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Abstract

Population density estimates are important for wildlife conservation and man-

agement. Several camera trapping-based methods for estimating densities have

been developed, one of which, the random encounter model (REM), has been

widely applied due to its practical advantages such as no need for species-

specific study design. Nevertheless, most of the studies in which REM has been

assessed against referenced methods have sampled one population, precluding

evaluation of the circumstances under which REM does or does not perform

well. At this point, a review of all REM assessments could be useful to provide

an overview of method reliability and highlight the main factors determining

REM performance. Here we used a combination of literature review and empir-

ical study to compare the performance of REM with independent methods. We

reviewed 34 studies where REM was applied to 45 species, reporting 77 REM-

reference density comparisons; and we also sampled 13 populations (ungulates

and lagomorphs) in which we assessed REM performance against independent

densities. The results suggested that appropriate procedures to estimate REM

parameters (namely day range, detection zone and encounter rate) are manda-

tory to obtain unbiased densities. Deficient estimates of day range and encoun-

ter rate lead to an overestimation of density, while deficient estimates of

detection zone conducted to underestimations. Finally, the precision achieved

by REM was lower than reference methods, mainly because of the high levels of

spatial aggregation observed in natural populations. In this situation,

simulation-based results suggest that c. 60 camera placements should be sam-

pled to achieve acceptable precision (i.e. coefficient of variation below 0.20).

The wide range of situations and scenarios included in this study allow us to

conclude that REM is a reliable method for estimating wildlife population den-

sity when using appropriate estimates of REM parameters and sampling

designs. Overall, these results pave the way to wider application of REM for

monitoring terrestrial mammals.

Introduction

Together with occupancy and species richness, population

density (i.e. the number of individuals per unit area) is a

key state variable in wildlife management and conserva-

tion (Nichols & Williams, 2006). However, obtaining

such information is particularly difficult in some wildlife

species due to low detectability, usually associated with

low population density, elusive behaviour and certain

habitat features, among others (Kindberg et al., 2009). A

plethora of methods (e.g. distance sampling or spatial

capture–recapture [SCR]) have been developed to esti-

mate wildlife population density (e.g. Borchers

et al., 2002; Seber, 1982). Moreover, comparative studies

assessing methods’ performance and reviews of their

applicability to different species have also been developed
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(e.g. Acevedo et al., 2008; ENETWILD consortium

et al., 2019; Meriggi et al., 2008). In this connection, a

recent review concluded that, in general, camera traps are

an effective sampling tool when compared with alterna-

tive ones to collect data about medium-to-large ground-

dwelling mammals and birds (Wearn & Glover-

Kapfer, 2019). Camera traps allow highly standardized

data collection on multiple species with minimal distur-

bance to wildlife, and do not require expert knowledge

for their basic use. From camera trap data, a wide range

of methods can be applied to estimate population density

(Rovero & Zimmermann, 2016).

In this context, the use of camera traps has been firmly

established in recent decades among the non-invasive tools

available to support monitoring programmes for wildlife

population density (Delisle et al., 2021). Initially, the esti-

mation of population density from camera trap data was

earlier limited to marked populations (i.e. those where ani-

mals can be identified individually by natural or artificial

marks) when capture–recapture methods are applied

(Royle et al., 2013). However, most wildlife species do not

have natural marks that enable individual recognition

(hereafter unmarked species). To monitor unmarked popu-

lations with camera traps, physical capture has been

required for individual tagging, which greatly limits the

applicability of capture–recapture methods. Some of its

main limitations are as follows: (i) ethics committee

approval is required for the capture of animals; (ii) highly

qualified staff are needed (e.g. vets to anaesthetize the ani-

mals); (iii) the economic costs and human effort associated

with the capture and tagging of animals are high and (iv)

it defeats the non-invasive nature of camera traps and

could harm the animals. Against this background, methods

to estimate population density without the need for indi-

vidual identification emerged (see Gilbert et al., 2020 for a

review). Specifically, Rowcliffe et al. (2008) described the

random encounter model (REM).

The REM is based on modelling random encounters

between moving animals and static camera traps, taking

into account key variables that affect the encounter rate

(i.e. number of animals detected per sampling unit).

These variables are camera detection zone, defined by its

radius and angle, and the daily distance travelled by an

animal in the population (hereafter, day range). The main

advantage of REM is that individual identification is not

needed, so then REM can be used to monitor both

unmarked and marked populations without the need to

capture and tag animals. Additionally, since the survey

design is not based on target species (i.e. it is not needed

that animals have a reasonable chance of being detected

at more than one camera, so camera spacing is not deter-

mined by target species), more than one species can be

potentially monitored during the same survey (Palencia,

Rowcliffe, et al., 2021; Pfeffer et al., 2018). For all the

above reasons, REM is one of the most widely used meth-

ods to estimate population density of unmarked popula-

tions today (Gilbert et al., 2020), and has been

recommended when tested against other methods. For

instance, when problems related to burst mode perfor-

mance in the camera are observed (Palencia, Rowcliffe,

et al., 2021). In these scenarios, bias is expected in other

methods such as camera trap distance sampling because

some photos are not recorded at the predetermined snap-

shot moments (Howe et al., 2017).

The application of REM was originally limited because

of the difficulties of estimating the parameters necessary

to apply the method, especially day range (Nakashima

et al., 2018; Rovero & Marshall, 2009). In recent years,

however, procedures have been described for estimating

all the parameters required considering camera trap data

only (Hofmeester et al., 2017; Palencia, Fernández-López,

et al., 2021; Rowcliffe et al., 2011, 2016). These studies

clearly improved the applicability of the method and are

increasing its use in wildlife monitoring (Palencia, Row-

cliffe, et al., 2021; Pfeffer et al., 2018). Other studies have

focused on the statistical development of the method and

software development (Caravaggi, 2017; Jourdain

et al., 2020; Lucas et al., 2015). The REM has been used

in species with different behavioural and ecological traits,

and c. 30 REM studies have been published so far. For

instance, it has been compared against reference densities

on gregarious and non-gregarious carnivores (e.g. lion

Panthera leo, Cusack et al., 2015; red fox Vulpes vulpes

Palencia, Rowcliffe, et al., 2021), ungulates (e.g. Grevy’s

zebra Equus grevyi, Zero et al., 2013; chamois Rupicapra

rupicapra, Kavčić et al., 2021; moose Alces alces and roe

deer Capreolus capreolus, Pfeffer et al., 2018), lagomorphs

(e.g. European hare Lepus europaeus and Irish hare Lepus

timidus hibernicus, Caravaggi et al., 2016) and Eulipoty-

phla (e.g. European hedgehogs Erinaceus europaeus Schaus

et al., 2020), among others. Nevertheless, (i) most studies

have monitored only a single species/population, preclud-

ing evaluation of the circumstances under which REM

does or does not perform well (but see Rowcliffe

et al., 2008; Pfeffer et al., 2018; Palencia, Rowcliffe,

et al., 2021) and (ii) some of them have considered bibli-

ographic data for some of the parameters required to

derive densities which may introduce bias (Caravaggi

et al., 2016; Cusack et al., 2015; Manzo et al., 2012).

Broadly, most of these studies reported comparable

results (Pfeffer et al., 2018; Rowcliffe et al., 2008; Schaus

et al., 2020), but others reported considerable discrepan-

cies (Chauvenet et al., 2017). Thus, a global overview of

all the available comparisons between REM and reference

densities is timely to provide further insights into which

factors determine the performance of this method.
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This study aimed to provide a comprehensive view of

REM performance across a wide range of species/popula-

tions with different behavioural traits and a large range of

densities and evaluate which factors determine REM relia-

bility. We did this by comparing the densities obtained

with REM with those obtained with other independent

reference methods, mainly drive count, SCR and distance

sampling (see below). We reviewed published studies on

REM and sampled 13 populations. By discussing its

strengths and weaknesses when monitoring wild popula-

tions, the results reported here allowed us to draw robust

conclusions about the potential of REM for monitoring

wildlife populations.

Materials and Methods

Review of published studies

We reviewed all applications of REM reported in pub-

lished peer-reviewed studies. The results were retrieved in

March 2022 by searching the Scopus, PubMed and Web

of Science databases using “random encounter model”,

“unmarked” and “density” as keywords. Of all the studies

retrieved during the search, we were focused on those in

which REM had been compared against a reference

method. From these studies, we extracted the mean value

of the estimated densities for both methods, the target

species, the independent method considered and the

number of camera trap placements sampled (see Appen-

dix S1). Additionally, we evaluated the procedures used

to estimate REM parameters (detection zone, day range

and encounter rate). We considered two categories:

appropriate and deficient. For instance, and considering

the day range as an example, we considered as ‘deficient’

quality those cases in which day range values were

imported from other populations, because of the expected

variation in movement behaviour among populations.

Moreover, those cases in which day range was estimated

for the target population using telemetry data but without

accounting for tortuosity were also considered as ‘defi-

cient’ quality. Day range is expected to be underestimated

(e.g. Marcus Rowcliffe et al., 2012). We considered as ‘ap-

propriate’ quality those cases in which day range was esti-

mated for the target population by (i) using telemetry

data and accounting for tortuosity (Marcus Rowcliffe

et al., 2012), (ii) applying the camera trap-based method

(Palencia, Fernández-López, et al., 2021; Rowcliffe

et al., 2016) or (iii) when observers followed animals and

recorded the total distance covered (Cusack et al., 2015;

Rowcliffe et al., 2008). Further details about the criteria

considered for detection zone and encounter rate, as well

as the qualification reported to each study are shown in

Appendix S1. We did not consider precision in density

estimates in the published studies because most did not

adequately describe how they were estimated (e.g. whether

or not they accounted for variance in all parameters) or

reported explicitly that they had not considered precision

in some of the measured variables (e.g. Balestrieri

et al., 2016; Garrote et al., 2021; Pfeffer et al., 2018).

Field surveys

Study areas and target species

We sampled wild mammal populations at six sites in

Spain. These included a protected area (site A), three

fenced hunting estates (sites B, C and D) and two open

areas where cattle farming and hunting were the main

uses (sites E and F). Site A was located in southern Spain

(Doñana National Park), sites B, C, D, E and F were

located in two mountain chains in central Spain: the

Montes de Toledo (B, C and D) and the Sistema Central

(E and F). Although sites C and D are situated next to

each other, we considered them as two independent study

areas, because they were fenced off and separated by a

road. Sites E and F were sampled over two consecutive

years. Further details of the environmental characteristics

of the sampled sites are given in Appendix S2.

For the target species, we sampled 13 wild populations

(Table 1), including five species of ungulates (red deer

Cervus elaphus; roe deer C. capreolus; fallow deer Dama

dama; mouflon Ovis musimon; and wild boar Sus scrofa)

and one lagomorph (Iberian hare Lepus granatensis). Each

population was surveyed applying REM alongside an

independent reference method (Fig. 1) for comparative

purposes in terms of precision (coefficient of variation,

CV) and consistency in average density values (see details

below). Both surveys overlapped spatially and temporally.

REM: rationale and surveys

The REM models the encounters between animals and

passive detectors (here camera traps) without the require-

ment for individual identification of animals (Rowcliffe

et al., 2008). The REM equation is:

D ¼ y

t
� π

v � r � 2þ θð Þ

where y is the number of encounters, t is the total survey

effort, v is the day range and r and Ɵ refer to the effective

radius and angle of the camera detection zone, respec-

tively. To estimate encounter rate, we considered each

time that an individual of the target species entered the

detection zone of the camera trap as a new encounter.

Day range was estimated following Palencia, Rowcliffe,

et al. (2021) using the activity v.1.3.1 and trappingmotion

672 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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v.1.0.0 packages in R (Palencia, 2020; Rowcliffe, 2019).

Briefly, speed was measured on each encounter by divid-

ing the distance travelled by the duration of the encoun-

ter; we subsequently identified different movement

behaviours based on the speed measurements. Second, we

estimated activity level, following Rowcliffe et al. (2014).

For each behaviour, we estimated the average speed and

weighted the activity level, taking into account the pro-

portion of time that the population spent on each beha-

viour. Day range was estimated as the sum of the product

of the mean speed and the proportion of the activity level

associated with each behaviour. To estimate detection

zone, we recorded the position (radial distance and angle)

of an animal when it first triggered the camera trap and

then applied a distance sampling analysis to estimate

effective radius and angle (Rowcliffe et al., 2011). The

variance associated with the encounter rate was estimated

by bootstrapping, resampling camera trap locations with

replacements. The overall variance of density estimates

was computed using the delta method (Seber, 1982) and

Table 1. Summary of REM surveys.

Site Species

No. CT

placements Survey period Survey length (days)

CT deployment

height (cm)

Grid spacing

(km) CT brand

Reference

method

A Wild boar 24 September–November 21 50 1.5 BUSAT SMR

Fallow deer 24 September–November 57 50 1.5 BUSAT TC

B Iberian hare 30 May–July 93 20 0.75 BRW-SF DS

Roe deer 20 December–April 138 50 2 BUSAT SCR

Red deer 19 October 15 140 2 BRW-SF DS

C Mouflon 7 March–May 58 50 2 LTL DS

Red deer 7 March 25 50 2 LTL DS

D Mouflon 9 March–May 58 50 2 LTL DS

Red deer 9 March 25 50 2 LTL DS

E1 Wild boar 37 February–March 30 50 1.5 LTL DC

E2 Wild boar 17 November–December 44 50 1.5 LTL DC

F1 Wild boar 10 February–March 30 50 1.5 LTL DC

F2 Wild boar 14 November–December 44 50 1.5 LTL DC

All the sites (study areas) are located on Spain. ‘A’ is a protected area, ‘B’, ‘C’ and ‘D’ fenced hunting states, and ‘E’ and ‘F’ two open areas

where cattle farming and hunting were the main uses. 1 represents year 1 surveys and 2 represents year 2 surveys. REM, random encounter

model; CT, camera trap; BRW-SF, Browning Strike Force HD Pro X; BUSAT, Bushnell Aggressor Trophy Cam; LTL, Little Acorn 5310 Series; DS, dis-

tance sampling; SCR, spatial capture–recapture; SMR, spatial mark–resight; TC, total count; DC, drive counts.

Figure 1. Example of the experimental design of one of the populations surveyed in this study (Iberian hare, Lepus granatensis – site B). Crosses

represent camera trap placements for random encounter model application; the grey dashed line represents the line transects for distance

sampling application (the reference method in this case); the continuous black line marks the boundary of the study area. Panels to the right

represent the study area locations in Spain.
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the emdbook v.1.3.12 package in R (Bolker, 2019). The

latter incorporated the variance of all the parameters (en-

counter rate, day range and detection zone). Log-normal

confidence intervals were presented for density estimates

because of the limited sample size and to prevent negative

limits. In the roe deer population, only males were con-

sidered for estimation of encounter rate and speed,

because we were only able to identify males individually

for an independent estimate of density using the reference

method (see details below). Since we did not expect dif-

ferences in the effective detection zone between male and

female roe deer, we also considered females for estimating

the detection zone to increase the sample size and preci-

sion of the estimates.

With respect to field sampling, we used in all the popu-

lations a systematic design with random origin to meet the

assumption of random camera placement relative to ani-

mal movement (Rowcliffe et al., 2013). Camera traps were

deployed facing north on the nearest vertical feature (trees,

poles and so on). Three different camera trap models were

used: Browning Strike Force HD Pro X, Bushnell Aggressor

Trophy Cam and Little Acorn 5310 Series, although the

same model was used within each population (Table 1).

Camera traps were configured to record a burst of photos

at each activation, with the minimum time lapse between

consecutive activations, which allowed us to record the

entire passage of an animal. Cameras were set to be opera-

tional all day, recording nocturnal photos using an infrared

flash. For the deployment of cameras in the field, we fol-

lowed the procedure described by Palencia, Fernández-

López, et al. (2021) and in the 10 m closest to the camera,

natural markers such as rocks or branches were placed in

the field of view of the camera at 2.5 m intervals using

ground distance (i.e. accounting for inclination). In the

case of the Iberian hare population, we also placed markers

at 3.7 m from the camera. These markers were later used

to locate the position of the animals in the field of view of

the camera trap.

Finally, we evaluated the aggregation in encounter

rates. It is well established that most of the variance in

REM is attributable to the variation in encounter rate

between sampling points (Palencia, Rowcliffe, et al., 2021;

Rowcliffe et al., 2008), so a better understanding of the

spatial aggregation in this parameter could be useful to

provide future insights to improve precision. For that, we

fitted Poisson and negative binomial distributions to the

observed encounter rates (Appendix S3).

Independent density estimates from reference
methods

We also sampled all populations using a reference method

generally applied and recognized as reliable for wildlife

population monitoring. All the populations, except for

fallow deer, were monitored exclusively for this study (see

details below). Briefly, we considered distance sampling

for red deer, mouflon and hare populations (e.g. Acevedo

et al., 2008), total counts (TC) for fallow deer (e.g. Grig-

nolio et al., 2020), SCR for roe deer (e.g. Jiménez

et al., 2013) and spatial mark–resight (SMR, an extension

of SCR for partially marked populations) and drive

counts (DC) for wild boar (e.g. ENETWILD consortium

et al., 2019; Jiménez et al., 2017). Further details are

shown in Appendix S2.

• Distance sampling (DS): We performed line transect

distance sampling to estimate the density of all red deer,

mouflon and Iberian hare populations. A set of transects

was distributed across the study areas, overlapping the

areas sampled with the REM design (Fig. 1). We carried

out the surveys in September (for red deer and mouflon

populations) and April (for Iberian hare populations),

beginning 1 h after sunset from a vehicle moving at an

average speed of 10 km�h−1, using a handheld 100 W

spotlight to search a 180° arc in front of the vehicle. We

repeated the surveys over five consecutive nights. When

an animal/group of animals was detected, radial distance

between animal(s) and observer, and the angle between

animals and transect were measured with a telemeter

(Nikon Laser 550AS) and a compass, respectively. We

used Distance Sampling 6.2 software to analyse the data

(Thomas et al., 2010). Data were right truncated when

the probability of detection was lower than 0.15; half-

normal, uniform and hazard rate detection functions were

fitted to the data using cosine, hermite polynomial and

simple polynomial adjustment terms. The best model was

selected according to the AIC (Buckland et al., 2001).

• TC: Total counts were performed as part of the

Doñana National Park monitoring program (http://icts.

ebd.csic.es/monitoring-data) and were applied to estimate

fallow deer density at site A. During the rutting season,

two gamekeepers simultaneously sampled open areas and

grassland in a single afternoon (2 h before sunset). The

survey was carried out from a vehicle at an average speed

of 10 km�h−1. When a group of animals was detected, the

size of the group and the sex and age classes of individu-

als were recorded. We estimated density by dividing the

number of animals observed by the total size of the study

area. Since only one survey was performed, it was not

possible to estimate precision of density. This method

assumes perfect detection (i.e. all the individuals in the

population are detected). To increase the reliability of this

assumption, we carried out the count in the period of

higher detectability of the species (i.e. rutting season) and

at the peak of the activity pattern during the day (i.e.

sunset). Additionally, based on telemetry data from fallow

deer tagged in the study area (Triguero-Ocaña

674 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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et al., 2020), we designed a targeted survey, and we sur-

veyed those areas used by the species.

• SCR: To estimate roe deer density at site B, we sam-

pled with the camera traps 17 artificial feeding points for

3 months, designed exclusively for roe deer and dis-

tributed throughout the study area. Since we were only

able to identify individuals based on the antlers (size,

shape, length, curvature and number of points), we dis-

carded females and calves and estimated the density of

males (Jiménez et al., 2013). Data were analysed with

SCR using the oSCR v.0.42.0 package in R (Sutherland

et al., 2019). We tested the performance of both M0

(which assumes constant baseline detection probability,

p0) and Mb (where p0 is allowed to vary depending on

the previous capture). We tested Mb because we used bai-

ted sampling points, animals might respond positively

(trap happiness) and they might be more likely to be cap-

tured subsequent to their initial capture. We also run

three models including factors affecting density. In one of

them, we included habitat (open areas and dense vegeta-

tion areas), in the second we included region (north and

south, because of the natural density gradient reported in

previous studies; Jiménez et al., 2013) and in the third

model we included statistical interaction between habitat

and region. We also tested a model in which region was

included as factor of p0. Models were compared on the

basis of AIC values (Royle et al., 2013). As the study area

was fenced, we restricted the state space to the fenced

area.

At site A, to estimate wild boar density, we captured

and ear-tagged seven wild boar. Two of these individuals

were also tagged with GPS-GSM collars programmed to

acquire one location every 10 min. As it was not possible

to recognize all the wild boar, we applied SMR. Specifi-

cally for the SMR method, we deployed 61 cameras with

a 500 m inter-camera spacing in two regular grids (5 × 5,

6 × 6) representatives of the study area. We analysed the

photographic captures of both marked and unmarked

wild boar using an extension of SMR model with incom-

plete identification: the generalized SMR model (gen-

SMR-ID, Jiménez et al., 2019). This approach solved two

common problems in SMR studies: the difficulty of read-

ing all the marks and recognizing individuals, and equal

encounter rates in marked and unmarked animals. We

fitted the null model and included telemetry data to allow

inferences about the posterior distribution of σ, and con-

sidered a survey period of 25 days to avoid the effect of

transient animal movement.

• DC: We applied DC to estimate wild boar densities at

sites E and F. An average of four drives of

229 � 54.90 ha (SE) in different scrubland zones in the

study areas were surveyed on separate days. Observers

were placed at fixed locations with an open field of view

(e.g. firebreaks). The DC started at 11:00 and lasted for

4 h. While the observers were in their positions, beaters

with dogs moved across the area. An experienced beater

(J. Ferreres) supervised all the DC, collected all the infor-

mation and minimized the likelihood of double counting.

Assuming that all animals were detected, we estimated

densities by dividing the number of observed animals by

the surveyed area. Multiplying these densities by the area

covered by scrubland, we estimated the total number of

wild boar. It was assumed that at the time of the DC, all

the wild boar were in the scrubland areas, and animals in

the open grassland zones were ignored. Finally, by divid-

ing the total number of individuals by the total area of

the population, we estimated the density.

Comparison of density results

To identify the factors that determine the reliability in

REM, we run a linear mixed-effects model using the bias

as response variable. Bias for each population was esti-

mated as the difference of the REM-density minus the

reference-density, and this value was divided by the

reference-density. Thus, negative values indicate an

underestimation of REM, positive values overestimation

of REM, and 0 correspondence between the densities

obtained with REM and reference method. At this point

we would like to highlight that because of the absence of

reliable precision of densities reported on literature, it

was not possible to include uncertainty in the response

variable, that can lead to an overestimation of the preci-

sion in the model parameters (Behney, 2020; Cressie

et al., 2009). As explanatory variables we considered the

number of camera trap placement log10-transformed as

continue, the reference method as a factor with five cate-

gories (distance sampling, DC, dung count, spatial explicit

capture–recapture and TC), the species taxonomic group

as a factor with six categories (Artiodactyl, Carnivora,

Diprotodontia, Eulipotypha, Lagomorpha and Rodentia),

and the quality of the estimation of the REM parameters

(i.e. day range, detection zone and encounter rate) used

as a factor each one with two categories (appropriate and

deficient). All these variables were included as predictors

in a full model. The study was included as a random

effect factor. Raw data for these variables are found in

Appendix S1. The assumptions of normality, homogeneity

and independence in the residuals were assessed following

Zuur et al. (2010).

Results

In the review of the existing literature, we found 34 studies

in which REM was applied to a total of 45 species.

Reported REM densities ranged from 0.07 individuals�km−2
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(cougars Puma concolor, Loonam et al., 2021) to 468 indi-

viduals�km−2 (wallabies Macropus rufogriseus, Rowcliffe

et al., 2008) (Appendix S1). In 25 of these studies, REM

estimates were compared with a reference method, generat-

ing a total of 77 REM-reference method comparisons

(Fig. 2).

In the populations surveyed in this study, the densities

obtained using REM ranged from 0.44 individuals�km−2

(males in roe deer population at site B) to 60.55 individ-

uals�km−2 (red deer population at site D) (Fig. 3 and

Table 2).

With respect to the LLM, the results did not show an

association of the reference method, the number of place-

ments sampled and the species taxonomic group with the

bias (Fig. 4). We observed an effect of the quality of REM

parameters (appropriate/deficient) in density bias (Fig. 4).

Deficient procedures for the estimation of day range and

encounter rate led to an overestimation of density when

applying REM; while an underestimation in density was

observed when deficient procedures were applied to the

estimation of detection zone (Fig. 4). We also reported a

tendency to overestimate density when appropriate proce-

dures were applied to estimate detection zone (Fig. 4).

The model has an R2 of 0.51, while the R2 associated with

the random effect (here the ‘study’) was 0.26.

With respect to precision, we observed overdispersed

encounter rates in all the populations surveyed in this

study, where parameter k ranged from 0.04 (fallow deer

population at site A) to 1.39 (wild boar population at site

F2). The mean CV was 0.47 in the REM estimates, rang-

ing from 0.34 to 0.75. In contrast, the mean CV of the

reference methods was 0.25, ranging from 0.13 to 0.47.

The REM achieved lower precision than the reference

method in all populations, except for the mouflon popu-

lation at site D (REM-CV = 0.42, reference method-

CV = 0.47) and the wild boar at site E2 (REM CV = 0.40,

reference method CV = 0.39), in which reference meth-

ods were distance sampling and DC, respectively. Based

on this result, we included in Appendix S3 a brief simula-

tion to evaluate the survey design needed for a given level

of precision considering the high levels of aggregation

observed in the populations sampled in this study.

Discussion

The development of new methods to estimate population

densities without the need for individual recognition has

improved the applicability of camera trapping for wildlife

monitoring. However, comparative studies surveying

more than one population and assessing methods reliabil-

ity are scarce. This study, based on a combination of

reviewed and empirical data, shows the potential of REM

for estimating population density, as well as what factors

determines its reliability.

Broadly, we found a strong equivalence between REM

and reference densities (Figs. 2 and 3). These results are

Figure 2. Densities plotted in a pairwise comparison between

random encounter model (REM) and reference methods reported in

published studies. Crosses represent mean density values; translucent

ellipses represent 95% log-normal confidence intervals. Those popula-

tions without ellipses are those which did not report variance values

in the original study. A detailed list of references and density values

can be found in Appendix S1. The diagonal line is the line of equality.

Figure 3. Densities plotted in a pairwise comparison between

random encounter model (REM) and reference methods for

populations surveyed in this study. Symbols represent mean density

values, and translucent ellipses, 95% log-normal confidence intervals.

Note that species are grouped according to colour and symbol type.

The diagonal line is the line of equality. Capital letters above the sym-

bols represent the populations at the different sites.

676 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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in agreement with most of the studies that have assessed

REM, most of which reported comparable results (Pfeffer

et al., 2018; Rowcliffe et al., 2008; Schaus et al., 2020),

although others reported discrepancies (Chauvenet

et al., 2017). In this respect, our results suggested that

biased REM densities are obtained when REM parameters

(namely day range, detection zone and encounter rate)

are estimated applying deficient procedures (Fig. 4). First,

should be mentioned that, considering the number of

REM and reference method comparisons (N = 90), we

are going to discuss the observed effect (point estimate)

in the statistical model, since the absence of significant

differences in some factors could be due to the wide

intervals obtained likely related with limited sample size

(Amrhein et al., 2019). Focusing on encounter rate, we

observed that some studies applied not random (i.e. tar-

geted) designs by setting cameras in placements in which

the presence of animals such as dung piles, footprints or

wildlife trails were observed (e.g. Rahman et al., 2017;

Rovero & Marshall, 2009; Soofi et al., 2017). Additionally,

other studies have considered regular grids, but the place-

ment selected around the predefined point was based on

the presence of wildlife signs (Pfeffer et al., 2018; Zero

et al., 2013), so the camera trap placement is not random.

Targeted designs when applying REM could lead to an

increase in encounter rate, and this could explain the ten-

dency to overestimate density observed (Fig. 4). Regard-

ing the day range, we also reported a tendency to an

overestimation in REM densities when applying deficient

procedures to estimate day range. Looking into the bibli-

ography (Appendix S1), we observed that most of the

deficient procedures to estimate day range are those in

which tagged animals with GPS collars were used to esti-

mate day range without accounting for tortuosity (e.g.

Caravaggi et al., 2016; Garrote et al., 2021; Massei

et al., 2018; Rovero & Marshall, 2009; Zero et al., 2013).

It is well described that estimate day range assuming

straight-line distances between consecutive fixes notably

underestimate day range, and some studies concluded

that more than 5 fixes�min1 would be required to get tol-

erably accurate estimates (Marcus Rowcliffe et al., 2012;

Sennhenn-Reulen et al., 2017). If day range is underesti-

mated, densities are overestimated when applying REM.

Finally, an underestimation of density when applying

REM using deficient procedures to estimate detection

zone was observed. Looking into literature (Appendix S1),

we observed that habitual practice is to determine the

dimensions of the detection zone by a series of trials in

which the camera was approached by a person from vary-

ing directions (e.g. Cusack et al., 2015; Garrote

et al., 2021; Loonam et al., 2021; Massei et al., 2018;

Rowcliffe et al., 2008). In this respect, some studies have

evidenced that detection zone is determined by different

factors such as environmental conditions and camera trap

settings (Palencia, Vicente, et al., 2021; Rowcliffe

et al., 2011). More relevant, other studies have described

a positive relationship between species body mass and

detection zone dimensions (Hofmeester et al., 2017).

Thus, if detection zone is estimated using human trails,

an overestimation is expected because target species are

usually shorter and smaller than humans. If detection

zone is overestimated, REM densities are underestimated.

Additionally, other habitual practices for the calculation

of detection zone are to use the values reported on

Table 2. Estimated random encounter model (REM) parameter values for each population, where y/t is the encounter rate; v, the average dis-

tance travelled by an individual during a day (day range); r, the radius of detection; and θ, the angle of detection.

Populations Parameters

Site Species y/t (ind�(cam�day)−1) v (km�day−1) r (km) θ (rad)

A Fallow deer 0.203 (0.194) 5.776 (1.596) 0.0088 (0.0004) 0.733 (0.083)

Wild boar 0.600 (0.270) 15.770 (1.931) 0.0080 (0.124) 0.733 (0)

B Iberian hare 0.144 (0.040) 4.069 (0.752) 0.0059 (0.0005) 0.911 (0.121)

Roe deer 0.012 (0.005) 6.644 (2.436) 0.0049 (0.0003) 0.733 (0.238)

Red deer 0.670 (0.254) 4.020 (0.420) 0.0046 (0.0001) 0.959 (0.0001)

C Mouflon 0.181 (0.056) 6.112 (1.213) 0.0049 (0.0003) 0.959 (0.083)

Red deer 0.317 (0.039) 1.840 (0.446) 0.0045 (0.0002) 0.641 (0.049)

D Mouflon 0.063 (0.026) 6.112 (1.213) 0.0049 (0.0003) 0.959 (0.083)

Red deer 0.995 (0.714) 4.383 (0.472) 0.0045 (0.0002) 0.641 (0.049)

E Wild boar1 0.063 (0.013) 7.097 (2.086) 0.0034 (0.0004) 0.380 (0.052)

Wild boar2 0.149 (0.063) 6.482 (1.465) 0.0034 (0.0004) 0.380 (0.052)

F Wild boar1 0.280 (0.091) 6.326 (1.345) 0.0030 (0.0001) 0.582 (0.050)

Wild boar2 0.135 (0.059) 7.753 (1.960) 0.0029 (0.0006) 0.582 (0.050)

Data represent means (�standard error). All the sites (study areas) are located on Spain. ‘A’ is a protected area, ‘B’, ‘C’ and ‘D’ fenced hunting

states, and ‘E’ and ‘F’ two open areas where cattle farming and hunting were the main uses. Subscripts: 1: year 1, 2: year 2.
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manuals (e.g. Pettigrew et al., 2021; Popova et al., 2019)

or to take reference values from literature (e.g. Soofi

et al., 2017; Zero et al., 2013); both approaches could lead

to biased detection zones, and consequently, biased densi-

ties. On the other hand, underestimation of detection

zone could lead to overestimation of density. Theoreti-

cally, detection zone size is estimated accurately using

detection distances and applying distance sampling if

detection probability is certain for at least some distance

from the camera (Rowcliffe et al., 2011), which can be

achieved by setting the cameras at shoulder height of the

target species (Palencia, Vicente, et al., 2021). Thus,

future studies in which appropriate procedures are

applied to estimate all the parameters are necessary to

confirm that, under these scenarios, accurate REM densi-

ties are estimated. Broadly, deficient procedures for the

estimation of REM parameters will be lead to biased den-

sities. Thus, a best practice guide for the application of

REM should include the estimation of all the parameters

for the target population applying reliable procedures (see

Appendix S1) together with random camera placements

relative to animal movement (Rowcliffe et al., 2013).

Additionally, variance in all the parameters should be

considered when estimating density precision. Random

designs can lead to low sample size but increasing the

sampling effort by increasing the number of cameras or

survey length should be always considered, rather than

using attractants or targeted designs.

Regarding the number of camera trap placements,

the reference method and the species taxonomic group,

we did not observe relevant relationships (i.e. values for

the estimate close to 0, Fig. 4) with bias in density esti-

mations from REM. With respect to the reference

methods, we acknowledge that there are relevant differ-

ences among them, for instance, in the estimation of

probability of detection. However, other practical rea-

sons usually determine which method is applied in

monitoring programmes, so we decided to include all

of them in the comparisons, and not only the robust

ones (Borchers et al., 2002). Regarding the species taxo-

nomic group, the most relevant patterns were associated

with Eulipotypha and Lagomorpha. Both groups showed

a slight tendency to underestimate REM densities. Con-

sidering the low number of studies that sampled these

groups, further comparisons in these taxonomic groups

are still necessary.

Figure 4. Left panel: coefficients for the predictors included in the LLM model to valuate REM reliability. Bias was estimated as the difference of

the REM-density minus the reference-density, and this value divided by the reference density. Colours represent different levels of the same factor.

The reference categories for day range, encounter rate and detection zone quality were “appropriate”, for reference method was “distance sam-

pling” and for taxonomic group was “Artiodactyl”. Right panel: predicted values for day range, encounter rate and detection zone considering

two categories (app.: appropriate and def.: deficient) according to the quality of the procedures applied to estimate these parameters. Error bars

represent 95% confidence intervals. REM, random encounter model.

678 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Assessing Random Encounter Model Reliability P. Palencia et al.

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.269 by C

sic O
rganizacion C

entral O
m

, W
iley O

nline L
ibrary on [11/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



After estimating all REM parameters for the target pop-

ulation, the Spanish surveys demonstrated their reliability

in ungulates and Iberian hare in different environmental

scenarios and a wide range of densities (from 0.44 to

60.55 individuals�km−2). This range of densities covers the

vast majority of the population densities reported in wild-

life monitoring programmes (Fig. 2). We also surveyed

gregarious (e.g. fallow deer, mouflon) and non-gregarious

(e.g. Iberian hare) mammals and the results showed a high

degree of equivalence between REM and reference densities

(Fig. 3). For REM application, it is not needed that ani-

mals have a reasonable chance of being detected at more

than one camera, which means that multispecies studies

can be considered. Here, we surveyed red deer and mou-

flon populations at sites C and D in parallel, while previ-

ous studies have surveyed the ungulate and carnivore

community (Palencia, Rowcliffe, et al., 2021; Pfeffer

et al., 2018). Thus, in addition to the advantages of REM

discussed above, we would like to highlight the potential of

REM for monitoring more than one species using the same

survey design. This is less common in other reference

monitoring methods. Distance sampling surveys, for exam-

ple, should be conducted during the season of highest

detectability when target species activity is at its peak

(Buckland et al., 2001). On the other hand, when using

SCR methods, the distance between traps depends on the

home range of the species (Royle et al., 2013). Home range

and activity periods are usually species specific.

A potential point of concern is that our REM estimates

showed relatively low precision (Figs. 2 and 3). The low

precision of REM estimates has been reported before

(ENETWILD consortium et al., 2019; Palencia, Rowcliffe,

et al., 2021). Although we considered variance in all esti-

mated model parameters, most of the final density vari-

ance was attributable to the variation in encounter rate

between sampling points (Table 2), and it has been

described in other studies (Howe et al., 2017). The distri-

bution of animals is not uniform but aggregated, and

usually overdispersed (i.e. the variance is greater than the

mean). In this study, for example, we monitored highly

aggregated populations (maximum k of negative binomial

distribution for encounter rate was 1.4) throughout the

study area. In highly aggregated scenarios (e.g. k = 0.05),

when applying REM, a minimum of 60 camera trap

placements (sampling locations) should be sampled to

obtain a CV of <0.2 (which is a rule of thumb for moni-

toring programmes; Pollock et al., 1990) (Appendix S3).

The human effort and cost associated with sampling more

than 60 placements would not be feasible in some man-

agement programmes, which may limit the applicability

of REM for wildlife monitoring (but CV of <0.2 may not

always be necessary’). In this respect, some studies have

shown seasonal variation in encounter rates (Kays

et al., 2021; Kolowski et al., 2021), so a general recom-

mendation when applying REM could be to survey popu-

lations when low aggregation is expected. This could help

to optimise human effort. Considering all the above,

future advances in REM should be focused on optimizing

surveys design to improve density precision.

In addition to the advantages highlighted above, we

would also like to highlight that previous studies evaluat-

ing the costs associated with REM and reference methods

have concluded that REM is cost-effective in the long

term despite the high start-up costs (Cusack et al., 2015;

Pettigrew et al., 2021; Rovero & Marshall, 2009; Schaus

et al., 2020; Zero et al., 2013). The REM is recommended

particularly when the assumption of population closure is

violated (i.e. density is expected to change during the sur-

vey), since it provides an average density across the sam-

pling period, but not biased results. It should be

mentioned that violation of closure is common, for

instance, when monitoring game species during the hunt-

ing season (ENETWILD consortium et al., 2019). The

REM could also be recommended for well-defined areas

(such as forests surrounded by agricultural lands or

fenced hunting areas). On the other hand, a significant

limitation is that REM estimates average density over the

entire study area and survey period, which limits its

potential to identify spatial variation in densities (Car-

avaggi et al., 2016; Rowcliffe et al., 2008).

In conclusion, our results showed that REM could be a

reliable alternative for monitoring wildlife populations and

is highly recommended when parameters (day range,

encounter rate and detection zone) are adequately esti-

mated, and survey effort, in terms of camera trap place-

ments, is appropriate to obtain precise estimates. Since it

was first described, the REM has been well received and

widely applied by the scientific community (c. 30 applica-

tions) and even included in citizen science projects (Schaus

et al., 2020). It has also been proposed as a reference

method for monitoring certain species at European level

(ENETWILD consortium et al., 2019). Here we provide

strong evidence of the reliability of REM, highlighting the

priority aspect of estimating REM parameters properly and

using appropriate survey design. These results, along with

the practical recommendations for improving precision,

and its methodological advantages relative to other meth-

ods described above, allow us to conclude that REM could

be recommended for monitoring wildlife population den-

sity, especially managers and partitioners responsible for

monitoring wildlife populations.
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