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A B S T R A C T   

Many satellite missions rely on modeling approaches to acquire global or regional evapotranspiration (ET) 
products. However, a current challenge in ET modeling lies in dealing with sub-pixel heterogeneity, as models 
often assume homogeneous conditions at the pixel level. This is particularly an issue for heterogeneous land-
scapes, such as tree-grass ecosystems (TGE). In these areas, while appearing homogeneous at larger spatial scales 
pertaining to a single land cover type, the separation of the spectral signals of the main landscape features (e.g. 
trees and grasses) may not be achieved at the conventional satellite sensor resolution (e.g. 10–1000 m). This 
leads to important heterogeneity within the pixel grid that may not be accounted for in traditional modeling 
frameworks. This study examined the effect of pixel heterogeneity on ET simulations over a complex TGE in 
central Spain. High resolution hyperspectral imagery from five airborne campaigns forced the two-source energy 
balance (TSEB) model at 1.5–1000 m spatial resolutions. Along with this, the sharpened (20 m) and original 
(1000 m) Sentinels for Evapotranspiration (Sen-ET) products were evaluated over the study site for 2017. Results 
indicated that TSEB accurately simulated ET (RMSD: ~60 W/m2) when the pixel scale was able to robustly 
discriminate between grass and tree pixels (<5 m). However, model uncertainty drastically increased at spatial 
resolution greater than 10 m (RMSD: ~115 W/m2). Model performance remains relatively constant between 30 
and 1000 m spatial resolutions, with within pixel heterogeneity being similar at all these scales. For mixed pixels 
(≥30 m), forcing an effective landscape roughness into TSEB (RMSD: ~80 W/m2) or applying a seasonally 
changing TSEB (TSEB-2S; RMSD: ~65 W/m2) improved the modeling performance. The Sen-ET products 
behaved similarly at both scales with RMSD of ET roughly 80 W/m2. The non-linear relationship between input 
parameters and flux output, along with the poor representation of aerodynamic surface roughness, were the main 
drivers for the increased uncertainties at coarser scales. These results suggest that care should be taken when 
using global ET products over TGE and similarly heterogeneous landscapes. The modeling procedure should 
inherently account for the presence of vastly different vegetation roughness elements within the pixel, to achieve 
reliable estimates of turbulent fluxes over a TGE.   

1. Introduction 

Three major groups of methods have been proposed to retrieve 
evapotranspiration (ET) from remote sensing data (Kustas and 

Anderson, 2009; Li et al., 2017; Mu et al., 2011) (1) empirical ap-
proaches that either upscale point measurements to gridded data using 
vegetation indices (VI) and meteorological data (e.g. Jung et al., 2019, 
2009) or are based on the relationship between VI and land surface 
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temperature (LST) (e.g. Gillies et al., 1997; Nishida et al., 2003); (2) 
traditional methods such as Penman-Monteith (PM) or Priestley-Taylor 
(PT) approaches combined with optical remote sensing and weather 
data inputs (e.g. Mu et al., 2011) including those merging them with soil 
water balance schemes (e.g. Bastiaanssen et al., 2012; Hu and Jia, 2015; 
Martens et al., 2017); and (3) surface energy balance (SEB) models that 
exploit both thermal infrared (TIR) and optical regions to solve ET 
through the radiation and energy balance equations (e.g. Allen et al., 
2007; Norman et al., 1995; Su, 2002; Xu et al., 2019). 

SEB models find a good compromise between being physically-based 
without the need for extensive data inputs and parameters (Kustas and 
Anderson, 2009). This makes them particularly suited for applications at 
different spatial scales since they rely less on locally constrained data 
(Anderson et al., 2003). SEB models obtain ET as the residual of the en-
ergy balance, where the available energy (AE), defined as net radiation 
(Rn) minus ground heat flux (G), is partitioned between sensible heat (H) 
and latent heat (LE) (i.e. ET) fluxes. However, SEB models must address 
the aerodynamic-radiometric temperature difference, which for semi- 
arid and/or sparse vegetation can be up to several degrees different 
(Colaizzi et al., 2004; Norman et al., 1995). Single-source SEB models 
treat the surface as a single composite layer. They require a method to 
relate the remotely sensed radiometric temperature with that of the 
aerodynamic temperature. These are often based on the use of an addi-
tional resistance term that accounts for the various factors affecting the 
radiometric-aerodynamic temperature difference (Kustas et al., 2016). 
This may include accounting for the difference between the roughness 
length for heat transport (z0H) and the roughness length for momentum 
transport (z0M). z0M and z0H tend to be largely different as they are 
affected by different processes, such as the turbulent drag on roughness 
elements for momentum and the molecular diffusion near the surface for 
heat transport (Jia, 2004; Verhoef et al., 1997). The differences between 
the two are usually defined through the kB− 1 parameter, which is often 
difficult to estimate without large parameterizations (Boulet et al., 2015). 
Although, the widely used Surface Energy Balance System (SEBS) (Su, 
2002) proposed a method to determine kB− 1 through remote sensing 
derived parameters such as LAI and vegetation fractional cover. 

Other SEB schemes, through a ‘two-source’ approach, tackle this 
issue by separating the surface temperature and energy exchange into 
vegetation and soil components while considering the directional effects 
of the TIR observations (Anderson et al., 1997; Boulet et al., 2015; 
Norman et al., 2003, 1995). As these models consider soil and vegetation 
separately, this approach explicitly accommodates for the major dif-
ferences between radiometric and aerodynamic temperature. Vegeta-
tion cover and the sensor viewing geometry most notably affect this 
temperature difference (Kustas et al., 2016; Norman et al., 1995). The 
two-source energy balance (TSEB) model (Norman et al., 1995) applies 
this rationale. Compared to one-source models, TSEB provides a more 
physical depiction of water and energy fluxes’ processes (Boulet et al., 
2015). This avoids the need for additional empirical terms or depending 
on certain conditions being met (e.g. presence of hot and cold pixels; e.g. 
Allen et al. (2007)) within the region of interest (ROI). Adaptations to 
the TSEB modeling framework were implemented in Kustas and Norman 
(1999) to better represent partial canopy cover conditions and past 
studies demonstrated that TSEB provided reliable flux estimates for 
clumped and partially vegetated landscapes under water-limited con-
ditions (Burchard-Levine et al., 2020; Kustas et al., 2019, 2016; Li et al., 
2019; Song et al., 2018; Timmermans et al., 2007). 

Many satellite missions rely on modeling approaches for global ET 
products. These include ESA’s Sentinel constellation, which recently 
published the Sentinels for ET (Sen-ET) product (Guzinski et al., 2020) 
and NASA’s ECOsystem Spaceborne Thermal Radiometer Experiment on 
Space Station (ECOSTRESS) mission (Fisher et al., 2020). However, 
there are many scaling issues that must be considered when modeling 
the surface-atmosphere exchanges (Anderson et al., 2003; Brunsell and 
Gillies, 2003; Moran et al., 1997). A current challenge in regional and 
global flux modeling lies in dealing with sub-pixel heterogeneity. 

Different land covers, vegetation and surface properties all contribute to 
the sensor signal and to the mass and energy exchange. It thus becomes 
an issue to adequately characterize a heterogenous grid with a single 
parameter value, especially since models typically assume both verti-
cally and horizontally homogenous canopies. The influence of spatial 
resolution on ET retrievals derived from modeling methods has been 
discussed in a number of studies (Ershadi et al., 2013; Kustas et al., 2004; 
Kustas and Norman, 2000; Lagouarde et al., 2015, 2013; McCabe and 
Wood, 2006; Moran et al., 1997; Nassar et al., 2020). Among them, a 
common approach is to resample the remote sensing-based inputs to 
quantify the model uncertainty at different scales. For example, Moran 
et al. (1997) demonstrated that the site heterogeneity highly influenced 
the errors in turbulent heat flux estimations from the aggregation of 
remote sensing inputs. The largest errors in H were associated to sites 
with important variations in aerodynamic roughness with patchy 
vegetation, especially for more unstable conditions. While Lagouarde 
et al. (2015, 2013) showed an increased spatio-temporal variability of 
surface temperatures at finer spatial resolutions. This was related to the 
surface boundary-layer turbulence, which could potentially induce 
larger errors in very high resolution LST measurements and flux 
estimates. 

Landscapes with complex vegetation canopies, even usually classi-
fied under a singular land cover type, have different structural traits that 
may hinder the applicability of conventional models and remote sensing 
techniques. For example, tree-grass ecosystems (TGE), savanna-like 
landscapes with scattered isolated trees coexisting (while super-
imposing) over a rather continuous grass understory, have inherently 
complex structural features. This causes for important surface variability 
and heterogeneity at small scales, presenting clear difficulties for Earth 
observation and modeling methods (e.g. Andreu et al., 2018; Cleugh 
et al., 2007; Whitley et al., 2017), even though at larger spatial scales 
these landscapes appear homogeneous. Remote sensing-based SEB 
models tend to have greater uncertainty in TGEs, with adaptations 
needed to obtain reliable flux estimates (e.g. Andreu et al., 2018; 
Burchard-Levine et al., 2020). As discussed in Whitley et al. (2017), 
traditional land surface models have greater uncertainties in savanna 
ecosystems due to the co-dominant structural features of the trees and 
grass and their differentiated phenology. While tree density over the 
grass understory are relatively homogeneously distributed within these 
landscapes, important small-scale horizontal and vertical spatial het-
erogeneities are present, coupled with strong differences in the seasonal 
contribution of the different vegetation layers to total fluxes (Burchard- 
Levine et al., 2020; El-Madany et al., 2020; Luo et al., 2018). This is an 
important gap since these ecosystems are not only important in extent 
(~15% of the global surface) but savannas and other semi-arid ecosys-
tems were highlighted in recent studies (e.g. Ahlström et al., 2015; 
Biederman et al., 2017; Jung et al., 2011) for their important role in the 
global biogeochemical cycle, being the main contributor to the vari-
ability of global carbon and water fluxes. 

In these ecosystems, the separation of the spectral signals of the main 
landscape features (e.g. trees, grasses and/or shrubs) may not be ach-
ieved from the currently available satellite spatial resolution (e.g. 
10–1000 m). Under this hypothesis, this work addressed heterogeneity 
and scale issues in relation to the accuracy of turbulent flux exchange 
modeling due to variability in land surface biophysical properties and 
aerodynamic roughness, which characterize savanna-like ecosystems. 
With this objective, high-resolution hyperspectral imagery from five 
airborne campaigns quantified the uncertainty in flux retrievals over a 
complex TGE for 1.5–1000 m pixel sizes. These spatial scales were 
designed to mimic the sensor spatial resolution of the main satellite 
missions currently available. Three different model parameterization 
strategies accounted for vegetation mixing at the pixel level: a weighted 
averaging approach, a seasonally changing TSEB assumption (i.e. TSEB- 
2S, Burchard-Levine et al., 2020) and forcing effective roughness 
parameter values into TSEB. The 20 and 1000 m Sen-ET products 
(Guzinski et al., 2020) were also evaluated to contextualize this analysis. 
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2. Methods 

2.1. Study site and in-situ measurements 

The study was conducted in the TGE experimental site Majadas de 
Tiétar (39◦56′24.68′′N, 5◦46′28.70′′W) in central Spain (Casals et al., 
2009; El-Madany et al., 2018). TGE are both prevalent in the Iberian 
Peninsula (known as ‘dehesa’ in Spain and ‘montado’ in Portugal) and 
globally extensive, covering nearly 15% of total Earth surface (Friedl 
et al., 2010). These ecosystems have important ecological (i.e. biodi-
versity and carbon stock) and economic (i.e. livestock grazing) roles 
(Moreno and Pulido, 2008). However, traditional remote sensing 
methods tend to have greater uncertainty in these complex landscapes 
(Andreu et al., 2018; Burchard-Levine et al., 2020; Giri et al., 2005; 
Melendo-Vega et al., 2018). The study site is a managed semi-natural 
agroforested area with scattered evergreen broadleaf trees, mostly 
Holm Oak (Quercus ilex L.) superimposing a nearly continuous grass 
understory. The fractional tree canopy cover at the site is 19.7 ± 4.9% 
(El-Madany et al., 2020). The grass layer is mostly composed of annual 
species from three plant functional groups: grasses, forbs and legumes 
(Migliavacca et al., 2017). It lies within a continental Mediterranean 
climate region with very hot and dry summer periods (~June to 
September), with the grass rapidly drying and senescing during these 
conditions. The area averages 16.7 ◦C annual temperature and about 
650 mm annual precipitation, with significant inter-annual variability 
(Luo et al., 2018). Between 2015 and 2018, August was the hottest and 
driest month reaching mean ~ 31 ◦C temperatures and ~11 mm of 
rainfall. January was the coldest month with average ~ 9 ◦C tempera-
ture, while October was, on average, the wettest month with ~98 mm of 
rainfall. 

Three EC towers operate simultaneously within the experimental site 
since 2014. They are located relatively close to each other (<650 m, 
Fig. 1), with similar tree fractional cover (fc) within their footprint, but 
belong to a large-scale nutrients manipulation experiment (El-Madany 
et al., 2018). Nitrogen was added to the northern tower (NT, FLUXNET 

ID ES-LM1), nitrogen and phosphorus to the southern tower (NPT, 
FLUXNET ID ES-LM2) and the central tower was kept as a control (CT, 
FLUXNET ID ES-LMa). The EC systems are identical for all three towers, 
consisting of a three-dimensional sonic anemometer (R3–50, Gill LTD 
UK) and an infrared gas analyzer (LI-7200, Licor Bioscience, Lincoln, 
USA) at a measurement height of 15 m, about 7 m above the tree canopy. 
A four–component net radiometer (CNR4, Kipp and Zonen, Delft, 
Netherlands) measures both shortwave and longwave incoming and 
outgoing radiation at roughly 15 m above ground. The weighted average 
of eight soil heat flux plates, buried at a depth of 5 cm, represent 
ecosystem scale soil heat flux (G) and was calculated for each treatment 
individually. They were located both in open grass and below tree 
canopy and weighted to consider shadow effects throughout the day. 
Note that corrections related to heat storage above the soil heat flux 
plates were not applied. Measurements of Rn, H, LE and G from the 
tower systems served to benchmark model performance. The average 
energy balance closure ratio (i.e. [LE + H]/[Rn - G]) for each tower 
ranged from 0.74 to 0.79 during the overpasses of the airborne acqui-
sitions used in this study (Table 1). The EC energy balance closure issue 
is an underlying uncertainty in SEB studies using these data, with the 
main causes for this lack of closure, as well as potential corrections, still 
under debate (e.g. Foken et al., 2011; Stoy et al., 2013). Since TSEB 
closes the energy balance by definition, allocating the residuals to the 
observed LE, ensured this closure assuming that errors in LE are larger 
than H. This was shown valid for this site in Perez-Priego et al. (2017) 
with independent LE estimates. Additionally, similar studies applied the 
same strategy (e.g. Burchard-Levine et al., 2020; Guzinski et al., 2014; 
Kustas et al., 2012). Along with this, auxiliary meteorological mea-
surements from the towers forced the TSEB model. These included 
incoming shortwave irradiance (SWin), incoming longwave irradiance 
(LWin), air temperature (Ta), relative humidity (RH), and wind speed 
(u), all measured at a height of 15 m above ground level. These tower 
measurements were considered to be describing meteorological condi-
tions at the ecosystem scale and were maintained spatially consistent 
across the ROI. Refer to El-Madany et al. (2018) for more details on the 

Fig. 1. Study site location with the three EC towers (red points), along with land cover map. The ROI true colour image was acquired from the CASI airborne image 
mosaic of 2014-04-08 and tower footprints were estimating according to Kljun et al. (2015). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 1 
Date, time, and meteorological conditions during the AHS overpasses.  

Date Time (UTC) Ta (◦C) SWin (Wm− 2) u (m s− 1) RH (%) Mean NDVI of ROI (− ) 

2014-04-08 11:47 22.04 859.58 1.63 60.14 0.65 
2015-04-23 12:15 21.56 939.55 2.96 43.07 0.61 
2015-07-03 12:05 32.16 944.98 1.36 32.73 0.37 
2016-05-03 12:15 23.89 968.86 3.76 31.65 0.64 
2017-05-19 12:17 21.18 982.28 1.07 36.31 0.48  
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instrumentation and flux calculation procedures. Ground measurements 
of leaf area index (LAI) for individual trees were acquired using the LAI- 
2200 plant canopy analyzer (LAI-2200) (LICOR Bioscience USA, 2011) 
over five campaigns at different seasonal periods between 2017 and 
2018. Each campaign measured twelve trees distributed over two sam-
pling plots. The average local tree LAI ranges between 1.39 and 1.75 m2/ 
m2 (~0.35 m2/m2 effective LAI) and has low inter-annual variability 
(Luo et al., 2018). In-situ destructive grass LAI (both green and total 
LAI), along with proximal spectral measurements, were also acquired 
from 15 field campaigns between 2017-03-16 and 2019-06-12. Field 
protocols are described in Mendiguren et al. (2015) and Melendo-Vega 
et al. (2018). These ground measurements created empirical models 
between reflectance factors and grass biophysical variables (see Section 
2.3.2). 

2.2. Remote sensing airborne data 

This study processed five high spatial resolution airborne hyper-
spectral images acquired over the Majadas experimental site (Table 1). 
The Spanish National Institute for Aerospace Technology (INTA) oper-
ated these flights using two sensors: the Compact Airborne Spectro-
graphic Imager (CASI-1500i; Itres Research Ltd., Canada) and the 
Airborne Hyperspectal Scanner (AHS). The CASI (i.e. CASI-1500i) is a 
pushbroom imaging spectrometer with 144 spectral bands within the 
visible and near-infrared (VNIR) regions (i.e. 0.38 and 1.05 μm) with a 
field of view (FOV) of ~40◦ and ground spatial resolution of 1.5 m (after 
resampling) at 1839 m above ground level. Spectral bands were atmo-
spherically corrected using ATCOR-4™ (ReSe Applications GmbH, 
Germany) to derive top-of-canopy reflectance (de Miguel et al., 2015). 
The AHS sensor has 63 bands in the VNIR and shortwave infrared re-
gions (0.43 to 2.55 μm), 7 bands in the middle infrared (3.3 to 5.4 μm) 
and 10 bands in the TIR region (i.e. 8 and 13 μm) with a FOV of ~90◦. 
The adjusted normalized emissivity method (ANEM) retrieved LST from 
the AHS TIR bands (Coll et al., 2003, 2001) within ATCOR-4™ (de 
Miguel et al., 2015) with an average output spatial resolution of 4.5 m. 
For each campaign, the selection of the North-South AHS overpass 
centered in the EC towers and closest to solar noon were selected to limit 
solar and angular effects. Since the CASI imagery swath width is nar-
rower compared to the AHS sensor, mosaics of several overpasses ob-
tained an image that overlapped all the three tower footprints (Pacheco- 
Labrador et al., 2020). 

2.3. ET retrievals using the Two-Source Energy Balance (TSEB) model 

2.3.1. Model overview 
The TSEB model, described in Norman et al. (1995) and Kustas and 

Norman (1999), was applied in the Majadas experimental site. TSEB 
estimates LE (i.e. ET) as the residual of the surface energy balance. It 
considers that the combined emission of both soil and vegetation com-
ponents compose the total temperature emitted by the bulk surface. This 
is weighted by the fraction of vegetation observed by the sensor (Eq. 
(1)). 

LST(θ) =
[
f(θ)T4

c + (1 − f(θ) )T4
s

]1/4 (1)  

where f(θ) is the fraction of vegetation observed by the TIR sensor at an 
angle θ and is mainly a function of LAI; Tc is the vegetation canopy 
temperature (K); and Ts is the soil surface temperature (K). LST is the 
main boundary condition in TSEB, serving as a proxy of soil moisture, 
both a near-surface through soil evaporation and root-zone through 
canopy transpiration, together with vegetation condition. Through Eq. 
(1), LST is separated into vegetation (Tc) and soil (Ts) temperature and 
the energy balance is decoupled for the two separate layers (Eqs. (2)– 
(3)). 

RN,c = LEc +Hc (2)  

RN,s = LEs +Hs +G (3)  

where RN is the net radiation (W m− 2), LE is latent heat flux (W m− 2), H 
is sensible heat flux (W m− 2), G is the soil heat flux (W m− 2), and sub-
scripts s and c refer to soil and vegetation canopy sources, respectively. 
Radiative transfer and absorption through the canopy (RN,c and RN,s) are 
simulated using an extinction coefficient approach, primarily dictated 
by the amount of canopy foliage (i.e. LAI) and architecture (i.e. XLAD), 
along with the incident solar angle, as described in chapter 15 of 
Campbell and Norman (1998). This radiative transfer model separates 
incoming shortwave irradiance between direct (i.e. beam) and diffused 
radiation along with separating between VIS (400–700 nm) and NIR 
(700–2500 nm) spectral regions, since reflectivity and transmissivity 
change drastically between vegetation and soil features (Campbell and 
Norman, 1998). LW radiation transfer is modeled similarly but only 
considering diffused radiation from the TIR region. For more details, the 
reader is referred to chapter 15 of Campbell and Norman (1998) or to 
the source code (https://github.com/hectornieto/pyTSEB/blob/master 
/pyTSEB/net_radiation.py#L546). 

H is then estimated for both soil and vegetation sources, assuming 
both layers interact with each other and with the atmosphere, using 
their respective temperatures (Eqs. (4)–(6)). 

Hs =
ρcp(Ts − TAC)

RS
(4)  

Hc =
ρcp(Tc − TAC)

RX
(5)  

H = Hs +Hc =
ρcp(TAC − TA)

RA
(6)  

where TAC is the air temperature within the canopy space (K) and is 
equivalent to the aerodynamic temperature (K); RA is the aerodynamic 
resistance to heat transfer based on the Monin-Obukhov similarity the-
ory and is estimated as (Kustas et al., 2016): 

RA =

ln
[(

zu − d0
z0M

− Ψm
)][

ln
(

zt − d0
z0M

− Ψh
)]

k2u
(7)  

where zu (m) and zt (m) are measurement heights for wind speed and air 
temperature, respectively; d0 the zero-plane displacement height (m); 
z0M the roughness length for momentum transfer (m); k is the von 
Karman’s constant (0.4); and Ψm and Ψh are the Monin-Obukhov at-
mospheric stability functions for momentum and heat, respectively. RS, 
the resistance to heat transfer in the boundary layer above soil layer (s 
m− 1), is computed as: 

RS =
1

c(Ts − Tc)1/3
+ bus

(8)  

where us is the wind speed just above the surface where the impact of 
soil roughness is minimal (i.e., z0, soil); b (− ) and c (s1/2 m− 1) are co-
efficients taken from Kustas and Norman (1999) and Norman et al. 
(1995). These are based on the works of Sauer and Norman (1995) and 
Kondo and Ishida (1997). The wind speed above the surface (at height 
z0, soil) is estimated from the tower measurement at 15 m that is 
extrapolated below the canopy using the Goudriaan (1977) exponential 
wind attenuation law (Eq. (9)). 

uz0soil = ucexp
(

− a
(

1 −
(

z0soil
hc

)))

(9)  

where uc is the wind speed top of canopy (m s− 1), hc is the canopy height 
(m) and a = 0.28LAI2/3hc 

1/3lw-1/3 where lw is the effective leaf width size 
(m). 

RX, the bulk canopy resistance to heat transfer (s m− 1), is estimated 
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as: 

RX =
C′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

lw
/
udo+z0m

√

LAI
(10)  

where ud0+z0m is the wind speed within the canopy-air interspace at the 
height of momentum source/sink (m s− 1); and C′ (s1/2 m− 1) is a co-
efficients taken from Kustas and Norman (1999) based on McNaughton 
and Van Den Hurk (1995) (see Table 2 for all values used). TAC is solved 
using the ‘series’ approach, which assumes the vegetation and soil are 
fully coupled (i.e. ‘layered’ model). The component temperature of each 
source (Ts and Tc) along with aerodynamic resistances (RA, RS, and RX) 
interact to influence the estimated within-canopy temperature, TAC 
(equivalent in TSEB to the aerodynamic temperature). For more details 
on this approach, the reader is referred to Appendix A in Norman et al. 
(1995). Since Ts and Tc are unknown a priori, an iterative process is 
applied, initially assuming that the photosynthetically active part of the 
vegetation (i.e. through fg, the fraction of LAI that is green) is transpiring 
at a potential rate based on the Pristley-Taylor formulation (Eq. (11)). 

LEci = αPTf g
( ∆

∆ + γ

)
RN,c (11)  

where LEci is the initial canopy transpiration estimate (W m− 2); αPT is the 
Priestley-Taylor coefficient (default is 1.26) (− ), defined in this case 
only for the canopy source; ∆ is the slope of the saturation vapor pressure 
curve at air temperature TA (kPa K− 1); and γ is the psychrometric con-
stant (kPa K− 1). The canopy transpiration is subsequently reduced until 
realistic fluxes are achieved (LEc ≥ 0 and LEs ≥ 0). For more details 
regarding the TSEB model, refer to Norman et al. (1995), Kustas and 
Norman (1999) or the python implementation (pyTSEB) (https://gith 
ub.com/hectornieto/pyTSEB). 

Burchard-Levine et al. (2020) proposed a two-season modeling 
approach with TSEB (TSEB-2S) to account for phenological dynamics 
present in semi-arid TGE. This strategy divides the annual simulation 
periods into two main phenological seasons within TGEs: a grass 
dominated (grass-soil) growing period and a tree dominated (tree-soil) 
summer drought period. An asymmetric gaussian filter over a normal-
ized difference vegetation index (NDVI) time series from MODIS 
(MCD43A4 product) estimated the seasonal transition dates between the 
growing and summer seasons. The summer drought begins when NDVI 
starts to decay at the downward inflection point (beginning of grass 
senescence) of the gaussian fit and ends when NDVI reaches the upward 
inflection point (re-greening). The assumption of a different dominant 
vegetation cover allows different model parameterizations between the 
two major phenological periods. This strategy improved the use of a 
two-source representation (i.e. TSEB) for an essentially three source (i.e. 
tree-grass-soil) TGE site, using the combination of proximal TIR data and 
satellite based VI (Burchard-Levine et al., 2020). Table 2 shows the 
parameter values of the two different modeling periods in TSEB-2S. As 
shown in Table 2, it should be noted that the grass fc is 1 and maintained 
constant throughout the simulation period, since the grass rather ho-
mogeneously covers the entire soil surface even during the dry period. 

Nevertheless, the fg derived from remote sensing data (Section 2.3.2) 
dictates the percentage of grass that is photosynthetically active and is 
highly seasonal. To clarify, fc is different to f(θ) from eq.1 as fc mostly 
characterizes the clumping distribution of the vegetation, while f(θ), a 
function of LAI and sensor viewing angle, partitions the temperature 
contribution from vegetation and soil sources. 

In addition to the different parameter sets, each season employs a 
different method to estimate the roughness parameters, d0 and z0M. 
When considering the grass-soil system during the growing period, the 
traditional fixed ratio to canopy height (i.e. d0 = 0.65hc; z0M = 0.125hc) 
was used (Campbell and Norman, 1998). The Raupach (1994) model 
was applied for the tree-soil representation during the summer drought 
period when grass is fully dry. The latter method considers the canopy 
shape and density (e.g. LAI, fc) effect on roughness and is generally 
accepted as more appropriate for tall, wooded vegetation. For this study, 
the airborne overpasses of 2015-07-03 and 2017-05-19 were within the 
tree-soil dry/summer period, while all the other overpasses (i.e. 2014- 
04-08, 2015-04-23, and 2016-05-03) were part of the grass-soil 
growing period (Fig. A6). 

2.3.2. Retrievals of vegetation biophysical variables for model inputs 
Land cover classification (LCC) and biophysical variables required by 

TSEB were retrieved at 1.5 m spatial resolution using reflectance mea-
surements from the CASI sensor. A LCC map was produced for each 
overpass date by supervised classification of the CASI images based on 
the Mahalanobis distance (Richards and Jia, 2006). Image pixels were 
classified as trees, grass, water, or bare soil (shadow pixels were masked 
out). A look-up table was linked to the LCC map to assign surface pa-
rameters that were not directly retrieved through remote sensing 
methods (e.g. hc, lw; see Table 2). 

Empirical models from destructive in-situ LAI (total and green) 
measurements and hyperspectral data acquired on the ground from an 
ASD Fieldspec3 spectroradiometer derived grass LAI and fg. A total of 
186 samples were acquired in 15 field campaigns between 2017-03-16 
and 2019-06-12 within the context of the SynerTGE project (http:// 
www.lineas.cchs.csic.es/synertge/). The dataset was separated 
randomly in subsets to train (60%) and validate (40%) the model. The 
partial least square regression (PLSR) method was applied using the ASD 
spectra (resampled to mimic the 136 CASI bands between 400 and 1005 
nm) as the predictor variables (X) to estimate LAI and green LAI (LAIg) 
(Y). Five PLSR components were used, which resulted in an R2 of 0.78 
and 0.82 with the validation subset for LAI and LAIg, respectively (see 
Figs. A1 and A2). The empirical model was then applied with the CASI 
reflectance factors of the grass pixels to retrieve LAI and fg (defined as 
LAIg/LAI) for the five airborne campaigns over the study site. For tree 
pixels, constant LAI (~1.75m2m− 2) and fg (0.9) were assumed according 
to field measurements (Section 2.1), considering relatively low spatial 
variability of the Oak tree structure within the ROI. 

2.3.3. Thermal sharpening 
Numerous ET modeling studies have applied thermal sharpening 

algorithms to maximize the temporal and spatial resolutions of different 

Table 2 
Parameter values for the grass-soil and tree-soil cover model configurations.  

Parameters Description Tree-soil Grass-soil Source 

αPT (− ) Priestley Taylor coefficient (− ) 1.26 1.26 Norman et al. (1995) 
fc (− ) Fractional cover (− ) 0.2 1 El-Madany et al. (2018) 
wc (− ) Canopy width to height ratio (− ) 1 1 Pacheco-Labrador et al. (2017) 
XLAD (− ) Leaf inclination distribution parameter (− ) 1 1 Campbell and Norman (1998) 
hc (m) Canopy height (m) 8 0.5 El-Madany et al. (2018) 
z0soil (m) Bare soil aerodynamic roughness length (m) 0.01 0.01 Norman et al. (1995) 
lw (m) Effective leaf width (m) 0.05 0.01 Guzinski et al. (2014); Norman et al. (1995) 
b (− ) Soil-surface resistance (Rs) coefficient (− ) 0.034 0.012 Sauer and Norman (1995) 
c (m s− 1 K-1/3) Soil-surface resistance (Rs) coefficient (m s− 1 K-1/3) 0.0025 0.0025 Kondo and Ishida (1997) 
C′ (s1/2 m− 1) Total boundary resistance (Rx) constant (s1/2 m− 1) 90 90 McNaughton and Van Den Hurk (1995)  
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satellite sensors (e.g. Anderson et al., 2011; Guzinski et al., 2020; Ma 
et al., 2018). In this study, this was incorporated to better separate the 
thermal signal between tree and grass pixels. As described in Gao et al. 
(2012), the Data Mining Sharpener (DMS) generated an LST product at 
the same spatial resolution as the vegetation products derived from the 
CASI sensor (i.e. 1.5 m). The DMS applies a machine-learning algorithm 
that derives a statistical relationship between the coarser resolution 
variable (i.e. LST) and the finer resolution variable (i.e. VNIR reflec-
tance), aggregated to the scale of the coarse resolution variable (Fig. 2). 
Assuming that the relation is consistent at varying spatial scales, the 
DMS algorithm uses the native high resolution (i.e. VNIR reflectance) 
data as independent variables to derive a sharpened or disaggregated 
representation of the coarse resolution variable (i.e. LST). In this study, 
the DMS is implemented using an artificial neural network (ANN) fitting 
method (https://github.com/radosuav/pyDMS/). The ANN is first 
trained with samples composed of CASI pixels that are relatively ho-
mogeneous at the AHS pixel level. Pixel homogeneity is quantified by 
the coefficient of variation of fine resolution pixels located within the 
extent of a coarse resolution pixel. Pixels are added to the training 
sample if the sub-pixel variation (i.e. coefficient of variation) at the CASI 
resolution scale is less than 20%. The statistical relationships are per-
formed on both the local (using a moving window of 15 × 15 pixels at 
the AHS scale) and global level (using the entire ROI). In addition, re-
sidual analysis and bias corrections are applied to maintain consistency 
(i.e. conservation of energy of longwave radiation) between sharpened/ 
disaggregated pixels and their corresponding original AHS pixel. For 
more details, refer to Gao et al. (2012), Guzinski and Nieto (2019), 
Guzinski et al. (2020) or to the source code which is freely available via 
https://github.com/radosuav/pyDMS/. 

2.3.4. Mutli-scale ET retrievals and evaluation 
The principal model run simulated fluxes at 1.5 m spatial resolution 

using CASI derived biophysical variables (Section 2.3.2) and a sharp-
ened LST based on the AHS sensor (Section 2.3.3). Along with this 
configuration, input data (LST and biophysical variables) were resam-
pled at five other spatial scales to investigate the effect of pixel size on 
modeled fluxes. The pixel sizes tested were: 4.5 m (original AHS), 10 m 
(Sentinel-2 MSI-Like), 30 m (Landsat8 OLI-like), 100 m (Landsat8 TIR- 
like) and 1000 m (MODIS and Sentinel-3 SLTSR-like). The biophysical 
products (i.e. fg and LAI) were resampled from the original 1.5 m CASI- 
based products using linear averaging, while the LST product was 
resampled based on the original 4.5 m AHS LST retrieval, aggregating 
the average thermal radiance emission (Fig. 3). This approach uses the 

best possible biophysical product derived from the native resolution 
and, by using linear averaging and maintaining mean values, it limits the 
uncertainties in the model performance associated to the changes and 
uncertainty between radiances and biophysical products. This way, it 
can more clearly pinpoint the effect of spatial scale on the model un-
certainty related to the model structure and parameterization. For the 
model runs at 1.5, 4.5 and 10 m spatial resolution, tree and grass pixels 
were distinguishable and different parameter sets were assigned based 
on vegetation cover classification (Table 2, except fc for trees was kept at 
1.0 assuming, at these scales, the whole pixel was vegetated). Since 
turbulent exchange occurs at plant or even at larger scales, trees were 
treated as objects by only selecting the center-most pixels within the tree 
crown (i.e. those pixels more than 3 m distance from the grass pixels) 
and assigning the mean values of those pixels to the whole tree crown. 
This was done to limit edge/boundary effects of the trees. As pixels at the 
edge of the tree crown may be affected by the adjacent grass (and/or 
other land cover) signals, this may induce artificial boundary effects, 
especially if the tree and grass temperatures are very different. 

The high-resolution data were used here as ‘benchmark runs’ to 
simulate the fluxes the best way possible as, at this spatial scale, 
different parameter values can be assigned for tree and grass pixels. For 
coarser model runs (i.e. at 30 m, 100 m and 1000 m), the separation of 
the multiple vegetation sources (i.e. trees and grasses) was not possible 
at the pixel scale. Therefore, parameters inherently needed to be 
adjusted at effective values to consider these mixed conditions. In this 
study, three different strategies were tested to adjust the parameter 
values to characterize the single, mixed, vegetation source as assumed in 
TSEB: 1) averaging and weighting vegetation parameters (e.g. hc and lw) 
based on the fractional cover of trees and grasses at each pixel as derived 
from the CASI LCC, 2) applying TSEB-2S, which changes the parame-
terization assumption for different seasons (Section 2.3.1; Table 2) and 
3) forcing consistent landscape-level roughness values for all spatial 
scales. For the latter, an effective landscape roughness was estimated 
and incorporated for all grid sizes assessed, maintaining the same model 
configuration for all model runs from 1.5 m to 1000 m, as suggested by 
Hopwood (1996) and Mahrt (1993). As such, the parameterization was 
the same for tree and grass pixels, even for high resolution (i.e. <10 m) 
model runs. The roughness parameters (i.e. d0 and z0M) were directly 
forced into TSEB instead of being estimated within the model based on 
the inputs/parameters (i.e. hc, fc, and LAI). Landscape d0 and z0M were 
calculated using the Raupach (1994) model, under the assumption that 
the scattered trees are the main roughness elements. In the study site, 
the spatial distribution of these roughness elements over the surface 

Fig. 2. Scheme of thermal sharpening with DMS algorithm to sharpen AHS LST (right) with the CASI VNIR bands (left).  
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remains relatively constant across scales. It is only at the 1000 m pixel 
scale, that the pixel grid includes more heterogeneous elements such as 
water and/or bare soil (this is further discussed below in Section 4). An 
hc of 8 m, fc of 0.2 and a local tree LAI of 1.75 m2/m2 (effective LAI =
0.35 m2/m2) yielded a z0M and d0 of 0.60 m and 4.04 m, respectively. All 
spatial scales assessed (i.e. 1.5–1000 m) applied these effective rough-
ness values, while keeping the standard values (i.e. grass-soil configu-
ration in Table 2) for the other parameters. 

Three EC tower measurements located within the study site evalu-
ated the model results. The mean of the instantaneous modeled fluxes 
(LE, H, Rn and G) of all pixels located within the tower footprint, 
weighted by the normalized footprint probability density function 
(PDF), was compared against the corresponding EC-based measure-
ments. The two-dimensional tower footprints were estimated based on 
Kljun et al. (2015) during the time step of the image acquisition, where 
the PDF was normalized through its integral. Modeled fluxes, at all 
spatial resolutions, were resampled to 1.5 m and then weighted with the 
corresponding pixel of the normalized PDF footprint. Additionally, to 
better compare the results from the set of acquisitions at different 
overpass times, the modeled evaporative fraction (EF) (i.e. LE/(Rn-G)) 
was also assessed. It should be noted that due to missing G data dur-
ing the 2014-04-08 overpass, observed LE could not be corrected for 
energy balance closure using the same method as the other dates. 
Therefore, the model performance evaluation omitted these data points. 
Meaning that for the 2014-04-08 overpass, only Rn and H are assessed. 
Model performance was evaluated with the root-mean-square-deviation 
(RMSD, Eq. (12)), mean bias (Eq. (13)) and the Pearson’s correlation 
coefficient (r). 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(YTSEB − YEC)
2

N

√

(12)  

bias =
∑

(YTSEB − YEC)

N
(13)  

where YTSEB is mean modeled flux (LE, H, Rn or G) over the tower 
footprint; YEC is the observed EC flux (LE, H, Rn or G); and N is the total 
number of observations. 

2.4. Sen-ET product 

The Sen-ET product (Guzinski et al., 2020) used the same modeling 
method (i.e. TSEB) and provides energy flux products at both 20 m and 
1000 m spatial resolution. Therefore, it was evaluated to contextualize 
the above analysis. A plug-in for the SNAP software (http://step.esa. 
int/main/toolboxes/snap/) was developed using open global datasets: 
Sentinel-2 MSI VNIR data, Seninel-3 SLSTR TIR data, meteorological 
data from ECMWF ERA-5 reanalysis dataset (available from the Coper-
nicus Climate Data Store: https://cds.climate.copernicus.eu) and a 
landcover map (for assigning values to parameters listed in Table 2) 
from ESA CCI 2015 land cover product (Bontemps et al., 2013). The 20 
m products sharpen LST derived from the DMS algorithm (Guzinski 
et al., 2020; Guzinski and Nieto, 2019). For more information on this 
product, refer to the user manual (User Manual for Sen-ET SNAP Plugin 
v.1.0, 2019) and to Guzinski et al. (2020). Sen-ET products were pro-
cessed for the entire year of 2017. Overpasses over the ROI with cloud 
cover and Sentinel-3 SLSTR viewing zenith angle greater than 45 de-
grees were discarded. A total of 106 products at each of the spatial 
resolutions were processed for the year 2017 (ranging from DOY 7 to 
358). The flux outputs were evaluated against the EC data for the three 
tower footprints (at the time step of Sentinel-3 overpass times). 

In addition, the Sen-ET product was compared to the local airborne 
acquisition from 2017-05-19, providing a spatial evaluation of the Sen- 
ET methodology. This was the only airborne overpass available match-
ing the Sen-ET temporal period. Since the temporally nearest Sentinel-2 
MSI images were cloudy, Landsat-8 OLI multispectral data (30 m) from 
2017-05-16 was used instead and fluxes were retrieved following the 
Sen-ET methodology. The Sentinel-3 Level 2 LST product from 2017-05- 
19 (overpass at ~10:25 UTC) was sharpened to 30 m using the VNIR 
band information from the Landsat-8 acquisition. The same method as 
the airborne simulations retrieved LAI and fg (Section 2.3.2.). The Sen- 
ET procedure assigned the other parameters, as seen in Table 2 and 
described in Guzinski et al. (2020). The earliest AHS airborne overpass 
(i.e. 11:08) from 2017-05-19 (resampled to 30 m) was compared against 
this sharpened Sen-ET(− like) 30 m product of the same date. 

Fig. 3. General model set up and parameterization for the different scales assessed (1.5 m – 1000 m) using airborne imagery from the 2016-05-03 12:15UTC 
acquisition as an example. 

V. Burchard-Levine et al.                                                                                                                                                                                                                      

http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/toolboxes/snap/
https://cds.climate.copernicus.eu


Remote Sensing of Environment 260 (2021) 112440

8

3. Results 

3.1. High resolution modeled fluxes (1.5 m) 

The TSEB model was applied at 1.5 m spatial resolution using the 
sharpened LST product (Section 2.3.3) and biophysical variables derived 
from the CASI sensor (Section 2.3.2). Fig. 4 shows the spatial and tem-
poral distribution of LE within the ROI for the five airborne overpasses. 
Mean LE within the entire ROI (ignoring water and soil pixels) for the 
individual overpasses ranged from 295 to 493 W m− 2, or in relative 
terms, the mean EF ranged between 0.38 and 0.77. Changes from the 
grass pixels largely dictated this variability (visually in Fig. 4 and 
Table 3). Average grass EF varied between 0.27 and 0.72. By contrast, 
the mean EF of trees only varied between 0.75 and 0.90. The variability 
in the grass layer is substantial, especially considering that all airborne 
flights, except 2015-07-03, were acquired during similar meteorological 
conditions (Table 1). By contrast, trees presented low inter and intra 
annual variability with mean EF maintaining consistent ranges 
throughout the different acquisitions. The mean tree EF interquartile 
range for all overpasses was 0.08 (Table 3). This pattern included those 
during the dry and hot summer (e.g. mean tree EF was 0.79 during 
midday of 2015-07-03). Within-scene variability was also greater for 
grass species compared to trees. The standard deviation of EF in the ROI 
ranged between 0.07 and 0.27 (mean 0.16) [LE: 40 and 84 W m− 2; mean 
60 W m− 2)] for the grass understory layer compared to 0.11 and 0.14 
(mean 0.12) [LE: 27 and 53 W m− 2; mean 40 W m− 2] for the oak trees 
(Table 3). Interestingly, the summer acquisition of 2017-07-03 had the 
largest within-scene variability, for both vegetation canopies, with a 
standard deviation of 0.27 and 0.14 [LE: 141 W m− 2 and 63 W m− 2] for 

grasses and trees, respectively (Table 3). 
The model performance with the sharpened data at 1.5 m aligned 

very well with tower measurements (Fig. 5). Modeled H had 40 W m− 2 

RMSD and 15 W m− 2 bias. Modeled LE demonstrated slightly more 
uncertainty with 57 W m− 2 RMSD and − 3 W m− 2 bias, due to the 
consistent Rn underestimation (bias: − 33 W m2), as LE is computed as 
the residual of the energy balance. 

3.2. Spatial scale effects on modeled fluxes 

3.2.1. Weighted average of parameters 
The modeling performance using the airborne imagery at the 

different spatial scales showed that errors and biases tend to increase 
with coarser resolution data (Fig. 5). For images with 30 m resolution 
and greater, parameter values were weighted based on tree/grass cover 
(see Section 2.3.4). Crucially, the ability to discriminate between grass 
and tree pixels was a very important factor as demonstrated by the large 
increase in errors between the 10 m and 30 m spatial scales, i.e. H RMSD 
and bias increased from 67 and 50 to 95 and 78 W m− 2, respectively. 
Errors at 10 m resolution also increased compared to the more similar 
retrievals at 1.5 and 4.5 m. 

As an example to visualize the different pixel sizes in relation to the 
tower footprint area, Fig. 6 shows the modeled LE at these different 
spatial scales for the airborne acquisition of 2016-05-03. 

The LE histograms within the ROI (ignoring water and soil pixels) for 
2016-05-03 are illustrated in Fig. 7. A bimodal distribution is clearly 
visible at 1.5 and 4.5 m with two peaks at around 450 and 600 W m− 2 

(Fig. 7a, b), stemming from the different distribution of tree and grass 
pixels. However, only one peak stands out at >4.5 m, with a clear 

Fig. 4. Modeled TSEB LE (no data in grey) for the airborne overpasses with sharpened AHS LST and CASI imagery (1.5 m) for 2014-04-08 11:47 UTC (a), 2015-04-23 
12:15 UTC (b) 2015-07-03 11:55 UTC (c) 2016-05-03 12:15 UTC (d) and 2017-05-19 12:17 UTC (e). Crosses represent the tower location and dark ellipses represent 
the respective tower footprint area of each tower during the overpass time step, where the yellow-purple points indicate a greater weighted contribution of the EC 
flux measurement (Kljun et al., 2015). The coordinates (on X-Y axis) are projected on UTM zone 30 N with units in meters. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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normalization effect. This was also the case for the 10 m simulations, 
even though tree and grass pixels had different parameterizations. 

3.2.2. TSEB-2S 
TSEB-2S is only applicable at coarser scales (Burchard-Levine et al., 

2020), for simulations when the pixel size is unable to discriminate grass 
and tree features (i.e. ≥30 m). The TSEB-2S improved upon simply 
applying a weighted average to parameter values (Fig. 8 versus Fig. 5 for 
>10m). The H RMSD decreased from roughly ~100 W m− 2 to ~55 W 
m− 2. H is still generally slightly overestimated (and, by consequence, LE 
underestimated) at all scales. The summer 2015-07-03 overpass, in 
which TSEB-2S was parameterized as a scattered tree-soil system, had 
the largest H overestimation notably at the 30 m and 100 m scale. 

3.2.3. Consistent effective roughness across scales 
When effective landscape roughness parameters (i.e. d0 and z0M) are 

forced into TSEB and maintained consistent for all scales (from 1.5-1000 
m), the retrieval errors for the model runs in Fig. 9 with mixed pixels (i.e. 
≥30 m) decrease (RMSD of ~80 W m− 2 for H) compared to the weighted 
average approach (RMSD of ~95 W m− 2 for H; Fig. 5d, e, f). The forced 
z0M of 0.6 m estimated through Raupach (1994) aligned relatively well 
against the estimated median z0M (i.e. ~0.8 m) from the EC tower 
measurements (using Eq. (3.2) from Foken (2017) as proposed by Pan-
ofsky, 1984). This model approach assumes that mechanical turbulence 
occurs at a coarser scale than the size of individual elements (Hopwood, 
1996; Mahrt, 2000; Mahrt, 1993; Vihma and Savijärvi, 1991). However, 
when discrimination of trees and grasses was possible at the pixel level 
(i.e. ≤10 m), errors increased (from ~50 to ~80 W m− 2 for H) compared 

Table 3 
EF standard deviation (σ), first (Q1) and third (Q3) quartile (i.e. 25th and 75th percentile), and the interquartile range (Q3-Q1) within the ROI for the different airborne 
acquisitions at 1.5 m spatial resolution.   

2014-04-08 2015-04-23 2015-07-03 2016-05-03 2017-05-19 Average of all scenes 

Grass Tree Total Grass Tree Total Grass Tree Total Grass Tree Total Grass Tree Total Grass Tree Total 

Mean (− ) 0.72 0.81 0.75 0.58 0.79 0.63 0.27 0.79 0.38 0.72 0.90 0.77 0.40 0.75 0.48 0.54 0.81 0.60 
Median (− ) 0.72 0.83 0.73 0.59 0.82 0.62 0.31 0.82 0.40 0.75 0.92 0.77 0.41 0.78 0.46 0.56 0.83 0.60 
σ (− ) 0.07 0.11 0.09 0.14 0.13 0.16 0.27 0.14 0.33 0.14 0.11 0.15 0.16 0.13 0.21 0.16 0.12 0.19 
Q1 (− ) 0.70 0.80 0.70 0.53 0.77 0.55 0.19 0.77 0.19 0.71 0.89 0.72 0.32 0.73 0.36 0.45 0.79 0.47 
Q3 (− ) 0.75 0.85 0.81 0.65 0.85 0.76 0.58 0.87 0.70 0.78 0.94 0.84 0.50 0.82 0.66 0.63 0.87 0.75 
Q3-Q1 (− ) 0.05 0.05 0.10 0.12 0.08 0.21 0.39 0.10 0.51 0.07 0.05 0.12 0.17 0.10 0.30 0.18 0.08 0.29  

Fig. 5. Scatter plots of TSEB estimated fluxes H (red), LE (blue), Rn (yellow) and G (black) versus those measured from the EC towers (and black 1:1 line) for the 
retrievals with 1.5–1000 m spatial resolution when roughness parameters are estimated on a pixel basis based on its land cover type. Different symbols represent the 
different airborne acquisitions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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to when roughness parameters were estimated separately for tree and 
grass pixels (Fig. 5a, b, c). Errors maintain relatively constant bounds for 
all the spatial scales assessed (1.5− 1000 m), with RMSD of H ranging 
between 74 and 85 W m− 2 for H. 

3.3. Sen-ET product 

Compared against the three EC tower measurements, the 20 m (Sen- 
ET20m) and 1 km (Sen-ET1km) Sen-ET products largely underestimated H 
with a bias of − 72 and − 85 W m− 2, respectively. Both products ach-
ieved similar performance and patterns. Sen-ET20m underestimated H 
slightly less. Rn was also underestimated while G was overestimated, 
causing for a large underestimation in AE. However, since H was also 
significantly underestimated, the LE residual had fewer errors compared 
to the measured fluxes at the tower (RMSD of 73 and 84 W m− 2 for Sen- 
ET20m and Sen-ET1km, respectively). 

Roughness parameterization was very similar at both spatial scales. 
Sen-ET assigns vegetation structural parameters based on the CCI LCC 
map. As the map indicated that the ROI was ‘Herbaceous cover’ or 
‘Mosaic cropland’, the hc assigned was much lower compared to what is 
observed in the field. The hc used in Sen-ET lies roughly between 0.1 and 
0.15 m and the fc parameter was set to 0.5 or 1. Both of these parameter 
values are closer to “grass-soil” rather than “tree-soil” parameterization 
from Table 2, even though a greater number of observations occur 
during the summer season due to less frequent cloudy conditions. 

The AHS airborne acquisition from 2017-05-19, resampled to 30 m 
(AHS30m), was compared to the Sen-ET(− like) product (Sen-ET30m) of 
the same date, as described in Section 2.4. The retrieved EF was rela-
tively similar in magnitude (bias: − 0.04 and RMSD: 0.09) for both 
products even though the pixel-wise correlation was low (r = 0.31) 
(Fig. 11). 

When comparing the sharpened Sentinel-3 and the aggregated 30 m 
LST on 2017-05-19 (Fig. 12) the correlation between the vegetated 

pixels (ignoring water pixels) was relatively low (r ~ 0.5) with an RMSD 
of ~2 K (using the AHS LST as the reference). The dynamic range in 
values was much lower for the sharpened Sentinel-3 LST compared to 
AHS LST. 

4. Discussion 

LE and H estimates with TSEB were most accurate when the pixel size 
was small enough to discriminate between the tree and grass signals. 
The simulations of LE and H at 1.5 m had consistently the least errors 
when compared against the EC data. Results were similar with the 4.5 m 
pixel size, but RMSD and bias of H slightly increased from 40 and 15 W 
m− 2 to 46 and 25 W m− 2, respectively. The thermal sharpening method 
to achieve an LST of 1.5 m improved the separation of these pixels. This 
reduced the flux retrieval errors through a more adequate parameteri-
zation compared to using the original data at 4.5 m. However, both are 
still within range of the typical uncertainty of daytime EC measurements 
of H and LE (~50 W m− 2; Kustas and Norman, 2000, 1997). Even though 
discrimination between trees and grass pixels was still possible at the 
4.5 m pixel size, edge effects between pixels from the two vegetation 
layers, and/or other land covers such as water and soil, were slightly 
more pronounced. Mixed pixels classified as trees had thermally higher 
temperatures due to the adjacent grass signals. This effect was more 
pronounced and notable when the temperature of trees and grasses were 
very different, such as during the summer acquisitions. This, combined 
with roughness values indicating a surface better aerodynamically 
coupled with the atmosphere (i.e. scattered tree landscape), caused for 
lower resistance values that resulted in an overestimation of H, leaving 
less AE for LE (sometimes no available energy for LE, i.e. LE = 0 W m− 2). 
Assigning the mean values of the center-most pixels to the entire tree 
crown minimized these situations. However, these edge effects still 
occurred, especially for trees with smaller crowns. The tree boundary 
effects were even more important at the 10 m pixel size and resulted in 

Fig. 6. Modeled TSEB LE for 2016-05-03 12:15 UTC at 1.5 m (a), 4.5 m (b), 10 m (c), 30 m (d), 100 m (e) and 1000 m (f). Crosses and black ellipses represent the 
tower location and their respective footprints, where the yellow-purple points indicate a greater weighted contribution of the EC flux measurement (Kljun et al., 
2015). The coordinates (on X-Y axis) are projected on UTM zone 30 N with units in meters. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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larger errors compared to the 1.5 and 4.5 m simulation runs. At 10 m, 
the imagery can just about discriminate tree pixels for larger tree 
crowns, with mean tree diameter within the study site being roughly 
~8.2 m (Pacheco-Labrador et al., 2017). Therefore, trees were depicted 
by one or two pixels, but are much more thermally mixed with grass 
(and/or other) signals. This issue was particularly notable during the 

summer acquisitions (i.e. 2015-07-03 and 2017-05-19), when the dif-
ference between the grass and tree LST was very large. As shown in 
Fig. A3, the number of tree pixels with insignificant LE (i.e. LE = 0 W 
m− 2) per total number of tree pixels in the ROI tended to increase with 
pixel size, notably for the summer acquisitions. 

The average of the inputs (i.e. LST, LAI and fg) within each of the 

Fig. 7. Histograms of estimated LE distribution within ROI for acquisition on 2016-05-03 for simulations at 1.5 m (a), 4.5 m (b), 10 m (c) 30 m (d) and 100 m (e) 
spatial resolutions. 

Fig. 8. Scatter plots of TSEB-2S estimated H, LE, Rn and G fluxes versus those measured from the EC towers (and black 1:1 line) for the retrievals with 30, 100 and 
1000 m spatial resolutions when roughness parameters are estimated on a pixel basis based on seasonality (TSEB-2S). 
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tower footprints do not significantly change at the different spatial 
scales (Table A1). This suggests that greater errors are due to the 
modeling structure and parameter values. When pixel mixing increases 
with larger grid sizes, the modeling structure does not adequately depict 
the dual vegetation layer using a single vegetation source representa-
tion. This issue happens even when adjusting parameters as a weighted 
average of the two vegetation covers. This demonstrates the non-linear 
relationship between model inputs and flux estimates as discussed for 
other heterogenous landscapes such as in Kustas et al. (2004), Kustas 
and Norman (2000) and Moran et al. (1997). These studies showed that 
pixel averaging techniques for these input variables lead to important 
errors in modeled energy fluxes within sites of varying land cover. As 
discussed in Moran et al. (1997), errors in H retrievals were associated to 
sites with patchy vegetation and subpixel variability in cover and 
roughness. In this study, the aerodynamic resistance terms (Ra and Rs) 
decreased at the coarser simulations (≥ 30 m; Table A1). This resulted in 
the increase of the estimated component temperatures (Ts and Tc), 
which by association increased the modeled aerodynamic temperature 
TAC (Table A1), resulting in the H overestimation, and subsequent LE 
underestimation, at these resolutions (Fig. 5). Ershadi et al. (2013) also 
pointed to this problem. In their study with the SEBS (Su, 2002) model, 
aerodynamic resistance (i.e. Ra) decreased with coarser data (ranging 
from 240 m to 960 m pixel sizes), leading to greater errors in estimated 
H. Similarly, using UAV acquisitions over a clumped vineyard and TSEB 
with dual temperatures measurements (TSEB2T; Nieto et al., 2019), 
Nassar et al. (2020) observed increases in H at larger grid sizes, from 3.6 
to 30 m, due to the decrease in aerodynamic resistance. In our study, all 
flux retrievals at 30 m or greater pixel size resulted in very similar error 

statistics due to comparable levels of pixel heterogeneity at these scales. 
Within the ROI, inter-pixel signal variability is not very large at these 
coarser scales, as the tree canopy cover and density remain relatively 
consistent over the herbaceous layer. This, thus, makes the study site 
seem relatively homogenous at larger scales as it pertains to a single land 
cover classification (e.g. TGE or Savanna). However, these results indi-
cate that the small-scale structural differences of the two vegetation 
elements were large enough to have an important impact on modeled 
turbulent heat fluxes, and these differences should be dealt with in order 
to obtain reliable results with land surface modeling methods. 

The adequate representation of roughness (i.e. d0 and z0M) for mixed 
pixels at coarser scales (≥30 m), along with their non-linear relation 
with the flux output, was the main driver for the increased errors 
compared to the finer resolution (<10 m) model runs. This was further 
supported when roughness parameters were forced into TSEB and 
maintained constant for the different grid sizes using an effective 
roughness value (Section 3.2.3). The error statistics remained relatively 
stable throughout the aggregations and improved upon the weighted 
average approach. Since the distribution of the main roughness elements 
(i.e. trees) remain relatively consistent throughout the ROI, the use of a 
constant effective roughness lengths across scales was a sound approach 
to depict surface roughness. As Hopwood (1996) demonstrated, the 
near-surface turbulence of a heterogeneous surface at a certain vertical 
height is approximately homogeneous across different spatial scales, 
with the effective roughness length of momentum fluctuating little for 
increasingly larger scales (Hopwood, 1996). 

The TSEB-2S approach also improved the modeling performance for 
coarser resolution model runs (RMSE of H: ~55 W m− 2). As discussed in 

Fig. 9. Scatter plots of TSEB estimated H, LE, Rn, G fluxes using constant effective roughness (i.e. d0 and z0M) values for all scales versus those measured from the EC 
towers for the retrievals with 1.5–1000 m spatial resolutions. 
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Burchard-Levine et al. (2020), the assumption of a dominant vegetation 
layer for different phenological periods improved the turbulent flux 
exchange depiction for a three-source ecosystem (tree-grass-soil) with 
large seasonal changes using a two source modeling representation 
(vegetation-soil). TSEB-2S separates the modeling period between the 
two major situations occurring in these ecosystems: 1) tree, grass and 
soil all contribute to ecosystem fluxes and 2) grass is not photosyn-
thetically active and only tree and soil contribute to total fluxes. As such, 
different modeling parameterizations were applied according to the 
assumed dominant vegetation structure, better representing the surface 
characteristics. During the grass growing period, both tree and grass 
species are active but, since ~80% of the surface is covered by grass 
understory (with the other 20% being mostly tree canopies), TSEB-2S 
assumes that the grass-soil substrate dominates during these periods 
and neglects the heat and water flux contribution of the trees, but they 
still contribute to momentum through increased roughness as compared 
to a single homogeneous grass canopy. Perez-Priego et al. (2017) also 
supports this, showing that the understory layer dominates LE in this 
site. These simplifications cause for uncertainty, notably during seasonal 
transition periods when grass and trees co-dominate. However, these 
periods tend to only last a few weeks (Burchard-Levine et al., 2020). The 
TSEB-2S model configuration improved the modeling performance 
within these complex landscapes while maintaining the dual-source 
model structure, but it still had larger errors compared to the high res-
olution runs when grass and tree pixels were parameterized separately. 
The summer acquisitions, especially 2015-07-03, had slightly larger H 
overestimations compared to when TSEB-2S considers grassland to be 
the dominant vegetation structure during the growing season. This may 
be partly due to some grass species still being active while the tree-soil 
representation ignores grass transpiration in TSEB-2S. In addition, the 
roughness of the ‘soil’ source (which is composed of dry grass) during 
the summer may not be well depicted even though the b coefficient for 
the Rs computation (Eq. (8)) was increased to partly account for this 
(Burchard-Levine et al., 2020; Kustas et al., 2016). It should be noted 
that relatively few data points were used in this study and possible 
‘outliers’ have more impact on error statistics. For instance, the NPT 
tower on 2015-07-03 12:00 had an H measurement of ~150 W m− 2 

while the two other towers (CT and NT) measured roughly 250–280 W 
m− 2 at the same time step. The modeled H is largely overestimated at 
this data point at all scales and approaches used within this study. 

Rn was consistently underestimated (bias: ~ − 35 W m2) for all 
model runs. This largely stemmed from the overestimation of outgoing 
LW radiation (data not shown) and, slight overestimation of surface 
effective albedo (data not shown). Therefore, this issue led to the un-
derestimation of both net LW and SW radiation. Tree shadows over the 
understory may influence these results since these were not considered 
in this study (nor within TSEB). Shadows would decrease the albedo and 
temperature, and thus, decrease both SW and LW outgoing radiation. 
Analysis of the CASI imagery indicated that shadows represented only 
4–6% of the ROI, but may still partly influence the slight, but consistent, 
underestimation of modeled Rn. TSEB-2S had slightly less bias in Rn 
(bias: ~ − 28 W m2), which was almost entirely due to improvements 
during the summer acquisitions, particularly for 2015-07-03. The 
decrease in the assumed fc in TSEB-2S (i.e. fc= 0.2 for summer period) 
led to a decrease in modeled albedo and surface emissivity, due to the 
greater weight for the soil source. Subsequently, this decreased outgoing 
LW (decrease in emissivity) and SW (decrease in albedo) radiation, 
leading to less Rn underestimation. Guzinski et al. (2020) evaluated ET 
retrievals with Sentinel-2 and Sentinel-3 data for different sites. They 
also found large underestimations of Rn for sites with savanna land 
cover types. These authors attributed this to the vegetation being more 
sparse causing for greater uncertainties in the estimation of albedo and 
emissivity (Guzinski et al., 2020). Additionally, the relatively simple 
radiation transfer scheme within the TSEB may not adequately simulate 
the complex structural features of the tree canopies, which, for example, 
may induce multiple scattering of radiation within the canopy. More 

advanced and 3D radiative transfer modeling, such as the Discrete 
Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry 
et al., 2015), could better incorporate and characterize the angular and 
shadow effects on LST and albedo (e.g. such as in Guillevic et al., 2013), 
and its effect on modeled heat and water fluxes. Errors in Rn directly 
translate into errors of LE, since LE is computed as the residual of the 
energy balance. Because of this, LE tended to have larger errors 
compared to H but still within accurate ranges (RMSE ~60 W/m2 for 
high resolution runs) since the Rn errors were not substantially large 
(RMSE ~40 W/m2). 

When evaluating remote sensing products with tower-based mea-
surements, the mismatch between pixel size and EC footprint area is 
another source of uncertainty. However, the ROI is relatively homoge-
neous at larger scales. Water and soil pixels only account for ~4% of the 
ROI, with the rest being vegetated tree and grass pixels, according to the 
CASI LCC of all overpasses. The distribution of water bodies might also 
affect the micrometeorological conditions, but they are only captured at 
the 1000 m spatial grid scale. Despite this, the water bodies lie outside 
the flux tower footprints for all scenario assessed in this study. There-
fore, this problem was not a significant issue in this study. In fact, 
Pacheco-Labrador et al. (2017) reported for the same case study that the 
spatial mismatch between EC and remote sensing footprints was not an 
important contributor to errors in remote sensing-based gross primary 
production (GPP) estimations. In addition, since the within pixel het-
erogeneity remains relatively constant across these scales, the coarse 
model runs at 30, 100 and 1000 m had also very similar error statistics. 
Only at 1000 m, conditions that are not entirely captured in the footprint 
area may influence the pixel value. The pixels are much more aligned to 
the footprint area at finer resolutions (≤100 m). The largest difference 
occurred for the NPT tower at the 1000 m spatial run for the overpass in 
2015-07-03, where LE decreased substantially and the errors decreased 
compared to the runs from 30 and 100 m. Only 4 pixels represent the 
ROI at 1000 m, where the CT and NT are both located within the same 
pixel while the NPT tower lies in a different, more southern, pixel. For 
the NPT tower on 2015-07-03, the mean LST over the ‘footprint’ 
decreased by ~2.5 K compared to the LST at 1.5 m. This is by far the 
most significant change in LST for any of the overpasses and tower 
footprints. The greater density of trees towards the west of the tower, not 
measured by the tower footprint, but captured at the 1000 m grid may 
explain this. While the NPT footprint composition is similar to both CT 
and NPT (El-Madany et al., 2018), the greater surrounding area of NPT 
has a larger density of trees, which influences the surface temperature. 
In fact, the 1000 m pixel of the NPT tower had a tree fractional cover of 
about ~29%, larger compared to the 22% observed over its footprint 
and larger compared to the 1000 m pixel associated to both CT and NT 
towers (23%). The effects are more significant during the summer 
months when the difference between tree and grass pixels are very large 
and, thus, will have a larger impact on LST and modeled fluxes. The 
grass already began to senesce on the 2017-05-19 overpass, also 
demonstrating a decrease of LST (~1.5 K) for NPT at the 1000 m scale. 
The rest of the overpasses did not observe such changes to LST, and 
hence in the model performance. As such, the most important changes 
due to the spatial mismatch between tower footprint and pixel size occur 
at 1000 m for the NPT tower. These changes were accentuated during 
the summer months when the different density of trees has a larger 
impact on LST compared to when the grass understory is more active. 

The high-resolution simulations at 1.5 m demonstrated important 
spatio-temporal variability within the ROI, notably for the grass species. 
The growing season is largely limited by water availability and strongly 
correlated with precipitation (Luo et al., 2018). This causes for impor-
tant inter-annual variability of LE, typical in semi-arid TGE (Allard et al., 
2008; El-Madany et al., 2020; Luo et al., 2018; Ma et al., 2007). This may 
explain the important differences in the average EF observed during 
similar seasonal periods for the different years studied. By contrast, trees 
presented low inter and intra annual variability with mean tree EF 
maintaining consistent ranges throughout the different acquisitions, 
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including those during the dry and hot summer period. As trees have 
larger root systems to access water deeper within the soil allowing for 
relatively constant functioning, these different responses were very 
much in line with previous works studying ecosystem dynamics in 
Mediterranean TGE (e.g. Luo et al., 2018). In addition, the stable LAI 
used for trees may also contribute to the low variability observed. By 
contrast, the grass understory is very diverse with a variety of species co- 
existing at different phenological stages within the same seasonal 
period. As such, micro-climatic processes (e.g. tree shadows, micro 
topography) may induce a certain degree of variability even within a 
relatively small ROI of a seemingly homogeneous herbaceous under-
story. The largest within scene variability was observed during the 
summer acquisitions, particularly for 2015-07-03. The effect of isolated 
trees over the grass layer was likely more pronounced during the hot and 
arid summer conditions, causing for this increased variability. As shown 
and discussed in Moreno and Pulido (2008) in a similar TGE, tempera-
ture was significantly lower beneath the trees on warm days, and soil 
water content tended to be higher closer to the trees. Destructive bio-
physical grass measurements (e.g. LAI and canopy water content) were 
sampled during the overpass dates described in this study, with certain 
plots located beneath the influence of the tree canopy and others in open 
grassland. However, these two sets of measurements rendered no sig-
nificant differences (data not shown), suggesting that the surface tem-
perature and soil moisture drove the variability. 

The Sen-ET product simulated LE with similar accuracy as the LE 
retrievals with airborne imagery when roughness parameters was forced 
into TSEB (Fig. 10). Both scales achieved similar error statistics, though 
the sharpened product (20 m) slightly improved model performance. 
This may be linked to a greater mismatch between pixel size and tower 
footprint at the original resolution of ~1 km, as discussed above. 
However, the relatively good LE retrievals from Sen-ET were compen-
sated from large errors in the other flux components cancelling each 
other, since LE is computed as a residual. H was significantly under-
estimated (RMSD ~100 W m− 2) as well as the AE. The increase in 
modeled resistance due to the much lower hc estimated by Sen-ET 
largely explained the substantial H underestimation in Sen-ET due to 
the land cover misclassification from the CCI map. This is a similar, but 
inverted, situation to the lower resolution (≥30 m) runs with weighted 
average of parameters (Fig. 5), where H was significantly overestimated 
(RSMD ~100 W m− 2) due to underestimation of model resistances. 
Guzinski et al. (2018) employed a methodology very similar to Sen-ET, 
except for the landcover parameterization, which was based on Corine 
rather than the CCI land cover maps. In that study, the Majadas ROI was 
classified as agro-forestry and assigned an hc of 8 m and an fc varying 
with spectral reflectance, resulting in RMSD of around 50 W m− 2 at both 

spatial scales. These results demonstrate the issues and uncertainties of 
global flux products over TGEs, which often have greater uncertainty for 
land cover mapping (e.g. Giri et al., 2005). This further exacerbates the 
uncertainty of assigning singular and aggregated parameter/input 
values into mixed pixels with numerous roughness elements, as illus-
trated from this study and supported by previous works (Kustas et al., 
2004; Mahrt, 1993; Moran et al., 1997; Vihma and Savijärvi, 1991). 
Other regional ET products tested also had large errors (e.g. LSA-SAF ET; 
see Fig. A4). 

The local airborne acquisition from 2017-05-19 was spatially 
compared to a Sen-ET(− like) product from the same date. The magni-
tude of the output EF from both datasets do not change drastically even 
though the correlation was low (r = 0.31). The sharpened Sentinel-3 (30 
m) LST, used as an input, had a much lower range in values compared to 
the observed ASH LST (resampled to 30 m). Table A2 shows the mean 
and range of LST values within the three EC tower footprints. As shown, 
the mean LST within the footprint was similar, especially considering 
that the Sentinel-3 overpass time of ~10:25UTC occurs about 40mins 
prior to the AHS overpass of 11:08 UTC. However, the range in values 
was much higher for the AHS sensor in all three footprints. These suggest 
that the LST sharpening procedure did not effectively capture the entire 
variability present in high-resolution observations. The original coarse 
resolution (i.e. ~1 km) has aggregating effects where the more extreme 
values are not present in the original observations as already discussed 
in Bellvert et al. (2020). In fact, these differences in LST from the two 
products explained a large portion of the variability of the difference in 
EF output (r = − 0.69; Fig. A5). However, while there were important 
differences in both LST datasets, and these differences were related to 
the changes in EF, the magnitude of the flux outputs do not differ 
drastically (Fig. 11). As such, according to these results, the sharpening 
method (i.e. DMS) seems to be a viable approach to obtain higher res-
olution (i.e. field scale) LST for ET modeling, even though the sharp-
ening did not capture the entire LST dynamic range and hence moderate 
errors were present. This type of methodology allows to fill the current 
gap in the availability of a satellite based TIR sensors with a high tem-
poral and spatial resolution (Guzinski et al., 2020; Guzinski and Nieto, 
2019). However, the sharpened Sen-ET20m product did not significantly 
improve model results in this study site (Fig. 10) as similar levels of 
within pixel heterogeneity are present at both scales for this landscape. 
It should be noted that the TIR sharpening procedure should be more 
effective with the Sentinel-2 MSI (compared to the Landsat-8 OLI) since 
it has greater spectral (i.e. 3 additional bands in the red-edge) resolution 
(Guzinski and Nieto, 2019). As well, the sharpened LST could yield more 
accurate results in landscapes where the main roughness elements 
change at scales that are captured with 20 m resolution (e.g. cropland 

Fig. 10. Scatter plots of estimated H, LE, Rn, G fluxes for the 20 and 1000 m Sen-ET products versus those measured from the EC towers.  
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mosaics). This way, it would complement the sufficiently detailed 
roughness characterization within the TSEB model. 

5. Conclusions 

Findings from this study demonstrated that TSEB can accurately 
simulate ET (and related energy fluxes) in a heterogeneous TGE using 
remote sensing data when the pixel scale was sufficient to discriminate 
between the multiple vegetation structures present (i.e. trees and 
grasslands). The high-resolution airborne (1.5 m) demonstrated 
different spatial and temporal patterns between trees and grasses. 
Within a relatively small ROI (~1.5 km × 1.5 km), large variability in LE 
retrievals were observed for grasses. Trees also showed within scene LE 
variability, although less significantly than grasses. Nevertheless, they 
maintained similar flux averages throughout all the overpasses, 
including those acquired during the summer drought. The DMS thermal 
sharpening method (Gao et al., 2012) improved flux retrievals in this 
landscape by better separating the tree and grass thermal signals at 1.5 
m compared to the original 4.5 TIR data. However, model uncertainty 
drastically increased at coarser spatial resolution (i.e. 30, 100 and 1000 
m) when the pixels are mixed. Model performance remained relatively 
constant between the pixel sizes of 30 to 1000 m, with within pixel 
heterogeneity being similar at all these scales. The increases in errors 
were largely driven by the within pixel heterogeneity (i.e. mix of tree 
and grass) in larger grid sizes that did not adequately depict the 

landscape roughness and aerodynamic resistance. The TSEB model 
performance at coarser resolutions (i.e. ≥30 m) improved by forcing 
constant landscape roughness values for all spatial scales or, particu-
larly, by applying TSEB-2S, where different parameterizations were used 
depending on the phenological period. 

The larger uncertainties in coarser model runs were also confirmed 
by evaluating the Sen-ET satellite product over the study area for the 
entire year of 2017. The Sen-ET products showed similar errors statistics 
for both sharpened (20 m) and coarse (1 km) flux products and were 
comparable to the ranges obtained by the coarser (i.e. >10 m) airborne 
simulations. These results suggest that care should be taken when using 
global ET products over TGE and similarly heterogenous landscapes 
with multiple vegetation layers. Even though these ecosystems are 
apparently homogeneous at coarser resolutions, the presence of vastly 
different vegetation structures causes for heterogeneity at the pixel level 
when the spatial resolution is greater than 10 m. This issue induces large 
uncertainties in the modeling performance, if not accounted for. Results 
demonstrated that the different structural and physical characteristics of 
the isolated trees and grassland understory have a large impact in the 
energy balance of TGEs. These differences should be inherently incor-
porated within the modeling procedure to obtain robust turbulent flux 
estimates with remote sensing based SEB approaches. 

Fig. 11. Scatter plot of Sen-ET30m EF versus AHS30m EF on 2017-05-19 (left) and the difference map of Sen-ET30m EF minus AHS30m EF (30 m) (right). Water pixels 
masked in grey. 

Fig. 12. Scatter plot of Sentinel-3 sharpened LST (30 m) [~10:25 UTC] and AHS aggregated LST (30 m) [11:08 UTC] (left) and the difference map of Sentinel-3 
sharpened LST (30 m) minus AHS aggregated LST (30 m) (right). Water pixels masked in grey. 
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Appendix A

Fig. A1. RMSE (left) and R2 (right) of the Partial least square regression (PLSR) model for predicting LAI with increasing PLS components for calibration (red) and 
10-fold cross-validation (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. A2. Partial least square regression (PLSR) model (five components) to predict LAI (left) and LAIg (right) applied on the validation dataset from ground 
measurements of ASD spectral data (resampled to mimic the 136 CASI bands between 400 and 1005 nm) and destructive LAI measurements.  

V. Burchard-Levine et al.                                                                                                                                                                                                                      



Remote Sensing of Environment 260 (2021) 112440

17

Fig. A3. The number of tree pixels where simulated Latent heat flux (LE) equals 0 (W m− 2) divided by the total number of tree pixels within the ROI (in %) for 
simulations when tree and grass pixels were distinguishable (i.e. 1.5 m, 4.5 m and 10 m).  

Table A1 
The average change of TSEB inputs and variables at all three tower footprints for all airborne overpasses with respect to the simulation at 1.5 m 
spatial resolution.   

4.5 m 10 m 30 m 100 m 1000 m 

LST (K) +0.024 − 0.022 − 0.068 − 0.061 +0.053 
LAI (m2 m− 2) − 0.001 +0.002 +0.011 +0.032 − 0.066 
fg (− ) − 0.001 +0.001 +0.005 +0.002 − 0.020 
Ra (s m− 1) +0.620 +1.894 − 9.518 − 9.800 − 10.160 
Rx (s m− 1) − 0.098 − 0.661 +0.773 +0.682 +1.211 
Rs (s m− 1) − 5.23 − 9.04 − 15.72 − 15.75 − 19.28 
TAC (K) +1.09 +2.11 +2.70 +2.68 +2.61  

Fig. A4. Time series of LSA-SAF ET (mm/h) against average observed ET (mm/h) (left) and scatter plot of observed ET versus LSA-SAF ET (filtering for fluxes 
>0 mm/h) (right) for the year 2017. 

The LSA-SAF ET product (Ghilain et al., 2011) were acquired for the same day and time of the Sen-ET images processed for 2017. The 30 min 
instantaneous ET product (in mm/h) were obtained and evaluated against the EC towers measurements of LE converted to ET (mm/h). The pixel unit is 
based on the SEVIRI instrument onboard the geostationary MSG satellite (roughly 3.7 km over the study site), therefore the average of all three EC 
tower ET measurements were used to evaluate the estimated ET. 
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Fig. A5. Scatter plot of the difference in LST between Sentinel-3 sharpened LST (30 m) and AHS aggregated LST (30 m) versus the difference in EF Sen-ET30m and 
AHS30m for 2017-05-19.  

Table A2 
Summary statistics of the AHS aggregated LST (30 m) and Sentinel-3 sharpened LST (30 m) over the three tower footprint climatologies.  

Tower footprint AHS-30 m (K) S3–30 m (K) Difference (K) 

mean min max mean min max mean 

CT 309.18 304.70 312.91 308.25 307.31 309.31 − 0.93 
NT 308.26 304.27 311.26 306.83 305.96 307.82 − 1.43 
NPT 308.44 305.46 313.51 307.46 306.82 308.11 − 0.98  

Fig. A6. Daily NDVI time series from the MODIS sensor (MCD43A4 product) over the CT tower between 2014 and 2017. Seasonal transition dates, as used in TSEB- 
2S, are shown in orange. Airborne overpass dates are highlighted in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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