylopectin 

Figure 1  

Current Opinion in Food Science

Schematic representation of significant recent contributions to the stabilization of W/W emulsions in segregative systems of two polymers. 
(All figures and schemes have been reproduced and/or adapted with copyright permission).   
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phase [34]. Interestingly, adsorption of microgels at in
terfaces occurred even if compositions were near to the 
binodal line, where the interfacial tension between 
pullulan and amylopectin is extremely small [34]. The 
authors concluded that particle adsorption depends not 
only on the interfacial tension but also on the tension 
between the particles and each of the phases. In a more 
recent study of emulsions prepared in pull
ulan–amylopectin aqueous mixtures, also stabilized by 
whey protein microgels, Nicolai and coworkers eval
uated the influence of pH in the absence and presence 
of anionic polysaccharides [35]. Decreasing pH produced 
a change in the preferential affinity of the protein mi
crogels, from the pullulan phase to the amylopectin 
phase, shifting from amylopectin-in-pullulan emulsions 
to pullulan-in-amylopectin emulsions. The anionic 
polysaccharides formed complexes with the protein mi
crogel particles, inducing its partial aggregation, as well 
as modifying the interfacial tensions [35]. 

Quite often, the colloidal stability of Pickering W/W 
emulsions does not extend beyond a range of weeks, and 
thus, this stability is insufficient for practical applications. 
Moreover, particle-stabilized emulsions can remain stable 
at rest for long periods of time, but tend to quickly coa
lesce upon application of shear. This behavior is common 
to all types of Pickering emulsions (including O/W, W/O, 
and W/W), because agitation and droplet deformation 
generate empty areas at the interface. 

Kulkarni et al. have explored stabilization of W/W 
emulsions by mixing oppositely charged particles (OCP)  
[36]. These mixtures produced small-particle aggregates 
that adsorbed at the interface and allowed the prepara
tion of P/D emulsions. However, the colloidal stability 
was not sufficient to stabilize in the long term, probably 
because the OCP mixture did not form homogeneous 
monolayers, but irregular aggregates of particles ad
sorbed in a patchy distribution [36]. An alternative for 
extending emulsion stability is cross-linking the particles 
adsorbed in the interface. J. Zhang et al. cross-linked 
dopamine particles adsorbed in D/P droplets and inter
estingly these droplets formed capsules that remained 
stable upon dilution with water, albeit some swelling 
was observed [37]. Moutkane et al. also obtained quite 
stable dispersions of capsules by cross-linking whey 
protein isolate (WPI) microgel particles [38]. Pullulan-in- 
amylopectin simple emulsions and P/D-in-amylopectin 
double emulsions were properly stabilized. The best 
colloidal stability was obtained when covalently cross- 
linking with the enzyme transglutaminase. The WPI 
particles had a higher affinity for the dextran phase and 
thicker shells could be obtained by cross-linking in the 
middle phase of double emulsions. Pickering W/W 
emulsions can be well stabilized by either covalent cross- 
linking or interfacial ionic complexation, as reviewed by 
Perro et al. [39]. In these cases, capsules might have the 

advantage that they remain stable even after diluting 
with water, below the binodal line where there is no li
quid-liquid phase separation. 

Stabilization through the formation of 
membranes at water/water interfaces by 
polymer adsorption, self-assembly, ionic 
complexation, and other processes 
Colloidal stability of W/W emulsions can also be greatly 
improved by polymer adsorption, self-assembly, and 
other processes of interfacial precipitation (Figure 1). An 
early report example was that of Buzza et al. who used 
triblock copolymers [40] to stabilize both P/D and P/D 
emulsions. It is likely that these copolymers produce 
polymer self-aggregates and thus stabilization was not a 
consequence of molecular adsorption and formation of a 
molecular monolayer. 

More recently, it has been demonstrated that polymers 
with high molecular weight can certainly adsorb at W/W 
interfaces and impart colloidal stability. Nicolai and 
coworkers [41] have studied the stabilization of D/P and 
P/D emulsions using homopolymers, showing that chit
osan and propylene glycol alginate were appropriate for 
P/D emulsions, whereas diethyl aminoethyl dextran 
provided an acceptable stabilization for both emulsion 
types [41]. More recently, they have stabilized D/P 
emulsions by addition of xanthan gum [42]. This 
polymer partitioned preferentially into the dextran 
phase and greatly increased viscosity of P/D emulsions, 
stabilizing the emulsions for at least one week. However, 
it also stabilized D/P emulsions and these results have 
suggested that xanthan had an additional stabilizing ef
fect by interfacial adsorption. 

In another work of Nicolai and coworkers [1], they sta
bilized both guar-in-amylopectin and amylopectin-in- 
guar emulsions by creating a layer of bovine gelatin on 
the interfaces. Guar and amylopectin are mutually im
miscible, and gelatin is quite insoluble in both at low 
temperatures. Aqueous mixtures of guar, amylopectin, 
and gelatin formed biphasic mixtures at high tempera
tures, but cooling down induced the phase separation of 
a third phase mainly composed of gelatin, producing a 
layer at the surface of droplets. Therefore, this system 
consisted of three immiscible aqueous domains, in which 
the gelatin layer stabilized W/W emulsions. In a more 
recent work, Nicolai and coworkers produced aqueous 
three-phase systems by mixing dextran, PEG, and ge
latin; or amylopectin, xyloglucan, and gelatin [2]. Double 
emulsions were obtained with gelatin forming the in
termediate phase. The subsequent gelation of gelatin 
upon cooling produced hydrogel shells around the dro
plets, making them stable against dilution and/or agita
tion. These two works present a new strategy for 
emulsion stabilization. 
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Lamellar phases can be used to stabilize W/W emul
sions, as shown by Martin, Douliez, and coworkers, 
who produced bilayers or multilayers composed of so
dium oleate and decanol in D/P emulsion droplets, 
resembling conventional vesicles [39,43]. These la
mellar nanostructures not only impart good stability, 
but are also quite impermeable to large molecules, 
opening up many possibilities for encapsulating active 
components. W/W emulsions can also be stabilized by 
using DNA strands, as reported by Hao and coworkers  
[44]. DNA adsorbed in the interface and droplet size 
decreased with DNA length. More interestingly, 
onion-like multilayer structures were observed at high 
DNA concentrations. 

A very promising method for the stabilization of W/W 
emulsions is ionic complexation at the interface. Lee, 
Stebe, and coworkers formed double PEG-in-dextran- 
in-PEG emulsions by combining positively charged poly 
(diallyldimethylammonium chloride) (PDADMAC), 
with negatively charged silica nanoparticles [45]. This 
process was followed by the diffusion induced by os
motic pressure differences, leading to condensation of 
PEG droplets inside dextran microcapsules. 

Shum and coworkers [46,47] have used four polymers for 
preparing rigid microcapsules: two nonionics and two 
ionics, one of which is cationic and the other is anionic. 
The two nonionic polymers constitute the ATPS, while 
the two polyelectrolytes with opposite charges form a 
shell of ionic complex at the interface. The nonionic 
polymers were PEG and dextran, the cationic polymer 
was poly(allylamine hydrochloride) (PAH), and the 
polyanion was poly(sodium 4-styrenesulfonate) (PSS). 
Microcapsules with rigid shells were obtained by the 
coprecipitation of the PAH–PSS ionic complex at the 
interface [46,47]. 

Emerging systems and possible applications 
The stabilization of W/W emulsions that mimic real 
biological systems allows to develop novel biomedical 
applications (Figure 2). W/W emulsions produce low- 
friction coefficients on many surfaces, which is relevant 
for controlling the mouthfeel of food formulations, as 
reported by You, Murray, and Sarkar [38], who studied 
tribological properties of emulsions of gelatinized corn 
starch in κ-carrageenan, stabilized by whey protein mi
crogel particles [3]. Jingcheng Hao and coworkers re
ported the rheology and tribological properties of D/P 
emulsions stabilized with collagen nanofibrils and eval
uated its possible suitability for joint lubrication [48], 
showing the absence of cytotoxicity and protective ef
fects on articular cartilage, in in vivo tests performed on 
Sprague-Dawley rats. Therefore, the emulsions could 
serve as a replacement of synthetic synovial fluid for the 
treatment of osteoarthritis [48]. 

W/W dispersions stabilized by interfacial complexation 
can be used in 3D printing. Russell, Xie, and coworkers  
[49] reported the formation of tubular structures based on 
the combination of the cationic PDADMAC and the an
ionic PSS previously incorporated to dextran and PEG 
solutions, respectively. The ionic complexation of 
PDADMAC and PSS occurred at the dextran/PEG in
terface, producing stable and relatively rigid coacervate 
membranes that allowed 3D printing of tubular structures. 
These membranes were permeable to small molecules, 
and thus, the tubular structures could be used for cascade 
reactions that involved confinement of enzymes [49]. 

W/W emulsions are fully biocompatible dispersions that 
can be used to encapsulate living cells. Sodium carbox
ymethyl cellulose-in-gelatin emulsions were used to 
encapsulate Lactobacillus rhamnosus GG [50], in
creasing its viability in simulated gastric fluids. Thus, W/ 
W emulsions have a great potential for the preparation of 
3D cell cultures and/or organoids. One example was 
described by Paunov and coworkers [51], who obtained 
cell spheroids inside D/P emulsion droplets. The in
crease of PEG concentration in the continuous phase 
caused osmotic shrinking of the dextran droplets and 
formation of cell spheroids. 

Jinhau Qin and coworkers [52] have extensively studied 
the formation and manipulation of W/W droplets using 
microfluidic devices, encapsulating cells inside the dro
plets and forming cell organoids. They reported the 
formation of multicore hydrogel capsules that were used 
as multicompartment carriers to coencapsulate two dif
ferent types of cells, hepatic and endothelial, in the same 
3D cell culture [52]. They also reported the high- 
throughput generation of D/P emulsion droplets that 
were gelified with calcium alginate [53]. More recently, 
they have also described the production of hydrogel fi
bers as cell organoid carriers [54]. Pancreatic endocrine 
progenitor cells were encapsulated into the droplets, 
retaining high viability and preserving the function of 
insulin secretion. In another work, pancreatic endocrine 
cells were encapsulated inside D/P emulsions that were 
stabilized by ionic complexation of the oppositely 
charged sodium alginate and chitosan [55]. These en
capsulated cell spheroids exhibited insulin secretion 
stimulated by glucose. Another recent example of en
capsulation of living cells using W/W emulsion droplets 
was described by Y. Wang and coworkers [56]. Cells 
were introduced inside D/P droplets in the presence of 
sodium alginate in the continuous phase. These droplets 
were stabilized by particles and encapsulated into algi
nate beads by introducing the emulsions into CaCl2 
baths and forming calcium alginate shells. 

Shum and coworkers reported the formation of multiple 
W/W/O emulsions by microfluidics, stabilizing the W/W 
interface by ionic complexation [47]. One aqueous phase 
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Figure 2  
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Selection of novel applications of W/W emulsions prepared in segregative systems. 
(All figures and schemes have been reproduced and/or adapted with copyright permission). 
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contained dextran with PAH and the other aqueous 
phase had PEG in the presence of PSS. Removal of the 
volatile oil produced W/W emulsions with a membrane 
of PAH–PSS ionic complex. W1/O/W2 multiple emul
sions have been prepared by Zhou et al [57]. The W1 
inner phase was an aqueous solution of either dextran or 
PEG, the middle phase was immiscible oil, and the W2 
most external phase was either PEG or dextran. 

A very interesting new subject is the formation of fer
rofluidic ATPS, studied by Timonen and coworkers [58] 
in dextran–PEG aqueous mixtures, incorporating ma
ghemite superparamagnetic nanoparticles into the dex
tran phase where these nanoparticles have a preferential 
affinity. This ATPS showed superparamagnetism, and 
remarkably, the typical properties of ATPS were pre
served, obtaining a biphasic system with extremely low 
interfacial tension and highly responsive to external 
magnetic fields. The very low interfacial tension allows 
to form new patterns at the interface, with strong de
formations and motions that can lead to new magneti
cally responsible materials [58]. 

Concluding remarks 
The current great development of W/W emulsions is 
due in part to recent innovations in their stabilization. 
During the last years, a great scientific interest has been 
focused on stabilization by adsorption of particles at the 
W/W interface, and numerous studies have reported ra
ther stable Pickering W/W emulsions. In addition, in 
recent years, the formation of membranes at the W/W 
interface, such as by ionic complexation, has opened a 
new path for the stabilization of W/W emulsions with 
very much improved colloidal stability. This has allowed 
the emergence of new applications with great potential, 
such as preparation of 3D cell cultures and/or organoids 
of living cells with specific metabolic functions. The 
study of new W/W emulsions will allow achieving un
foreseen novel applications, such as magneto-responsive 
interfaces. 
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56. Liu T, Yi S, Liu G, Hao X, Du T, Chen J, Meng T, Li P, Wang Y: 
Aqueous two-phase emulsions-templated tailorable porous 
alginate beads for 3D cell culture. Carbohydr Polym 2021, 
258:117702. 

57. Zhou C, Zhu P, Han X, Shi R, Tian Y, Wang L: Microfluidic 
generation of ATPS droplets by transient double emulsion 
technique. Lab Chip 2021, 21:2684-2690. 

58.
••

Rigoni C, Beaune G, Harnist B, Sohrabi F, Timonen JVI: 
Ferrofluidic aqueous two-phase system with ultralow 
interfacial tension and micro-pattern formation. Commun Mater 
2022, 3:26. 

This work demonstrates that is possible to prepare ATPS, with ex
tremely low interfacial tension, in the presence of superparamagnetic 
nanoparticles, paving the way towards new strategies in several scien
tific fields: (a) Achieving direct observation of capillary waves on the 
interface; (b) Inducing deformations and motions at the interface by 
magnetic control; (c) Enable controlled extraction of biomolecules that 
have preferential partition in one of the two equilibrium phases; and (d) 
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