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ABSTRACT The increasing emergence of drug-resistant fungal infections has necessi-
tated a search for new compounds capable of combating fungal pathogens of plants,
animals, and humans. Microorganisms represent the main source of antibiotics with
applicability in agriculture and in the clinic, but many aspects of their metabolic
potential remain to be explored. This report describes the discovery and characteri-
zation of a new antifungal compound, solanimycin, produced by a hybrid polyke-
tide/nonribosomal peptide (PKS/NRPS) system in Dickeya solani, the enterobacterial
pathogen of potato. Solanimycin was active against a broad range of plant-patho-
genic fungi of global economic concern and the human pathogen Candida albi-
cans. The genomic cluster responsible for solanimycin production was defined and
analyzed to identify the corresponding biosynthetic proteins, which include four
multimodular PKS/NRPS proteins and several tailoring enzymes. Antifungal produc-
tion in D. solani was enhanced in response to experimental conditions found in
infected potato tubers and high-density fungal cultures. Solanimycin biosynthesis
was cell density dependent in D. solani and was controlled by both the ExpIR
acyl-homoserine lactone and Vfm quorum-sensing systems of the bacterial phyto-
pathogen. The expression of the solanimycin cluster was also regulated at the
post-transcriptional level, with the regulator RsmA playing a major role. The solani-
mycin biosynthetic cluster was conserved across phylogenetically distant bacterial
genera, and multiple pieces of evidence support that the corresponding gene clus-
ters were acquired by horizontal gene transfer. Given its potent broad-range anti-
fungal properties, this study suggests that solanimycin and related molecules may
have potential utility for agricultural and clinical exploitation.

IMPORTANCE Fungal infections represent a major clinical, agricultural, and food se-
curity threat worldwide, which is accentuated due to the difficult treatment of these
infections. Microorganisms represent a prolific source of antibiotics, and current data
support that this enormous biosynthetic potential has been scarcely explored. To
improve the performance in the discovery of novel antimicrobials, there is a need to
diversify the isolation niches for new antibiotic-producing microorganisms as well as
to scrutinize novel phylogenetic positions. With the identification of the antifungal
antibiotic solanimycin in a broad diversity of phytopathogenic Dickeya spp., we pro-
vide further support for the potential of plant-associated bacteria for the biosynthe-
sis of novel antimicrobials. The complex regulatory networks involved in solanimycin
production reflect the high metabolic cost of bacterial secondary metabolism. This
metabolic regulatory control makes many antibiotics cryptic under standard labora-
tory conditions, and mimicking environmental conditions, as shown here, is a strat-
egy to activate cryptic antibiotic clusters.
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Many important drugs for treating microbial infections are derived from natural
products produced by microorganisms (1, 2). In an era of increasing antimicrobial

resistance, there is an urgent need for discovery of new antibiotics for use in medicine
and agriculture (3–5). Several antifungal drugs derived from natural products, or that
mimic natural products, have been approved (2, 6). However, the number of natural
product-derived antifungal antibiotics developed in the last 40 years is significantly
lower than that of their antibacterial counterparts (2).

Pathogenic fungi represent a major worldwide threat to agriculture and global food
security. Data from the Food and Agriculture Organization of the United Nations (FAO)
indicate that plant pathogens cause losses of up to 40% in annual crop production, with
fungal phytopathogens responsible for most of these crop losses (7–9). Furthermore,
these phytopathogens can be responsible for up to 80% of total loss under disease-
conducive conditions (10). This global health problem has been exacerbated by monocul-
ture cropping practices, the loss of crop diversity due to intensive agriculture, ecological
deterioration of seminatural landscapes, and the anthropogenic spread of fungal phyto-
pathogens into favorable habitats and naive hosts (3, 10). Close to 80% of fungicides
currently used in agriculture are single-target antimicrobials, with azoles, strobilurins, and
succinate dehydrogenase inhibitors accounting for ;60% of the global market (10). The
rapid emergence of resistance to these major classes of fungicides necessitates identifica-
tion of novel broad-spectrum antifungals with new mechanisms of action (3, 10).

Most bioactive natural products from bacteria are encoded in biosynthetic gene
clusters (11, 12), with some bacteria dedicating up to ;14% of their genomes to the
synthesis of these secondary metabolites (13, 14). Polyketides (PKs) and nonribosomal
peptides (NRPs) are two of the largest families of secondary metabolites with a broad
range of biological activities, including antibacterial, antifungal, immunosuppressant,
and anticancer activity, among others (15). PKs and NRPs are synthesized by polyketide
synthases (PKSs) and nonribosomal peptide synthetases (NRPSs), respectively. These
PKS and NRPS machineries are typically organized in multidomain modules that,
through the condensation of carboxylic or amino acids, assemble many structurally
and functionally diverse PKs and NRPs, respectively (15). The final PK and NRP products
are often modified by specialized tailoring enzymes, a process that largely contributes
to the diversification and biological activities of the final metabolite (16, 17).

Historically, soil actinomycetes have been the main source of bioactive secondary
metabolites currently used in the clinic and agriculture (5, 18, 19). However, develop-
ments in genomics, metagenomics, proteomics, genome mining, and analytical chemis-
try approaches are revealing that alternative bacterial taxa, including plant-associated
bacteria, are rich sources of secondary metabolites that might be exploited in chemo-
therapeutic drug discovery and agriculture (14, 20–22). Indeed, a recent analysis of
;217,000 bacterial genomes and metagenome-assembled genomes revealed that only
;3% of the bacterial genetic potential for the biosynthesis of secondary metabolites has
been explored experimentally, and plant-associated proteobacteria were identified as
strong candidates for the identification of novel bioactive natural products (23).

Our earlier work focused on the emerging phytopathogen Dickeya solani, previously
classified as Pectobacterium chrysanthemi (Erwinia chrysanthemi) (24, 25). D. solani was
first reported on tomato in 2005 to 2006, but subsequent reports of this organism
revealed that it had been widespread around Europe and Israel (24, 26). It primarily
causes blackleg disease in potato plants but is thought to have crossed over from orna-
mental plants, as its first isolation was on hyacinth (24, 25). D. solani has now been priori-
tized as one of the top 10 bacterial plant pathogens of concern (27). However, D. solani
is also of interest because it carries several different secondary metabolite gene clusters;
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some of which are primarily associated with Dickeya spp. and not found in other taxo-
nomically related plant pathogens (28–30). Among them, the hybrid PK/NRP zeamine
that is toxic to fungi, bacteria, and nematodes (31–33), the antifungal and antioomycete
polyketide oocydin A (34, 35), and the purple pigment indigoidine (36) are all secondary
metabolites produced by species in the genus Dickeya, indicating that Dickeya spp. could
be important reservoirs of novel, and potentially useful, natural products.

While examining natural product biosynthesis in D. solani, we noticed that several
mutant strains defective in the production of oocydin A lost their antioomycete prop-
erties but still retained strong activity against several plant-pathogenic fungi such as
Verticillium dahliae, suggesting that these strains produced another, uncharacterized,
antifungal antibiotic. Here, multidisciplinary approaches were used to define and char-
acterize a biosynthetic gene cluster responsible for the residual but potent broad-spec-
trum antifungal activity. The regulation of its biosynthetic locus was interrogated and
found to be modulated by multiple environmental cues and regulatory pathways.

RESULTS
Dickeya solani produces a previously undiscovered second antifungal com-

pound. During the characterization of the bioactive properties of transposon insertion
mutants in D. solani MK10, we observed that although oocydin A-deficient mutants (i.e.,
MK10-OocF, MK10-OocG, and MK10-OocN) had lost their ability to antagonize the growth
of a phytopathogenic oomycete (see Fig. S1A in the supplemental material), they
remained antagonistic to plant-pathogenic fungi such as Verticillium dahliae (Fig. 1A). To
determine whether this phenotype was exclusive to strain MK10, we used the phage

FIG 1 Identification and characterization of a novel hybrid PKS/NRPS antifungal gene cluster in Dickeya solani MK10.
(A) Antifungal activity against Verticillium dahliae of MK10 and derivative strains with mutations in the oocydin A and
the solanimycin (sol) biosynthetic clusters. The size of the inhibition halos is indicative of the susceptibility of
Verticillium dahliae, present in the top agar lawns, to the antifungal antibiotics produced by Dickeya solani MK10,
oocydin A, and solanimycin. The bioassays were repeated at least three times, and representative results are shown.
Pictures were taken after 96 h of incubation at 25°C. Genotypic characteristics of the bacterial strains used are detailed
in Table S1 in the supplemental material. (B) Genetic organization of the sol gene cluster in MK10. Locations of the
transposon insertions are shown by black arrows with the indicated strain names above. Color code representing the
functional category of each gene of the gene cluster is given. T, acyl carrier protein; KS, ketosynthase; DH,
dehydratase; KR, ketoreductase; C, condensation; A, adenylation; P, peptidyl carrier protein; Ox, oxidase; TE,
thioesterase; AT, acyltransferase; and AH, acyl hydrolase.
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f XF1 to transduce random transposon mutations in the oocydin A gene cluster into other
oocydin A-producing D. solani strains (34). As observed for MK10, oocydin A-deficient
mutants of D. solani strains MK16 and IPO_2222 still exhibited strong antifungal activities
(Fig. S1B), reinforcing the notion that another antifungal compound was being produced
by these three D. solani strains.

A novel hybrid NRPS/PKS gene cluster is responsible for the synthesis of the
uncharacterized antifungal antibiotic. To identify the genes involved in the strong
residual antifungal activities, the oocydin A-deficient mutant MK10-OocN was used to
screen for random transposon mutants totally defective in bioactivity against V. dah-
liae. This screening allowed the isolation of multiple independent transconjugants
showing complete loss or reduced antifungal properties (Fig. 1A). To confirm the asso-
ciation between the transposon insertion and the loss of the antifungal activity, all the
mutations were transduced back into the strain MK10-OocN. Additionally, several
mutations were also transduced into the oocydin A-negative mutant of D. solani MK16,
MK16-OocN. As expected, the resulting transductants showed complete loss of the
antifungal properties of MK16 toward V. dahliae (Fig. S1C).

The locations of the transposons in MK10-OocN were determined and all insertions
mapped to a 40.3-kb uncharacterized hybrid NRPS/PKS gene cluster (Fig. 1B). This genetic
locus was thus required for production of the uncharacterized antifungal, which we desig-
nated solanimycin. In D. solani MK10, the solanimycin (sol) biosynthetic cluster is composed
of 12 open reading frames (ORFs), and in silico analyses allowed us to assign putative biosyn-
thetic roles to each ORF (Table 1). The sol cluster encodes a large multimodular type I PKS
(SolA), 3 multidomain NRPSs (SolF, SolG, and SolH), and an orphan acyl carrier protein (ACP)
(SolD) (Fig. 1B; Table 1). No acyltransferase (AT) domains were identified in the PKS biosyn-
thetic modules of SolA, and, in accordance with the trans-AT nature of SolA, the biosyn-
thetic cluster encodes a freestanding AT (SolE) containing two putative AT domains
(Fig. 1B; Table 1). Several putative tailoring enzymes, potentially involved in the chemical
modification of the nonribosomal peptide backbone during or after chain elongation, were
also identified within the biosynthetic cluster, including a NAD-dependent epimerase/dehy-
dratase (SolB), an aminotransferase (SolC), a cytochrome P450 (SolI), a putative metallo-
hydrolase (SolJ), and a hydratase (SolK). The last gene of the biosynthetic cluster is predicted to
encode a multidrug antimicrobial extrusion protein (SolL), potentially involved in the secretion
of the metabolite to the extracellular environment (Fig. 1B; Table 1).

The solanimycin biosynthetic cluster is widely distributed within Dickeya spe-
cies and other enterobacteria. The genomes of 382 Dickeya spp. were interrogated to
assess the distribution of the sol biosynthetic cluster. Just over 100 of the in silico-ana-
lyzed Dickeya strains carry the sol cluster. These include D. solani, D. zeae, D. dadantii,

TABLE 1 Deduced functions of ORFs in Dickeya solaniMK10 solanimycin biosynthetic gene cluster

Protein Size (aa) Proposed functiona Sequence similarity (protein, origin)
Identity/
similarity (%)

GenPept
accession no.

SolA 5,358 PKS (KS-DH-KR-T-KS-DH-T-T-KS-DH-KR-T-
KS)

LT85_1869, Collimonas arenae 50/64 AIY41027

SolB 329 NAD-dependent epimerase/dehydratase LT85_1870, Collimonas arenae 58/73 AIY41028.1
SolC 415 Aminotransferase GLE_2101, Lysobacter enzymogenes 77/89 ALN57451
SolD 89 Acyl carrier protein (T) GLE_2102, Lysobacter enzymogenes 55/72 ALN57452
SolE 628 Acyltransferase (AT-AH) LT85_1874, Collimonas arenae 56/70 AIY41032
SolF 2,300 NRPS (A-P-C-A-ox-P) WI73_12820, Burkholderia ubonensis 47/50 KVC70826
SolG 1,163 NRPS (C-A-P) RBRH_00484, Paraburkholderia rhizoxinica 58/72 CBW76566
SolH 1,908 NRPS (C-A-P-C-TE) WP_132343500, Photorhabdus luminescens 47/63 WP_132343500
SolI 428 Cytochrome P450 ABS77_08630, Phenylobacterium sp. strain

SCN 69-14
59/76 ODT61829

SolJ 241 Metallo-hydrolase AWB69_02897, Caballeronia udeis 48/62 SAL32886
SolK 180 Enoyl-CoA hydratase Pden_4680, Paracoccus denitrificans

PD1222
54/76 ABL72741

SolL 447 MATE family efflux transporter WP_211266708, Halotalea alkalilenta 53/72 WP_211266708
aT, acyl carrier protein; KS, ketosynthase; DH, dehydratase; KR, ketoreductase; C, condensation; A, adenylation; P, peptidyl carrier protein; Ox, oxidase; TE, thioesterase; AT,
acyltransferase; AH, acyl hydrolase.
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D. aquatica, and D. fangzhongdai species and multiple unclassified Dickeya strains
(Fig. 2 and Fig. S2). We assessed the antifungal activity of 15 Dickeya strains available in
our laboratory stocks, and we detected antifungal activity attributable to solanimycin
in half of the strains (Fig. S1D), mirroring the genomic predictions.

Further bioinformatic analyses revealed that the sol cluster is not restricted to the Dickeya
genus, as it was also identified in the plant-associated strains, Pantoea sp. strain A4 and
Erwinia species strains ErVv1 and AG740 (NCBI assembly accession nos. GCA_000295955,
GCA_900068895, and GCA_003201495, respectively) (Fig. 2). Furthermore, the sol
biosynthetic cluster is also present in Rouxiella chamberiensis 130333 (GenBank acces-
sion no. NZ_JRWU00000000) and Rouxiella badensis DSM 100043 (GenBank accession
no. NZ_MRWE00000000) and partially within gamma proteobacterium WG36
(GenBank accession no. AMYV00000000.1) and Teredinibacter turnerae T7901
(GenBank accession no. NC_012997) (Fig. S2), bacterial isolates from a parenteral
nutrition bag in a French hospital, a German peat bog, Michigan’s Wintergreen Lake,
and a wood-boring mollusk, respectively.

Comparative analyses define that the sol biosynthetic clusters are between 39.7 and
42.8 kb, and they are between 65.4% and 100% identical at the DNA level to the gene
cluster of MK10 (Fig. 2 and Fig. S2). Several pieces of evidence support that the sol clusters
were acquired by horizontal gene transfer (HGT) between different genera and species of
bacteria, including: (i) remnant sequences of integrases and transposases as well as phage
genes (e.g., holins, lysozymes, and lysis regulatory proteins) were identified bordering the
clusters in multiple Dickeya strains; and (ii) while the genomic context differed between
different strains, in many Dickeya spp., the same three tRNAs, glyW, cysT, and leuZ, flanked
the sol region (Fig. S3). tRNAs genes were defined as hot spots for the integration of genes
in HGT events (37), and we noticed that different secondary metabolite clusters were pres-
ent at the same site in different Dickeya strains (Fig. S3).

Different gene configurations between solanimycin gene clusters. Six different
gene configurations were identified between the downstream regions of the sol gene

FIG 2 Homology between the solanimycin gene cluster of D. solani MK10 and the biosynthetic clusters of
other enterobacterial strains. The alignments show a comparison of homology between the sol gene cluster of
MK10 and the gene clusters of Erwinia sp. ErVv1, D. zeae Ech586, Pantoea sp. A4, D. fangzhongdai DSM 101947,
and D. fangzhongdai ND14b. The percentages of amino acid translation identities between the different sol
clusters are indicated in gray according to the scale present. Biosynthetic clusters were ordered to highlight
the diversity in the downstream region of the gene cluster. Alignments were generated using clinker (92).

Solanimycin’s Potential as an Antifungal Antibiotic mBio

November/December 2022 Volume 13 Issue 6 10.1128/mbio.02472-22 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

5 
A

pr
il 

20
23

 b
y 

16
1.

11
1.

25
2.

20
0.

https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_000295955/
https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_900068895/
https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_003201495/
https://www.ncbi.nlm.nih.gov/nuccore/NZ_JRWU00000000
https://www.ncbi.nlm.nih.gov/nuccore/NZ_MRWE00000000
https://www.ncbi.nlm.nih.gov/nuccore/AMYV00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_012997
https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.02472-22


clusters (Fig. 2 and 3). The most common genetic organization was identified in MK10
(Fig. 3A). The same organization was found in Erwinia sp. ErVv1, although the gene solL
was convergently transcribed with the rest of the biosynthetic operon (Fig. 3B).
Surprisingly, a gene encoding a glycosyltransferase was downstream of the solI gene in
several strains, for example, D. zeae Ech586 and R. chamberiensis 130333 (Fig. 3C and
Fig. S2). This glycosyltransferase-encoding gene was also present in the biosynthetic clus-
ter from Pantoea sp. A4, although the solJ gene was absent in this strain (Fig. 2 and
Fig. 3D). The solJ gene was also absent from the biosynthetic clusters from D. fangzhongdai
strains ND14b and DSM 101947 (Fig. 3E and F), as well as Dickeya species strains MK7,
NCPPB_3274, B16, and M005. Curiously, the sol cluster in D. fangzhongdai ND14b was fol-
lowed by an additional 30-kb ORF predicted to encode an NRPS (Fig. 3F).

Comparative analysis of the NRPSs SolF, SolG, and SolH revealed unexpected
results between different strains containing a sol biosynthetic cluster. Surprisingly,
SolF is missing approximately 500 amino acids, predicted to encode the monooxy-
genase domain, in Dickeya species strains FVG1-MFV-017 and FVG-MFV-A16. In addi-
tion, SolH in the biosynthetic clusters from Pantoea sp. A4 and Erwinia sp. ErVv1
lacked the final thioesterase domain and is around 300 amino acids shorter than
SolH proteins from the remaining sol clusters (Fig. 2 and Fig. S2). In contrast, SolG
was highly conserved in all strains. Thus, while there is broad conservation across the
sol biosynthetic clusters, significant differences exist between individual producers,
implying that some chemical diversity of secondary metabolites may be elaborated
across the different strains.

Contribution of individual sol genes to solanimycin production. Curiously, all
the transposon insertions blocking solanimycin production in the isolated mutants

FIG 3 Genetic organization of the downstream region of the solanimycin gene cluster. For each configuration,
a reference genome is indicated to the right. Configurations shown are D. solani MK10 (A), Erwinia sp. ErVv1
(B), D. zeae Ech586 (C), Pantoea sp. A4 (D), D. fangzhongdai DSM 101947 (E), and D. fangzhongdai ND14b (F).
Where appropriate, the gene number is indicated below ORFs falling outside the immediate sol gene cluster.
Color code represents the functional category of each gene, including cytochrome P450 SolI (gray), metallo-
hydrolase SolJ (green), enoyl-CoA hydratase SolK (orange), MATE transporter SolL (blue), glycosyltransferase
(GT) family I (red), NRPS (purple), and cyclic peptide transporter (yellow).
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were in the upstream and downstream ends of the sol cluster, with no solanimycin-
negative insertions between solB and solE (Fig. 1B). To assess whether the sol cluster
comprised a single transcriptional unit, analysis of MK10 RNA transcripts by reverse
transcriptase PCR (RT-PCR) was undertaken. Products were detected across each inter-
genic region in the biosynthetic cluster but not upstream of the cluster or between the
12th gene and the ORF immediately downstream (Fig. S4). Thus, we concluded that
insertions in the first gene in the cluster would have polar effects on downstream
genes, consistent with operonic organization. Surprisingly, transposon insertions in the
downstream end of the gene cluster resulted in the acquisition of an orange pigmenta-
tion when the mutant strains were grown in potato dextrose (PD) medium (Fig. 1A). To
gain insights into solanimycin biosynthesis, in-frame deletions in all 12 genes in the
cluster were constructed by allelic exchange. The antifungal activities of these mutants
were characterized (Fig. 4), and, where possible due to size, mutants were functionally
complemented in trans (Fig. S5A).

The core biosynthetic machinery of the antifungal metabolite consists of a PKS (SolA)
and three NRPSs (SolF, SolG, and SolH) (Fig. 1B), and deletion of any one of these genes
resulted in loss of antifungal activity (Fig. 4). Deletion of the freestanding ACP-encoding
gene solD caused complete loss of antifungal activity (Fig. 4), indicating the essential role
of this protein for antibiotic biosynthesis. The trans-AT SolE contains two AT domains
(SolE-AT1 and SolE-AT2), both containing the catalytic Ser-His dyad and the conserved
N-terminal GQGSP loop (Fig. S6). In silico analyses revealed that SolE-AT1 possesses the
conserved residues characteristic of malonyl-specific ATs. However, these residues are less
conserved in SolE-AT2 (Fig. S6). Multiple-sequence alignments revealed that the character-
istics of malonyl-specific ATs are also poorly conserved in PedC and KirCl-AT1 (Fig. S6).
PedC and KirCl-AT1 have no AT activities and are acyl hydrolases suggested to act as PKS
proofreading enzymes to release stalled biosynthetic intermediates (38, 39) as an indica-
tion that SolE-AT2 may play a secondary role in the biosynthetic pathway of solanimycin.
Surprisingly, the deletion of solE did not diminish the antifungal properties of MK10-OocN
(Fig. 4), implying that another enzyme with AT activity may be encoded in the genome of
MK10. In accordance with this notion, three freestanding AT enzymes were identified in
the MK10 genome, DSOMK10_RS0113975, OocV, and OocW.

The in-frame deletion of the genes encoding the putative tailoring enzymes SolB,
SolC, SolI, SolJ, and SolK resulted in dissimilar phenotypes. Mutants lacking solB, solC,
or solI no longer exhibited antifungal activity, whereas a deletion mutant defective
in the putative dehydratase SolK resulted in reduced antifungal activity (Fig. 4).

FIG 4 Antifungal properties of individual gene knockouts in the solanimycin biosynthetic cluster. Bioactivities of
MK10 and strains deleted for individual genes in the sol cluster (solA to solL) were assayed on a Verticillium dahliae (A)
and Schizosaccharomyces pombe (B) top lawns. The size of the inhibition halos is indicative of the susceptibility of the
tested fungi, which are present in the top agar lawns, to solanimycin. Genotypic characteristics of the strains used are
detailed in Table S1 in the supplemental material. Bioassays were imaged after 72 to 96 h of incubation at 25°C. The
bioassays were repeated at least three times, and representative pictures are shown.
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Conversely, the in-frame deletion of putative hydrolase-encoding gene solJ did not al-
ter the bioactive properties of MK10-OocN (Fig. 4). Given that solJ is absent in several
biosynthetic clusters (Fig. 2, Fig. 3, and Fig. S2), we hypothesize that this hydrolase may
have a secondary role for the final biological activity of solanimycin. Interestingly, the
deletion of solB, solI, or solK caused the emergence of a strong orange pigmentation
when these mutant strains were grown on PD medium (Fig. 4A). Unexpectedly, given
the level of conservation within the various biosynthetic clusters (Fig. 2, Fig. 3, and
Fig. S2), the deletion of transporter-encoding gene solL did not affect the antagonist
properties of MK10-OocN (Fig. 4), suggesting that an alternative secretion system may
be encoded in the genome of MK10. Based on the most common genetic organization
of the sol cluster (e.g., MK10 organization) (Fig. 1 to 3 and Fig. S2), we have proposed a
model for the biosynthesis of solanimycin (Fig. 5).

Solanimycin production is regulated by RsmA and two quorum-sensing sys-
tems. To learn more about the regulation of solanimycin production by MK10, a ran-
dom transposon mutant library of over 20,000 transconjugants was screened for
altered solanimycin production. Mutants showing increased solanimycin production
contained transposon insertions in the ORF encoding VfmG, a part of the signal
export in the Vfm quorum-sensing (QS) system (40, 41), or in the ORF encoding
RsmA, a widely studied post-transcriptional regulator of secondary metabolism (42,
43) (Fig. 6A). In addition, as part of a simultaneous screen for other QS mutants, we
identified a transposon insertion in the acyl-homoserine lactone (AHL) synthase
encoding gene expI that had no solanimycin production (Fig. 6A). ExpI is responsible
for the production of two AHL-signaling molecules, N-(3-oxohexanoyl)-L-homoserine
lactone (OHHL), the dominant molecule, and small amounts of N-hexanoyl-L-homo-
serine (44). In accordance with this, solanimycin production was restored when the
expI gene was provided in trans or by addition of 1 mM OHHL to the culture medium
(Fig. S5B).

FIG 5 Model for the structure of the first enzyme-free precursor of solanimycin. The proposed structure is a cyclic tetrapeptide incorporating a PKS-
synthesized d -amino acid and three proteinogenic a-amino acids (Gly-Ser-Val, with the Gly residue oxidized). In this model, it was assumed that the
PKS/NRPS proteins are involved in the biosynthesis in the same order as they are found in the genome. This compound would most probably be
further modified by further “tailoring” enzymes in the cluster (e.g., SolB, SolC, SolI, SolJ, and SolK). ACP, acyl carrier protein; KS, ketosynthase; DH,
dehydratase; KR, ketoreductase; C, condensation; A, adenylation; PCP, peptidyl carrier protein; ox, oxidase; TE, thioesterase; AT, acyltransferase; and
AH, acyl hydrolase.
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To further study each of the regulatory mutants in vfmG, rsmA, and expI, transposon inser-
tions were transduced into MK10-OocN or into a strain carrying a solA::lacZ transcriptional
fusion for further examination throughout growth. In a vfmGmutant, an enhanced solanimy-
cin production, which was detected earlier in the growth phase, was observed. Thus, solani-
mycin activity was detected in MK10-OocN after 14 h of growth, as the culture transitioned
into stationary phase, whereas in a vfmGmutant, solanimycin activity was observed in culture
supernatants after 6 h of growth when the culture was still growing exponentially (Fig. S7A).
Similarly, in an rsmA mutant, solanimycin production was observed earlier in the growth
phase (Fig. S7A). To determine whether the impact of each of the corresponding mutations
was on the transcription of the biosynthetic cluster, we examined the expression of a solA::
lacZ transcriptional fusion in conjunction with mutations in vfmG, rsmA, or expI. In both vfmG
or rsmA mutants, b-galactosidase activity was significantly earlier at the growth phase and
produced at elevated levels compared with the wild-type MK10 (Fig. 6B). We concluded
therefore that the posttranscriptional regulator RsmA and the Vfm QS system repress tran-
scription of the sol biosynthetic cluster. Additionally, no appreciable solA transcription was
observed at all time points in an expI mutant, and we could restore solA transcription by the
addition of 1 mM OHHL to the medium (Fig. 6C). We also noted that transcription of the sol
cluster was not precociously induced on addition of OHHL (Fig. 6C), suggesting that the
ExpIR system acts within a wider regulatory network to control solanimycin production.

Production of solanimycin is enhanced under conditions that mimic the plant
host environment.We found that solanimycin production was dependent on the cul-
ture medium. Activity was detected in culture supernatants late in stationary phase
when grown in PD or Strobel medium, but no activity was detected in culture

FIG 6 RsmA, two quorum-sensing systems, and pH modulate solanimycin production in Dickeya solani
MK10. (A) Antifungal activity of mutants defective in expI, rsmA, and vfmG against Verticillium dahliae and
Schizosaccharomyces pombe. The size of the inhibition halos is indicative of the susceptibility of the tested
fungi, which are present in the top agar lawns, to solanimycin. Genotypic characteristics of the strains
used are detailed in Table S1 in the supplemental material. (B) b-Galactosidase activity (solid lines)
throughout growth (dashed lines) in PD medium at 25°C measured from a chromosomal fusion solA::lacZ
in different MK10 genetic backgrounds. (C) Expression of the sol gene cluster (solA::lacZ) in different
genetic backgrounds, as determined by b-galactosidase activity (solid lines), throughout growth (dashed
lines) in PD medium at 25°C with and without the addition of 1 mM OHHL. (D) Expression (solid lines) of
the sol gene cluster (solA::lacZ) in PD medium at different pH levels. Dashed lines represent bacterial
growth. In panels B to D, data are the mean and standard deviation of three biological replicates.
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supernatants at any time throughout growth in LB, YES, or minimal medium (Fig. 7A).
Acidic pH is a stress faced by Dickeya spp. during early stages of plant infection, and
low pH has been shown to modulate virulence in different Dickeya spp. (45, 46), includ-
ing species that contain the sol biosynthetic cluster. High levels of solanimycin produc-
tion were observed in PD (Fig. 7A), a culture medium that mimics the pH and nutrients
present in potato tubers. The pH of the PD medium before inoculation was 5.1 and af-
ter 12 h of MK10 growth fell to 4.2. To examine the effect of pH on solanimycin produc-
tion further, PD medium buffered to either pH 7.0, 6.0, or 5.0 (D. solani failed to grow
at pH 4.0) was inoculated with MK10-OocN and solanimycin production monitored.
Antifungal activity was only observed in supernatants from cultures grown at pH 5.0
(Fig. S7B). We also examined transcriptional activity of the sol cluster at different pH
levels, and a 200-fold increase in solA transcription was observed between media buf-
fered to pH 5.0 and pH 7.0 (Fig. 6D), indicating the key role of pH as a regulatory input
for solanimycin biosynthesis. In accordance, we found that Saccharomyces cerevisiae or
Schizosaccharomyces pombe, in the absence of D. solani, lowers the pH of the YES
broth, a medium that does not promote solanimycin synthesis, ultimately settling at a
pH of approximately 4.4 (Fig. S7C). We buffered the YES medium to pH 7.0, 6.0, and 5.0
and cultured MK10-OocN under these conditions. Solanimycin production was only
detected in cultures grown at pH 5.0 (Fig. S7D), suggesting that the acidic conditions
created by high-density yeast cultures helped to induce solanimycin production.

Biological properties of solanimycin and its impact on eukaryotic cell viability.
We phenotypically compared MK10 and mutant derivatives defective in the synthesis
of oocydin A (MK10-OocN) and both oocydin A and solanimycin (OocN-M10 and

FIG 7 Purified solanimycin impacts growth and development of S. pombe. (A) Growth inhibition of S.
pombe with culture supernatants of D. solani MK10 in Strobel, potato dextrose (PD), YES, LB, and
minimal medium (MM). (B) S. pombe growth (dashed lines, OD600) with partially purified solanimycin
(sol; concentration 0.6� that of an original MK10 wild-type culture) added after 4 h of growth. The
solvent (40% ethanol) used to dissolve partially purified solanimycin was used as a control. Average
colony counts were assessed throughout growth (solid lines). Data are the mean and standard
deviation of three biological replicates. (C) Representative microscopy images of S. pombe cells with
either partially purified solanimycin at 0.6� or the solvent control from cultures after different times
after addition. (D) S. pombe cells grown in higher concentrations of partially purified solanimycin (2�
and 3�, as indicated) and imaged immediately (0 min) and at different time points after solanimycin
addition. All images are representative of those observed. Scale bars, 1 mm.
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OocN-M1). First, we assessed the antagonistic activities toward 26 plant-pathogenic
fungi of the Ascomycota and Basidiomycota phyla, including fungi belonging to 5 dif-
ferent classes and 12 orders. These fungi included phytopathogens ranked in the top
10 in plant pathology (e.g., Botrytis cinerea and Fusarium oxysporum) (47), as well as a
number of fungal pathogens of potato (e.g., Colletotrichum coccodes, Fusarium solani,
Rhizoctonia solani, and Verticillium dahliae). We observed that solanimycin was active
against around 70% of the tested plant-pathogenic fungi (Fig. 8 and Fig. S8). Among
the most susceptible fungi, we identified economically important phytopathogens
such as Armillaria mellea, Botrytis allii, Botrytis cinerea, Botrytis fabae, Fusarium culmo-
rum, Helminthosporium sativum, Monilinia fructigena, Mycosphaerella graminicola,
Pyrenophora graminea, and Rhizoctonia solani (Fig. 8 and Fig. S8). We also found that
solanimycin was active against the ascomycete yeasts Candida albicans, Saccharomyces
cerevisiae, and Schizosaccharomyces pombe (Fig. 8). No activity against various Gram-pos-
itive or Gram-negative bacteria was detected, and there was no obvious association of
solanimycin with bacterial virulence in Caenorhabditis elegansmodels (Fig. S1E), implying
that solanimycin may be specifically targeting members of the fungal kingdom.

We addressed solanimycin detection in cell-free culture supernatants using an
S. pombe cut-well assay. Solanimycin was partially purified from supernatants of

FIG 8 Broad range of antifungal properties of solanimycin. Bioactivities of D. solani MK10 and derivative
strains defective in the synthesis of oocydin A (MK10-OocN) and both oocydin A and solanimycin (OocN-M10
and OocN-M1). The size of the inhibition halos is indicative of the susceptibility of the tested fungi, which are
present in the top agar lawns, to oocydin A and solanimycin. Genotypic characteristics of the bacterial strains
used are detailed in Table S1 in the supplemental material. The bioassays were repeated at least three times,
and representative pictures are shown. Pictures were taken after 3 to 7 days of incubation at 25°C.
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cultures grown in PD medium, and the fractions containing antifungal activity were
examined by ultraperformance liquid chromatography-quadrupole time of flight mass
spectrometry (UHPLC-Q-TOF MS) analysis. Two metabolites were identified in the wild-
type supernatant fraction but not in the OocN-M10 fraction (Fig. S9). These had m/z
values of 963.48 and 979.474, a difference in molecular weight corresponding to one
oxygen. This partially purified compound was added to cultures of actively growing S.
pombe. Within 1 h of exposure, a growth inhibition was observed, and viable colony
counts showed a significant decrease compared with the solvent control. Three hours
after solanimycin addition, a 542-fold reduction in viable colonies was observed, sug-
gesting that the action of solanimycin was rapid (Fig. 7B). In addition, differences in
cell morphology and dead cells were observed (Fig. 7C). We also examined S. pombe
cells grown with higher concentrations of solanimycin, namely, two and three times
the concentration found in Dickeya supernatants. Dead cells were visible at these
higher concentrations after 15 to 30 min, and morphological changes, such as
rounded-off cells, incorrectly placed division septa, stress granules, and aggregation,
were observed (Fig. 7D), indicating that the impacts of solanimycin on eukaryotic yeast
cells were quick and lethal.

DISCUSSION

Dickeya solani (30) was first reported in European seed potato stocks from 2005 to
2006, and it is now recognized as a prominent plant pathogen worldwide (48, 49). This
success may be associated with the organism’s ability to colonize plant tissues rapidly
and overwhelm competitors (29, 34, 50), for example, through the production of an
array of bioactive secondary metabolites that, among their ecological functions, act as
intermicrobial warfare agents in the killing or inhibition of competitors (51–53). In ac-
cordance, recent genomic analyses proposed that the success of D. solani strains may
be due to the presence and combination of NRPS/PKS clusters (28–30, 54). Indeed, the
divergence of D. solani from other Dickeya spp. has been linked with the acquisition of
additional secondary metabolite clusters by D. solani (30). Specifically, D. solani strains
were shown to produce the antibacterial, antifungal, and nematicide hybrid NRP/PK
zeamine (31), the antifungal and antioomycete PK oocydin A (34), and, as reported
here, the antifungal hybrid NRP/PK solanimycin.

The sol biosynthetic cluster was found in many Dickeya spp., as well as in other phylo-
genetically distant bacterial genera (Fig. 2 and Fig. S2). While the cluster seemed to be
most prevalent in the genomes of Dickeya spp., this may reflect a bias toward genome
sequencing of economically important agricultural pathogens rather than commensal or
saprophytic microbes isolated from the same habitats. An interesting finding from this
work was the different configurations of the putative tailoring enzymes within the sol
cluster (Fig. 3) and the loss or addition of NRPS modules in SolF/H encoded within the
clusters of different strains (Fig. 2 and Fig. S2). These differences could help drive chemi-
cal diversity from each genomic configuration, which has been reported in other bacte-
ria. For example, the daptomycin and glycopeptidolipid biosynthetic clusters from
Streptomyces roseosporus and Mycobacterium avium, respectively, are genetically similar,
but their final products differ in structure (55–57). Also, it was found that the HGT of dif-
ferent tailoring genes contributes to the structural and biosynthetic diversity of pentan-
gular polyphenol polyketides (58). Currently, we are investigating the chemical structure
of solanimycin and beginning to investigate possible links between genomic diversity
and potential chemical diversity elaborated from the sol loci.

The biosynthesis of secondary metabolites can be energetically demanding, and
therefore, their production is often tightly regulated by different chemical signals and
environmental cues (51, 59, 60) such that many secondary metabolite clusters can be
phenotypically cryptic under standard growth conditions (61–63). Various secondary
metabolites are known to be under AHL QS control (64–66), but the specific role of the
ExpIR system in D. solani remains unclear. In some D. solani isolates, an expI mutant
shows reduced potato maceration (67). However, in several D. solani strains, the
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production levels of major virulence determinants, such as secreted pectate lyase and
cellulase, in expImutants were indistinguishable from the corresponding wild-type strain
(40, 67). Here, we found that solanimycin was regulated in response to OHHL, suggesting
that the local presence of other OHHL producers, for example, alternative soft-rotting
bacteria (68, 69), might induce solanimycin biosynthesis during mixed infection of the
plant. However, the regulatory hierarchy controlling solanimycin production was more
complicated, with multiple regulatory inputs, including the recently discovered Vfm QS
system (40, 41, 70, 71).

Recent studies found that the Vfm system modulates motility, plant cell wall-degrad-
ing enzyme synthesis, the expression of the type VI secretion system, and plant virulence
in different Dickeya species (70, 71). The Vfm genetic cluster is comprised of four operons
across 30 kb in MK10 (72), and the vfmGmutants that we isolated were potentially defec-
tive for vfmHIJ expression due to polar effects of transposon insertion. VfmG is predicted
to encode part of the Vfm signal export system, whereas VfmJ encodes a 49 phospho-
pantetheinyl transferase proposed to be involved in the Vfm signal synthesis (41).
Additionally, VfmH-VfmI form a classical two-component system (41, 71), and mutants
defective in vfmH in D. dadantii and D. zeae do not produce or respond to the Vfm sig-
naling molecule (41, 71). Thus, one explanation for the observed increased solanimycin
production in a vfmGmutant could be the lack of signaling molecule biosynthesis in this
strain, therefore representing an example of QS-based repression of a secondary metab-
olite (41, 71). Analogously, mutation of rsmA resulted in an increase in the solanimycin
biosynthesis (Fig. 6A), and work conducted in different Pectobacterium strains revealed
that the Rsm system modulates the production of QS signaling molecules (73). Our work
thus suggests a complex interplay between the Vfm and ExpIR QS systems and with the
Rsm regulatory pathway on solanimycin production.

Microbial communities are heterogeneous in nature and are constantly adapting to
local environments. For example, the synthesis of hybrid NRP/PK antibiotic andrimid was
inhibited in a root-associated bacterium by the production of indole-3-acetic acid by mi-
crobial competitors (74). Remarkably, interkingdom communication between fungi and
bacteria has been also shown to strongly modulate secondary metabolite biosynthesis
in the interacting partners (75). In accordance with these data, we observed that the sol-
animycin production in D. solani was induced when exposed to ascomycete yeasts in
response to the acidic conditions, suggesting that D. solani adapts to acidic conditions
mirroring potato tissues by modulating antibiotic production (76). Sensing and respond-
ing to environmental pH is an important regulatory cue used by bacteria to modulate
gene expression (77). For example, acidic pH is a requirement for Salmonella enterica vir-
ulence through activation of the PhoP/PhoQ two-component system, and neutralization
of the pH in macrophage phagosomes prevents S. enterica replication (78). Remarkably,
D. solani regulates twitching motility in response to acidic conditions characteristic of
potato tubers, and this study found that pH modulated solanimycin biosynthesis (46).

The need for new antifungals has heightened as existing medicines become less
effective and new invasive fungal species emerge (9, 79–81). Furthermore, the rise in
fungal infections of agricultural crops, plant ecosystems, and livestock provides a fur-
ther incentive to identify new antifungal molecules (3, 9). Solanimycin displays broad
activity against many important human- and plant-pathogenic fungi. From a pharma-
ceutical and agricultural perspective, solanimycin may represent a potentially exciting
discovery, and this study confirms the view that soil- and plant-associated microbes
other than actinomycetes represent an underexplored reservoir of bioactive secondary
metabolites with potential medicinal and agricultural utility. Here, we showed that sol-
animycin production is highly regulated at several levels. The understanding of these
regulatory mechanisms will not only advance our knowledge of the ecological function
of this antibiotic but will also lay the foundation for its applied use. For example, the
heterologous expression of the antibiotic biosynthetic clusters in safe biocontrol
strains has been suggested as a strategy for the development of new-generation bio-
pesticides (82).
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MATERIALS ANDMETHODS
Strains, plasmids, oligonucleotides, and culture conditions. Bacteria, fungi, oomycete, and phages

used in this study are described in Table S1 in the supplemental material. Plasmids and oligonucleotides
are listed in Table S1. Dickeya strains were routinely grown at 25°C, unless otherwise indicated, in Luria
broth (LB), potato dextrose (PD), Strobel medium (83), or minimal medium (34). Escherichia coli strains
were grown at 37°C in LB. E. coli DH5a was used as a host for gene cloning. When appropriate, antibiot-
ics were used at the following final concentrations (in mg mL21): ampicillin, 100; kanamycin, 50; and
streptomycin, 50. Sucrose was added to a final concentration of 10% (wt/vol) to select derivatives that
had undergone a second crossover event during marker exchange mutagenesis. Media for propagation
of E. coli b2163 were supplemented with 300 mM 2,6-diaminopimelic acid. S. cerevisiae, S. pombe, and C.
albicans were grown at 30°C in yeast peptone dextrose (YPD) or in yeast extract with supplements (YES).

In vitro nucleic acid techniques and bioinformatic analyses. Genomic and plasmid DNA was iso-
lated using the Thermo Fisher GeneJet extraction kits. Phusion high-fidelity DNA polymerase (New
England Biolabs) was used in the amplification of PCR fragments for cloning. PCRs and DNA fragments
were purified or recovered from agarose using Thermo Fisher’s PCR clean-up and gel purification kits,
respectively. Restriction (New England Biolabs) and ligation (Thermo Fisher T4 DNA ligase) reactions were
performed according to manufacturers’ instructions. Genome comparison analyses were performed
employing wgVISTA online tool (84), whereas protein domain organization and the analysis of biosynthetic
clusters were undertaken using antiSMASH v6.0 (11). ORFs were predicted using Glimmer 3.0 (85).
Multiple-sequence alignments were carried out with ClustalW2 (European Bioinformatics Institute).

Random transposon mutagenesis. Random transposon mutagenesis was performed using mini-Tn5-
Sm/Sp or the plasposons pKRCPN1 and pDS1028 by biparental conjugation mating, as described previously
(36). Random mutants were screened for their antifungal activity against Verticillium dahliae, S. cerevisiae, and
S. pombe using dual drop culture bioassays or for lack of b-galactosidase activity on an LBA plate containing
40 mg mL21 5-bromo-4-chloro-3-indoyl-b-D-galactopyranoside. In the case of the expI mutant, loss of viola-
cein production was tested on a Chromobacterium violaceum CV026 top lawn (86). Auxotrophic mutants
were discarded, and insertion mutations were transduced into D. solani strains using phage f XF1 (87). The
transposon insertion sites were determined using random primed PCR following the method described pre-
viously (36, 88) and using oligonucleotides described in Table S1.

Construction of in-frame deletions and complementation plasmids. The plasmids for the construc-
tion of the in-frame deletions mutants were generated by amplifying the up- and downstream flanking regions
of the gene to be deleted. The resulting PCR products were digested with the enzymes specified in Table S1
and ligated in a three-way ligation into pUC18Not or pBluescript2SK1 prior to being cloned into the marker
exchange vector pKNG101. Plasmids for mutagenesis were transferred to D. solani MK10-OocN by biparental
conjugation using E. coli b2163. The in-frame deletion mutant strains OocN-SolA, OocN-SolB, OocN-SolC,
OocN-SolD, OocN-SolE, OocN-SolF, OocN-SolG, OocN-SolH, OocN-SolI, OocN-SolJ, OocN-SolK, and OocN-SolL
were constructed by homologous recombination using plasmids pKNG101-solA, pMAMV219, pMAMV218,
pMAMV217, pMAMV216, pKNG101-solF, pKNG101-solG, pKNG101-solH, pMAMV215, pMAMV214, pMAMV213,
and pMAMV212, respectively (Table S1). All relevant mutations were confirmed by PCR and sequencing.

For the construction of the complementation plasmids, the relevant genes were amplified using the
indicated oligonucleotides described in Table S1. The resulting PCR products were digested with the
enzymes specified in Table S1 and cloned into pTA100 or pQE80-oriT. Complementing plasmids were
used to transform Dickeya strains by electroporation or conjugation. Gene expression was induced by
the addition of isopropyl-b-D-thiogalactopyranoside (IPTG) at 1 mM.

Phenotypic bioassays. Antagonistic activities against bacteria and plant-pathogenic fungi and
oomycetes were assayed as described previously (35). All antagonistic assays were done in PD agar me-
dium. For the fungicide assays, 5 mL of overnight cultures of the selected strains was spotted on the sur-
face of a fungal agar lawn and incubated for 4 to 10 days at 25°C. For the antioomycete assays, 5 mL of
overnight bacterial cultures was spotted on PD agar plates. Following incubation for 16 h at 25°C, the
plates were inoculated with 5-mm-diameter mycelial plugs taken from a culture of Pythium ultimum
grown on PD agar. Fungicidal activities against C. albicans, S. cerevisiae, and S. pombe were carried out in
YPD or YES media. The analysis of virulence using Caenorhabditis elegansmodels were performed as pre-
viously described (31). In all cases, the assays were performed at 25°C. Production of acyl-homoserine
lactones was assessed by examining violacein production on a C. violaceum CV026 bioassay plate (86).

Microscopy.Microscopy of S. pombe cells was undertaken at specific time points throughout growth
and analyzed by phase-contrast microscopy (PCM) with an Olympus BX51 microscope using a QICAM
monochrome camera or by differential interference contrast (DIC) microscopy using a Nikon microscope
and Nikon Vision software. PCM images were processed as described previously (89), and DIC images
were processed using Nikon Vision software according to the manufacturer’s setup.

Solanimycin partial purification. Sterile-filtered supernatant was lyophilized and extracted with
methanol (;250 mL per L supernatant). After removal of residual solid material by filtration, the solvent
was removed in vacuo. The crude extract was loaded onto LH-20 Sephadex column (40 g resin/g extract)
and eluted with methanol. Fractions demonstrating antifungal activity were pooled and solvent
removed in vacuo. This material was further purified by loading onto C18 resin, washing with 50% aceto-
nitrile in water, and eluting in 70 to 100% acetonitrile.

UHPLC/Q-TOF MS analysis. UPLC was carried out using a Waters Acquity UPLC system on a BEH C18 1.7-
mm, 2.1- by 50-mm column coupled to a Waters Xevo G2-S Q-TOF MS running positive-ion mode electrospray
ionization. UPLC separation was carried out with an 8-min program consisting of a 10% to 90% gradient of ace-
tonitrile in water plus 0.1% formic acid over 7.2 min, followed by washing and reequilibration steps. An MS
source temperature of 120°C, capillary voltage of 3 kV, and sampling cone voltage of 40 V were used.

Solanimycin’s Potential as an Antifungal Antibiotic mBio

November/December 2022 Volume 13 Issue 6 10.1128/mbio.02472-22 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

5 
A

pr
il 

20
23

 b
y 

16
1.

11
1.

25
2.

20
0.

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.02472-22


Transcriptional fusion assays. Expression of the sol gene cluster was assessed by examination of a
solA::lacZ transcriptional fusion, which was generated using the transposon plasmid pKRCPN1 (Table S1),
which contains a promoterless lacZ gene and therefore permits the creation of stable transcriptional
fusions in the chromosome when the Tn-KRCPN1 transposon is inserted in the same direction of the pro-
moter be investigated. Tn-KRCPN1 insertions cause polar effect on the downstream genes. Expression of
the lacZ reporter gene was performed using the fluorogenic substrate 4-methylumbelliferyl b-D-galacto-
side (Melford; catalog no. M1095) at a final concentration of 0.125 mg mL21. Samples were measured in
a SpectraMax Gemini XPS fluorescence microplate reader (Molecular Devices) using the following set-
tings: excitation, 360 nm; emission, 450 nm; cutoff, 435 nm; and reading every 30 s for 20 min at 37°C.
b-Galactosidase activity was expressed as relative fluorescent units per second and normalized to the
optical density at 600 nm (OD600) of the corresponding sample. All the transcriptional fusion assays were
performed using Dickeya solani MK10Lac (wild type) or mutants derived from MK10Lac.

RNA isolation and RT-PCR. RNA was extracted from D. solani cultures grown for 6 h in PD medium
as previously described (90). Genomic DNA contamination was removed by treatment with Turbo DNase
(Thermo Fisher). RNA concentrations were assessed spectrophotometrically, and reverse transcriptase
reactions were performed as described previously (34). Oligonucleotides were designed to amplify
across the junction between each gene in the solanimycin cluster, and those immediately flanking the
cluster (Table S1) were used to assess the transcript. Positive (using MK10 genomic DNA) and negative
(no RT reaction controls) were also conducted for each oligonucleotide pair.

Bioinformatic comparisons. Solanimycin clusters were identified using BLAST (91), and the
genomic sequence and predicted proteins in the corresponding cluster were analyzed using antiSMASH
(11). The GenBank files were compared using the Python-based tool clinker, and the results were visual-
ized using clustermap.js (92). Colors were changed from the defaults to reflect common predicted pro-
tein function, and to highlight the differences in gene order, the order of the clusters was changed from
the default settings.

Data availability. All data generated or analyzed during this study are included in this published ar-
ticle and its supplemental material files.
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