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1 IntrodutionSymmetry is present in many natural and arti�ial settings. A symmetry is a transformation of an entitysuh that the transformed entity is equivalent to and indistinguishable from the original one. We an seesymmetries in nature (a speular reetion of a daisy ower), in human artifats (a entral rotation of180 degrees of a hessboard), and in mathematial theories (inertial hanges in lassial mehanis). Theexistene of symmetries in these systems allows us to generalize the properties deteted in one state toall its symmetri states.Regarding onstraint satisfation problems (CSPs), many real problems exhibit some kind of symme-try, embedded in the struture of variables, domains and onstraints. This means that their state spaeis somehow �titiously enlarged by the presene of many symmetri states. From a searh viewpoint, itis advisable to visit only one among those states related by a symmetry, sine either all of them lead toa solution or none does. This may ause a drasti derease in the size of the searh spae, whih wouldhave a very positive impat on the eÆieny of the onstraint solver.Previous works on symmetri CSPs have been aimed at eradiating symmetries from either the initialproblem state spae or the expliit searh tree as it is developed. The former approah, advoatedby Puget [20℄, onsists in reduing the initial state spae by adding symmetry-breaking onstraints tothe problem formulation. The goal is to turn the symmetri problem into a new problem withoutsymmetries, but keeping the non-symmetri solutions of the original one. Although this ideal goal isseldom reahed, the redutions attained are substantial enough to turn some hard ombinatorial problemsinto manageable ones. For generi problem statements, the detetion of symmetries and the formulationof the ad ho symmetry-breaking onstraints is performed by hand [20℄. Alternatively, in the ontextof propositional logi, existing symmetries and the orresponding symmetry-breaking prediates an beomputed automatially [7℄, although with a high omputational omplexity.The seond approah, namely pruning symmetri states from the searh tree as it develops, entailsmodifying the onstraint solver to take advantage of symmetries. A modi�ed baktraking algorithmappears in [4℄, where eah expanded node is tested to assess whether it is an appropriate representativeof all the states symmetri to it. Conerning spei� symmetries, neighborhood interhangeable valuesof a variable are disussed in [10℄, while value pruning after failure for strongly permutable variables isproposed in [21℄. This last strategy an be seen as a partiular ase of the symmetry exlusion methodintrodued in [1℄ for onurrent onstraint programming, and applied to the CSP ontext in [12℄.In this paper, we propose a third approah to exploit symmetries inside CSPs. The idea is to usesymmetries to guide the searh. More spei�ally, the searh is direted towards subspaes with a highdensity of non-symmetri states, by breaking as many symmetries as possible with eah new variableassignment. This is the rationale for our symmetry-breaking heuristi for variable seletion, whih anbe theoretially ombined with the popular minimum-domain heuristi. The result of this ombinationis the new variety-maximization heuristi for variable seletion, whih has been shown more e�etivethan symmetry-breaking or minimum-domain separatedly, and it has speeded up signi�antly the solvingproess of CSPs with many symmetries. For problems without a solution, variable seletion heuristis ando nothing to avoid revisiting symmetri states along the searh. To ope with this shortoming, we havedeveloped several value pruning strategies (in the spirit of the seond approah mentioned above), whihallow one to redue the domain of the urrent or future variables. These strategies remove symmetrivalues, without removing non-symmetri solutions. In partiular, there is a strategy based on nogoodslearned in previous searh states. Problem symmetries allow us to keep limited the potentially exponentialsize of the nogood storage. This strategy has been shown very e�etive for hard solvable and unsolvableinstanes. Results for the Ramsey problem and for the generation of balaned inomplete blok designs(BIBDs) are provided. One a set of symmetries is spei�ed, our approah provides a general-purposemehanism to exploit them within the searh. Moreover, it an be ombined with the two previousapproahes and inorporated into any depth-�rst searh proedure.The paper is strutured as follows. In Setion 2, we introdue some basi onepts. Setion 3 presentsthe symmetry-breaking heuristi and its ombination with the minimum-domain one, generating thevariety-maximization heuristi. Setion 4 details several strategies for symmetri value pruning alongthe searh, espeially those based on nogood reording. Setion 5 is devoted to the Ramsey and BIBDproblems. Finally, Setion 6 puts forth some onlusions and prospets for future work.2



2 Basi De�nitions2.1 Constraint SatisfationA �nite CSP is de�ned by a triple (X ;D; C), where X = fx1; : : : ; xng is a set of n variables, D =fD(x1); : : : ; D(xn)g is a olletion of domains, D(xi) is the �nite set of possible values for variable xi,and C is a set of onstraints among variables. A onstraint i on the ordered set of variables var(i) =(xi1 ; : : : ; xir(i)) spei�es the relation rel(i) of the allowed ombinations of values for the variables invar(i). An element of rel(i) is a tuple (vi1 ; : : : ; vir(i)); vi 2 D(xi). An element of D(xi1)�� � ��D(xir(i) )is alled a valid tuple on var(i). A solution of the CSP is an assignment of values to variables whihsatis�es every onstraint. A nogood is an assignment of values to a subset of variables whih does notbelong to any solution. Typially, CSPs are solved by depth-�rst searh algorithms with baktraking.At a point in searh, P is the set of assigned or past variables, and F is the set of unassigned or futurevariables. The variable to be assigned next is alled the urrent variable.A lassial example of CSP is the n-queens problem. It onsists in plaing n hess queens on a n� nhessboard in suh a way that no pair of queens is attaking one another. Constraints ome from hessrules: no pair of queens an our at the same row, olumn or diagonal. This problem is taken as runningexample throughout the paper.2.2 SymmetriesA symmetry on a CSP is a olletion of n+ 1 bijetive mappings f�; �1; : : : ; �ng de�ned as follows,� � is a variable mapping, � : X ! X� f�1; : : : ; �ng are domain mappings, �i : D(xi)! D(�(xi))� onstraints are transformed by the adequate ombination of variable and domain mappings; aonstraint i is transformed into �i , with var(�i ) = (�(xi1 ); : : : ; �(xir(i))) and rel(�i ) =f(�i1(vi1); : : : ; �ir(i)(vir(i) ))g,suh that the set C remains invariant by the ation of the symmetry, i.e., 8j 2 C, the transformedonstraint �j is in C. There exists always a trivial symmetry, that in whih the variable mapping andthe domain mappings are all the identity. The remaining symmetries, those interesting for our purposes,will be referred to as nontrivial symmetries. Moreover, when no ambiguity may our, we will denote asymmetry f�; �1; : : : ; �ng by its variable mapping �.Note that the above de�nition of symmetry applies to CSPs, i.e., to problems formulated in termsof a triple (X ;D; C), and not to problems in general. To make this point lear, onsider the n-queensproblem, whih admits at least nine di�erent problem formulations as a CSP [18℄. These formulationsvary in the number of variables, sizes of the domains, and onstraint set. They speify di�erent CSPsand, as suh, it is not surprising that they have di�erent symmetries.Let us onsider the most widely used formulation, namely that in whih variables are hessboard rowsand domains are olumn indies. Figure 1 shows an example of a symmetry using this formulation inthe ase of 5 queens. It is a entral rotation of 180 degrees, whih exhanges variables x1 with x5 andx2 with x4, and maps domains with the funtion �i(v) = 6 � v, i = 1; : : : ; 5. This transformation is asymmetry beause the mappings on variables and domains are bijetive, and the set of onstraints is leftinvariant by the transformation of variables and values. For example, the transformed onstraint �12 isomputed as follows,var(�12) = (�(x1); �(x2)) = (x5; x4) = var(45)rel(�12) = f(�1(1); �2(3)); (�1(1); �2(4)); (�1(1); �2(5)); (�1(2); �2(4)); (�1(2); �2(5)); (�1(3); �2(1));(�1(3); �2(5)); (�1(4); �2(1)); (�1(4); �2(2)); (�1(5); �2(1)); (�1(5); �2(2)); (�1(5); �2(3))g == f(5; 3); (5; 2); (5;1); (4;2); (4; 1); (3;5); (3;1); (2; 5); (2;4); (1;5); (1; 4); (1; 3)g= rel(45)Thus, �12 = 45. Two other nontrivial symmetries of this CSP formulation of 5-queens are the reetionsabout the horizontal and vertial axes, as depited in Figure 2. The remaining four symmetries of thehessboard are not symmetries of this formulation. 3



x1 1 2 3 4 5 x5 5 4 3 2 1x2 1 2 3 4 5 x4 5 4 3 2 1x3 1 2 3 4 5 x3 5 4 3 2 1x4 1 2 3 4 5 x2 5 4 3 2 1x5 1 2 3 4 5 x1 5 4 3 2 1�12 = 45; �13 = 35 ; �14 = 25; �15 = 15 ; �23 = 34; �24 = 24 ; �25 = 14; �34 = 23 ; �35 = 13; �45 = 12Figure 1: Central rotation of 180 degrees is a symmetry of the 5-queens problem.x1 1 2 3 4 5 x1 5 4 3 2 1x2 1 2 3 4 5 x2 5 4 3 2 1x3 1 2 3 4 5 x3 5 4 3 2 1x4 1 2 3 4 5 x4 5 4 3 2 1x5 1 2 3 4 5 x5 5 4 3 2 1x5 1 2 3 4 5x4 1 2 3 4 5x3 1 2 3 4 5x2 1 2 3 4 5x1 1 2 3 4 5Figure 2: Two other symmetries of the 5-queens problem. Top-right: reetion about the vertial axis. Bottom-left: reetion about the horizontal axis.Now, let us turn to the formulation of n-queens where eah queen is a variable whose domain ontainsall the squares of the hessboard. The eight symmetries of the hessboard and all permutations of queensare symmetries of this partiular CSP formulation.Taken together, the two examples above illustrate the remark we made that our de�nition of symmetryapplies to CSP formulations and not to problems in general. Suh symmetries an be viewed as mappinga triple (X ;D; C) onto itself, whih is needed to stay within the formulation. Thus, transformations thathange variables into values and vie versa, as would be required to represent a rotation of 90 degreesunder the formulation in Figure 1, are not allowed within our framework.Following [23℄, we say that two variables xi, xj are symmetri if there exists a symmetry � suh that�(xi) = xj. This onept generalizes the previous de�nition of strong permutability [21℄: xi and xj arestrongly permutable if they play exatly the same role in the problem, i.e., if there exists a symmetry �suh that its only ation is exhanging xi with xj (�(xi) = xj, �(xj) = xi, �(xk) = xk, 8k 6= i; j, �k = I,8k, I being the identity funtion). We say that two values a; b 2 D(xi) are symmetri if there exists asymmetry � suh that �(xi) = xi and �i(a) = b. This onept generalizes previous de�nition of valueinterhangeability [10℄: a and b are neighbourhood interhangeable if they are onsistent with the sameset of values, i.e., if there exists a symmetry � suh that its only ation is exhanging a with b (� = I,�i(a) = b, �i(b) = a, �i() = , 8 6= a; b, �k = I, 8k 6= i).The set of symmetries of a problem forms a group with the omposition operator [23℄. Beause of this,it an be shown that the symmetry relation between variables is an equivalene relation. The existene ofthis equivalene relation divides the set X in equivalene lasses, eah lass grouping symmetri variables.Domains are also divided into equivalene lasses by symmetries ating on values only (with identity4



x1 - - - x1 - - q - - x1 q - - - -x2 - - x2 - - - x2 - -x3 - - q - - x3 - - - x3 - -x4 - - - x4 - x4 - -x5 - - - x5 - x5 - -sa sb sFigure 3: Three states of the 5-queens problem, with di�erent types of loal symmetries.x1 - q - - - x1 - q - - -x2 - - - x2 - - - -x3 - - x3 - -x4 - - x4 - - - -x5 - x5 - - - q -sa sbFigure 4: The entral rotation symmetry is broken in sa and restored in sb.variable mapping). Regarding the 5-queens problem under the formulation of Fig. 1, there are threeequivalene lasses of variables: fx1; x5g, fx2; x4g and fx3g. Conerning values, there are also threeequivalene lasses: f1; 5g, f2; 4g and f3g. Neither strongly permutable variables nor neighbourhoodinterhangeable values exist in this problem.2.3 Symmetries in SearhSymmetries an our in the initial problem formulation, and also in any searh state s, haraterized byan assignment of past variables plus the urrent domains of future variables. State s de�nes a subproblemof the original problem, where the domain of eah past variable is redued to its assigned value and therelation rel(i) of eah onstraint i is redued to its valid tuples with respet to urrent domains. Asymmetry holds at state s if it is a symmetry of the subproblem ourring at s. A symmetry holding ats is said to be loal to s if it does not hange the assignments of past variables 1. The set of symmetriesloal to s forms a group with the omposition operation. A symmetry holding at the initial state s0is alled a global symmetry of the problem. Any global symmetry is loal to s0, the state where theset of past variables is empty. Symmetries depited in Figures 1 and 2 are global symmetries of the 5-queens problem. An important property of symmetries is that they are solution-preserving, transformingsolutions into solutions.Let s be a searh state with symmetry � loal to it, and s0 a suessor state. We say that the assignmentourring between s and s0 breaks symmetry � if � is not loal to s0. Typially, symmetries loal to s areglobal symmetries that have not been broken by the assignments ourring between s0 and s. However,this is not always the ase. New symmetries may appear in partiular states. For the 5-queens problem,some states with loal symmetries appear in Figure 3. State sa keeps as loal the three nontrivial globalsymmetries of the problem, sine none is broken by the assignment of x3. State sb keeps as loal thereetion about the vertial axis only, sine the entral rotation and the other reetion are broken bythe assignment of x1. In state s, all nontrivial global symmetries are broken by the assignment of x1but a new symmetry appears: a entral rotation of 180 degrees on the 4� 4 subboard involving variablesfrom x2 to x5 and olumns from 2 to 5. A broken symmetry an be restored by another assignment, as1Notie that this de�nition di�ers from the one appearing in [17℄ in that the mapping on past variables is not requiredto be the identity. 5
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xFigure 5: Searh tree generated to solve the equation x+y2z2 = 2 under two variable orderings. Symmetri statesoriginated by permutable variables are onneted by shadowed lines, while those arising from interhangeablevalues are joined by broken lines. Solutions are marked with squares.it an be seen in Figure 4. In state sa the assignment of x1 breaks the entral rotation symmetry, whihis restored after the assignment of x5 in state sb.3 Heuristis Based on Symmetries3.1 The Symmetry-Breaking HeuristiWe argue that breaking as many symmetries as possible at eah stage is a good strategy to speed up thesearh. Let us �rst illustrate some points with a simple example. Consider the equation x + y2z2 = 2,where all variables take values in f�1; 0; 1g. There are 5 non trivial symmetries, derived from ombiningthe permutability of y and z, with the sign irrelevane of both y and z. They an be briey indiated asfollows:1. �(y) = z, �(z) = y;2. �y = �I;3. �z = �I;4. �y = �I, �z = �I;5. �(y) = z, �(z) = y, �y = �I, �z = �I;where I is the identity mapping, and all the entries not spei�ed are also the identity.Symmetry 1 is a permutation of variables, symmetries 2-4 interhange values, whereas symmetry 5entails hanges in both variables and values. Note that variables y and z are involved in 4 non trivialsymmetries eah, while variable x is involved in none.Figure 5 displays two searh trees for that equation, following the variable orderings x; y; z and y; z; x.In the upper tree, no symmetry is broken after assigning x, and therefore all symmetries at inside eahsubtree at the �rst level, leading to a low density of distint �nal states onsidered whatever the valueassigned to x. This an be more easily visualized in Fig. 6, where states symmetri to a previouslyexpanded one have been removed. There are only 3 distint states among the 9 �nal states onsideredin eah of the three subtrees resulting from assigning a value to x. For the leftmost subtree, these are(x; y; z)=(-1,-1,-1), (-1,-1,0) and (-1,0,0). 6
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3. More e�etive pruning. Several tehniques to prune symmetri states have been proposed in theliterature, suh as those based on neigbourhood interhangeable values [10℄ and on permutablevariables [21℄. The proposed heuristi ampli�es the e�et of any pruning tehnique by movingits operation upwards in the searh tree. Figure 6 shows the result of applying the two typesof pruning mentioned to the searh trees displayed in Fig. 5. The 10 nodes expanded under thevariable ordering x; y; z, are redued to only 6 nodes when the heuristi is in use. Moving pruningupwards tends to produe smaller branhing fators in the higher levels of the searh tree, resultingin thinner trees.It is worth noting that points 2 and 3 above apply also to problems without a solution. Empirialresults supporting these laims are provided in Setion 3.3 for the layout problem.3.2 The Variety-Maximization HeuristiLet us return to the example in Figs. 5 and 6. The variable ordering y; z; x suggested by the symmetry-breaking heuristi is the one leading to subtrees with highest density of distint �nal states, and, afterpruning, it produes the thinnest tree. This is the e�et of the heuristi on a problem where all domainshave equal sizes. Now onsider the same problem but reduing the domain of x to only one value f�1g.Then, under the variable ordering x; y; z, only the leftmost branh of the upper tree in Fig. 5 would bedeveloped, while under the ordering y; z; x, the whole lower tree in Fig. 5 would be developed, althoughonly for the leaves labelled -1. The e�et of pruning ould likewise be visualized by looking at Fig. 6. Itis lear that, in this ase, the best option is the ordering x; y; z sine it leads to a thinner tree to startwith (13 nodes against 21 for the other ordering) and also after pruning (6 nodes against 14). Thus, inthis ase, the well-known minimum-domain heuristi would do better than the symmetry-breaking one.And the question arises: When should one or the other heuristi be applied? Even more useful, is therea way of ombining both heuristis that outperforms the isolated appliation of eah of them?To try to answer these questions, let us �rst reall the interpretations provided for the good perfor-mane of the minimum-domain heuristi. The most widespread one is that the heuristi implements thefail-�rst priniple, and thus minimizes the expeted depth of eah searh branh [15℄. Smith and Grant[24℄ tested this interpretation experimentally by omparing the behaviour of several heuristis with in-reasing fail-�rst apabilities and onluded that the suess of minimum-domain may not neessarily bedue to the fat that it implements fail �rst. Often the e�et of shallow branhes is ounterated by highbranhing fators. Thus, another interpretation puts the emphasis on the minimization of the branhingfator at the urrent node [22℄: sine the minimum-domain heuristi fores the searh tree to be as nar-row as possible in its upper levels, the expeted number of nodes generated is minimized. This holds forproblems both with and without a solution. Further along this line, we may view the minimum-domainheuristi as following a least-ommitment priniple, i.e., it hooses the variable that partitions the statespae in less number of subspaes, so that eah subspae is larger (ontains more states) than if anothervariable would have been seleted. The resulting searh trees are, again, as narrow as possible in theirupper levels, so the aforementioned node minimization still holds. But now, for problems with a solution,another fator may play a favourable role: in a larger subspae it is more likely to �nd a solution. Arelated interpretation was put forth in [11℄ under the rationale of minimizing the onstrainedness of thefuture subproblem: underonstrained problems tend to have many solutions and be easy to solve.In dealing with highly symmetri problems, however, the largest subspae does not neessarily ontainmore distint �nal states than a smaller one. Thus, the least-ommitment priniple has here to be appliedin terms of distint �nal states. What is needed is a strategy that selets the variable leading to onsiderthe highest number of distint �nal states, but what we have is,� the minimum-domain heuristi, whih selets the variable that maximizes the number of �nal statesonsidered, and� the symmetry-breaking heuristi, whih hooses the variable that maximizes the density of distint�nal states onsidered.In the following, we develop a framework for the ombination of both heuristis, based on the twobasi types of symmetry, namely interhangeable values and strongly permutable variables. As mentionedin Setion 2.2, both types of symmetry indue equivalene lasses in the domains and set of variables,8



respetively. Let x1; : : :xk be the representatives of the equivalene lasses of future variables at agiven searh stage, i be the size of the equivalene lass to whih xi belongs, and di be the number ofequivalene lasses in D(xi). In other words, i is the number of original variables strongly permutablewith xi, inluding itself; and di is the number of non-interhangeable values that an be assigned to xi.Let us alulate the number of distint �nal states onsidered at this searh stage, where \distintive-ness" is here taken to mean that no two states an be made equal by interhanging values or permutingvariables. For eah equivalene lass i, we need to assign i variables, eah of whih an take di values.If variables were not permutable, the number of joint assignments would be dii . However, sine thevariables are strongly permutable, two assignments related by a permutation are not distint. Therefore,the number of distint joint assignments is given by the ombinations with repetition of di elements takeni at a time. Desribing this as an oupany problem, we need to plae i balls into di bukets (i.e.,assign i variables, eah to one of the possible di values). The formula to obtain the number of possibleplaements (i.e., distint assignments) is [9℄2: � di + i � 1i �.The total number of distint �nal states, onsidering all the equivalene lasses of variables, is thusgiven by the produt, kYi=1� di + i � 1i � :If the next assigned variable belongs to the equivalene lass represented by xi0 , then its orrespond-ing term dereases from � di0 + i0 � 1i0 � to � di0 + i0 � 2i0 � 1 �, sine the equivalene lass i0 loses anelement. Thus, the number of distint �nal states onsidered after variable assignment will be,� di0 + i0 � 2i0 � 1 �� di0 + i0 � 1i0 � kYi=1� di + i � 1i � :We like to �nd the i0 that maximizes this expression, i.e.,maxi � di + i � 2i � 1 �� di + i � 1i � ;whih an be developed as, maxi (di+i�2)!(di�1)! (i�1)!(di+i�1)!(di�1)! i! ;leading to, maxi idi + i � 1 ;whih is the same as, mini di � 1i :By taking the index i0 that realizes this minimum, and assigning a variable in the equivalene lass ofxi0 , we attain our purpose of onsidering a subspae with the maximum number of distint �nal states,i.e., states ontaining neither interhangeable values nor strongly permutable variables. This is what thefollowing variable seletion heuristi does.2Feller [9, page 38℄ provides an ingenous and elegant proof: Let us represent the balls by stars and indiate the di buketsby the di spaes between di+1 bars. Thus, j � � � j � jjjj � �� �j is used as a symbol for a distribution of i = 8 balls in di = 6bukets with oupany numbers 3,1,0,0,0,4. Suh a symbol neessarily starts and ends with a bar, but the remaining di�1bars and i stars an appear in an arbitrary order. In this way it beomes apparent that the number of distinguishabledistributions equals the number of ways of seleting i plaes out of i + di � 1, i.e., � di + i � 1i �.9



Variety-maximization heuristi: Selet for assignment a variable belonging to the equivalene lassfor whih the ratio di�1i is minimum.When all the equivalene lasses of variables are of the same size, then the synthesized heuristiredues to the minimum-domain one. On the other hand, when all domains have the same number ofnon-interhangeable values, then the heuristi hooses a variable from the largest equivalene lass; thisis exatly what the symmetry-breaking heuristi would do. To show this, let us quantify the symmetriesbroken by a given assignment. Sine all permutations inside eah lass of strongly permutable variableslead to loal symmetries, the total number of suh symmetries is 1! 2! : : : k! If we assign a variable fromequivalene lass i, then the number of remaining symmetries after the assignment will be: 1! 2! : : : (i�1)! : : : k! Thus, the ratio of remaining symmetries over the total will be 1=i. To maximize symmetry-breaking, we have to determine min1�i�k 1iwhih is the same as saying that we have to selet a variable from the largest equivalene lass.In sum, by applying the least-ommitment priniple in terms of maximizing the number of distint�nal states onsidered at eah searh stage, we have ome up with a lean way of ombining the minimum-domain and the symmetry-breaking heuristis, so as to extrat the best of both along the searh.3.3 An Example: The Layout ProblemTo illustrate variety-maximization and its relation with minimum-domain, let us onsider the layoutproblem [13℄ de�ned as follows: given a grid, we want to plae a number of piees suh that every pieeis ompletely inluded in the grid and no overlapping ours between piees. An example of this problemappears in Figure 7, where three piees have to be plaed inside the proposed grid. As CSP, eah piee isrepresented by one variable whose domain is the set of allowed positions in the grid. There is a symmetrybetween variables y and z, whih are strongly permutable. No symmetry between values exists.Figure 7 ontains two searh trees developed by the forward heking algorithm following two variableordering heuristis. The left tree orresponds to the minimum-domain heuristi, whih selets x as �rstvariable (jDxj = 3 while jDyj = jDzj = 4), and y and z as seond and third variables in all the branhes.The right tree orresponds to the variety-maximization heuristi. Instead of x, variety-maximizationselets y as �rst variable beause 4�12 < 3�11 , in agreement with symmetry-breaking. The assignment ofy breaks the problem symmetry, so from this point variety-maximization follows minimum-domain. Thisan be seen in the rightmost branh after assigning y. Variable z is seleted as next variable beause afterforward heking lookahead jDzj = 2 while jDxj = 3. This example shows how variety-maximizationombines both symmetry-breaking and minimum-domain heuristis, following at eah point the mostadvisable option (depending on the existing symmetries and domain ardinalities).To test the bene�ts that symmetry-breaking (embedded in variety-maximization)brings over minimum-domain, as listed at the end of Setion 3.1, we have solved a larger instane of this problem. In a 6� 6square grid, we want to plae 4 piees of size 2 � 2, plus 4 piees of size 5 � 1. As CSP, eah pieeorresponds to one variable, with domains of ardinalities 25 for 2 � 2 piees and 24 for 5 � 1 piees.Variables orresponding to equal piees are strongly permutable. Therefore, there are two equivalenelasses of 4 variables eah. The minimum-domain heuristi selets two 5 � 1 piees as the �rst two vari-ables of the searh tree. At the seond level, there are 242 = 576 nodes, 24 of whih lead to a solution.The variety-maximization heuristi selets a 5� 1 piee as the �rst variable and a 2� 2 piee as seondvariable. At the seond level there are 24�25 = 600 nodes, 32 of whih lead to a solution. The density ofnodes leading to a solution at the seond level following minimum-domain is 24576 = 0:0417, and followingvariety-maximization is 32600 = 0:059. Thus, variety-maximization yields a better distribution of solutionsin the searh tree than minimum-domain, inreasing the likelihood of �nding a solution earlier.We have solved this problem instane using the standard forward heking algorithm, �nding the �rstsolution and all solutions, in suessive experiments. Values are seleted randomly. Table 1 shows theresults averaged over 100 runs, eah with a di�erent random seed. We observe that, both in �ndingone and all solutions, variety-maximization visits less nodes and requires less CPU time than minimum-domain. In addition, Blength reords the average length of branhes not leading to a solution. We see thatvariety-maximization generates shorter branhes than minimum-domain. Given that the branhing fatorof both trees is similar, shorter branhes suggest a lookahead of better quality. This is also supported10



x,    Dx = {     ,       ,        }

y,    Dy = {     ,      ,       ,          }

z,    Dz = {      ,      ,       ,         }

Figure 7: The layout problem and two searh trees developed by forward heking with minimum-domain (left)and variety-maximization (right) heuristis.by the redution in visited nodes aused by variety-maximization when �nding all solutions. We haverepeated both experiments inluding value pruning between strongly permutable variables [21℄ in theforward heking algorithm. Table 2 shows these results averaged over 100 runs, eah with a di�erentrandom seed. The inlusion of value pruning between strongly permutable variables improves largelythe performane of both heuristis. This improvement is higher for variety-maximization when �ndingone solution. Finding all solutions, the performane of minimum-domain approahes that of variety-maximization. This is beause, no matter whih variable is seleted, all are strongly permutable so theyget the bene�ts of value pruning. One solution All solutionsheuristi Nodes Blength Time Nodes Blength Timemin-dom 8,906 5.08 0.296 140,656 5.09 4.49var-max 5,613 4.61 0.239 102,078 4.69 4.29Table 1: Results of standard forward heking on the layout problem.One solution All solutionsheuristi Nodes Blength Time Nodes Blength Timemin-dom 1,343 4.52 0.057 14,546 4.69 0.589var-max 791 3.97 0.045 12,218 4.44 0.489Table 2: Results of forward heking with value pruning of strongly permutable variables on the layout problem.11



4 Value Pruning Based on SymmetriesFor problems without a solution, variable seletion heuristis an do nothing to avoid revisiting symmetristates along the searh. To ope with this shortoming, we have developed several value pruning strategies,whih allow one to redue the domain of the urrent and future variables. These strategies removesymmetri values without removing non-symmetri solutions. In the following, we present these strategiesand how they are ombined, in order to get the maximum pro�t from symmetri value pruning.4.1 Domain RedutionIn the partiular ase that a symmetry � loal to the urrent state maps the urrent variable xk to itself,we an use � to redue a priori the urrent variable domain. Before instantiating xk, equivalene lassesof symmetri values in D(xk) by � an be omputed, produing Q1; Q2; : : : ; Qek equivalene lasses. Anew domain, D0(xk) is de�ned as, D0(xk) = fw1; w2; : : : ; wekgsuh that eah wi is a representative for the lass Qi. Now, the urrent variable xk takes values fromD0(xk) in the following form. If xk takes value wi and generates solution S, there is no reason to testother values of Qi, beause they will generate symmetri solutions to S by �. On the other hand, if valuewi fails, there is no point in testing other values of Qi beause they will fail as well. In this ase, all valuesof Qi are marked as tested. One the urrent variable has been seleted, this strategy allows to redue itsdomain to non-symmetri values, provided the adequate symmetry � exists. When baktraking jumpsover xk, equivalene lasses are forgotten and the previous D(xk) is taken as the domain for xk.An example of this domain redution arises in the pigeon-hole problem: loating n pigeons in n � 1holes suh that eah pigeon is in a di�erent hole. This problem is formulated as a CSP by assoiatinga variable xi to eah pigeon, all sharing the domain f1; : : : ; n � 1g, under the onstraints xi 6= xj,1 � i; j � n, i 6= j. Among others, this problem has a olletion of symmetries in the domains,8i; 8a; a0 2 D(xi) a 6= a0; 9�; � = I; �i(a) = a0; �i(a0) = awhere I is the identity mapping. If variables and values are onsidered lexiographially, before assigningx1 all values in D(x1) form a single equivalene lass. Then, D0(x1) = f1g. Performing searh byforward heking, value 1 is removed from all future domains. Considering x2, all its values form a singleequivalene lass, D0(x2) = f2g. Again, lookahead removes value 2 from all future domains. Consideringx3, all its remaining values form a single equivalene lass, D0(x3) = f3g, et. This proess goes on untilassigning (xn�1; n�1), when lookahead �nds an empty domain in D(xn), so baktraking starts. At thatpoint, all domains of past and urrent variables have been redued to a single value, whih is urrentlyassigned. Baktraking does not �nd any other alternative value to test in any previous variable, so itends with failure when x1 is reahed. Only the leftmost branh of the searh tree is generated, and therest of the tree is pruned.4.2 Value Pruning Through Nogood ReordingA nogood is an assignment of values to a subset of variables whih does not belong to any solution. Beforesearh, a set of nogoods is determined by the onstraints as the set of forbidden value tuples. Duringsearh, new nogoods are disovered by the resolution of nogoods responsible of dead-ends. For example,in Fig. 8, the forward heking algorithm �nds a dead-end in the 5-queens problem (D(x4) = ;). By theresolution of the nogoods assoiated with every pruned value of D(x4), we get the new nogood,(x1; 1)(x2; 5)(x3; 2)whih means that variables x1, x2 and x3 annot simultaneously take the values 1, 5 and 2, respetively.Often nogoods are written in oriented form as,(x1 = 1) ^ (x2 = 5)) (x3 6= 2)12



x1 qx2 - - qx3 - q - - -x4 - - - - -x5 - - - - (x1 = 1) ) (x4 6= 1)(x1 = 1) ) (x4 6= 4)(x2 = 5) ) (x4 6= 3)(x2 = 5) ) (x4 6= 5)(x3 = 2) ) (x4 6= 2) 9>>>=>>>; (x1 = 1) ^ (x2 = 5)) (x3 6= 2)Figure 8: Nogood resolution in a dead-end for the 5-queens problem.x1 q x1 qx2 - - q x2 q - -x3 - q - - - x3 - - - q -x4 - - - - - x4 - - - - -x5 - - - - x5 - - - -(x1 = 1) ^ (x2 = 5)) (x3 6= 2) (x1 = 5) ^ (x2 = 1)) (x3 6= 4)x1 - - - - x1 - - - -x2 - - - - - x2 - - - - -x3 - q - - - x3 - - - q -x4 - - q x4 q - -x5 q x5 q(x5 = 1) ^ (x4 = 5)) (x3 6= 2) (x5 = 5) ^ (x4 = 1)) (x3 6= 4)Figure 9: Symmetri nogoods in the 5-queens problem. Left-right symmetry: reetion about the vertial axis.Up-down symmetry: reetion about the horizontal axis.where the variable at the right-hand side is the last variable among the variables of the nogood that hasbeen instantiated. This variable will be the one hanged �rst when performing baktraking, whih isneeded to guarantee ompleteness of tree-searh algorithms (see [2℄ for a detailed explanation of nogoodresolution).4.2.1 Value Pruning due to Symmetri NogoodsLet p = (x1; v1)(x2; v2) : : : (xk; vk) be a nogood found during searh and � a global symmetry of the onsid-ered problem. It is easy to see that the tuple �(p), de�ned as (�(x1); �1(v1))(�(x2); �2(v2)) : : : (�(xk); �k(vk)),is also a nogood. Let us suppose that �(p) is not a nogood, that is, it belongs to a solution S. Giventhat ��1 is also a problem symmetry and problem solutions are invariant through symmetries, ��1(S)is also a solution. But ��1(S) ontains p, in ontradition with the �rst assumption that p is a nogood.Therefore, �(p) is a nogood. Intuitively, �(p) is the nogood that we would obtain following a searhtrajetory symmetri by � to the urrent trajetory. An example of this appears in Fig. 9.Given that we an generate nogoods using previously found nogoods and global symmetries of theproblem, we propose to learn nogoods during searh in the following form,1. We store the new nogoods found during searh.13



2. At eah node, we test if the urrent assignment satis�es some symmetri nogood, obtained byapplying a global symmetry to a stored nogood. If it does, the value of the urrent variable isunfeasible so it an be pruned. Values removed in this way are restored when baktraking jumpsabove their orresponding variables.Nogood reording in searh presents two main issues: storage size and overhead [8℄. Regarding thestorage spae required, it may be of exponential size whih ould render the strategy inappliable inpratie. The usual way to overome this drawbak is to store not all but a subset of the nogoods found,following di�erent strategies: storing nogoods of size lower than some limit, �xing in advane the storageapaity and using some poliy for nogood replaement, et. However, this important drawbak hasbeen shown to be surmountable in pratie due to the following fat: a new nogood is never symmetrito an already stored nogood. Otherwise, the assignment leading to this new nogood would have beenfound unfeasible, beause of the existene of a symmetri nogood, and it would have been pruned beforeproduing the new nogood. If the number of global symmetries is high enough, this may ause a verysigni�ant derement in the number of stored nogoods.Regarding the overhead aused by nogood reording, it has two main parts: nogood reording andtesting against symmetri nogoods. Nogood reording is a simple proess performed on a subset of thevisited nodes, ausing little overhead. However, testing eah node against symmetri nogoods ouldmean heking an exponential number of nogoods per node, whih would severely degrade performane,eliminating any possible savings aused by value removal. To prevent this situation, we restrit thenumber of symmetri nogoods against whih the urrent node is tested, following two riteria,1. A subset of all global symmetries are used for symmetri nogood generation. The omposition ofthis subset is problem dependent (see Setion 5 for further details).2. A subset of stored nogoods is onsidered for symmetri nogood generation. If xi is the urrentvariable and � is a global symmetry, only nogoods ontaining �(xi) in its rigth-hand side areonsidered.Nevertheless, there are some partiular ases where we an prune values without heking storednogoods, as explained in the following subsetion.4.2.2 Symmetri Nogoods at the Current BranhLet s be a state de�ned by the assignment of past variables f(xi; vi)gi2P , � a symmetry loal to s, andxk the urrent variable. If after the assignment of xk the nogood p is found,p = ^j2P 0 ;P 0�P(xj ; vj)) (xk 6= vk)it is easy to see that �(p) is also a nogood. If p is a nogood, it means that it violates a onstraint . Bythe de�nition of symmetry, �(p) violates the symmetri onstraint �. Therefore, �(p) is also a nogood.The interesting point is that �(p) also holds at the urrent state. E�etively,�(p) = ^j2P 0;P 0�P (�(xj); �j(vj))) (�k(xk) 6= �k(vk)) = ^j2P 00;P 00�P(xj ; vj)) (�k(xk) 6= �k(vk))sine all variables in the left-hand side of p are past variables, so they are mapped to other past variablesand their assignments are not hanged by �. Therefore, at this point we an remove �k(vk) (the valuesymmetri to vk) fromD(�(xk)), beause it annot belong to any solution inluding the urrent assignmentof past variables. If all values of xk are tried without suess and the algorithm baktraks, all valuesremoved in this way should be restored. If xk is involved in several symmetries, this reasoning holds foreah of them separately. Thus, this strategy an be applied to any variable symmetri to xk.This strategy of value removal after failure provides further support to the symmetry-breaking heuris-ti of Setion 3.1. The more loal symmetries a variable is involved in, the more opportunities it o�ersfor symmetri value removal in other domains if a failure ours. This extra pruning is more e�etive ifit is done at early levels of the searh tree, sine eah pruned value represents removing a subtree on thelevel orresponding to the variable symmetri to the urrent one.14



x1 q x1 qx2 - - x x2 - - xx3 - - x3 - -x4 - - x4 - -x5 - - x5 - x -(x1 = 1)) (x2 6= 5) (x1 = 1)) (x2 6= 5)(x1 = 1)) (x5 6= 2)Figure 10: Symmetri nogoods by entral rotation of 180 degrees in the subboard inluding variables x2 to x5and olumns 2 to 5.An example of this pruning apaity appears in Figure 10: further resolution of the nogoods of x3in Figure 8 produes the nogood (x1 = 1) ) (x2 6= 5). The rotation of 180 degrees of the subboardinluding variables x2 to x5 and olumns 2 to 5, is a symmetry loal to the state after the assignment(x1; 1). Therefore, applying this symmetry to the nogood, a new nogood is obtained,(x1 = 1)) (x5 6= 2)whih is a justi�ation to prune value 2 from D(x5).4.3 Combination of Pruning StrategiesThe three pruning strategies mentioned, namely (i) domain redution, (ii) value pruning due to symmetrinogoods, and (iii) value pruning due to symmetri nogoods at the urrent branh, an be ombined toobtain the maximum pro�t in future domain redution. The domain of the urrent variable is redued(assuming that the adequate symmetry exists). If, for some reason (lookahead or symmetri nogoodexistene), its urrent value is disarded, all values of the same equivalene lass are also disarded. If theurrent variable is symmetri with other future variables, the symmetri images of the disarded valuesof the urrent variable an be removed from the domains of the symmetri future variables. This asadeof value removal and symmetry haining has been shown very e�etive in the problems takled (refer toSetion 5). In this proess, any removed value is labeled with the justi�ation of its removal, omputedby applying the orresponding symmetry operators to the nogood whih started the pruning sequene. Inthe following, these strategies are generially named symmetri value pruning, and they are implementedby a single proedure alled svp.5 Experimental Results5.1 The Ramsey ProblemAside from the pigeonhole and the n-queens problems, it is hard to �nd a highly symmetri problem thathas been takled by several researhers following di�erent approahes. The Ramsey problem is one ofthe rare exeptions. Puget [20℄ reported results on several instanes of this problem obtained by addingad ho ordering onstraints to its formulation, so as to break symmetries. Gent and Smith [12℄ followedthe alternative approah of pruning symmetri states from the searh tree after failure, and omparedtheir results with Puget's. Thus, we think this is a good problem on whih to test the eÆieny of oursymmetry-breaking heuristi and its further enhanements desribed in the preeding setion.15



5.1.1 Problem FormulationGiven a omplete graph3 with n nodes, the problem is to olour its edges with  olours, withoutgetting any monohromati triangle. In other words, for any three nodes n1; n2; n3, the three edges(n1; n2); (n1; n3); (n2; n3) must not have all three the same olour. In the ase of 3 olours, it is wellknown that there are many solutions for n = 16, but none for n = 17.This problem an be formulated as a CSP as follows. The variables xij; 1 � i; j � n; i < j; are theedges of the omplete graph, the domains are all equal to the set of three olours f1; 2; 3g, and theonstraints an be expressed as follows:(xij 6= xik) or (xij 6= xjk); 8i; j; k; i < j < k:All olour permutations and all node permutations are global symmetries of the problem. To breakthem in the problem formulation, Puget [20℄ added three ordering onstraints, one based on values andthe remaining two based on ardinalities, as detailed in [12℄. Later, Gent and Smith [12℄ replaed theonstraint on values by their proedure of value pruning after failure. A omparison of their results withours an be found in the next subsetion.Our heuristi does not make use of global symmetries, instead it exploits symmetries loal to eahsearh state. The latter are determined by the automorphisms of the oloured graph developed so far.Sine automorphisms derived from omposing olour permutations and general node permutations arevery expensive to detet, and we need a simple test that an be applied repeatedly at node expansion, weonentrate on a partiular type of node permutation that leaves unhanged the oloured graph developedso far, as desribed below.When an two nodes i and j be interhanged without altering the olour graph developed so far? Theneessary and suÆient ondition is that4 xik = xjk; 8k, whih an be easily assessed by heking theequality of rows i and j of the adjaeny matrix for the graph. Note that this ondition requires thatxik and xjk are both either past variables or future variables and, in the former ase, they must have thesame olour assigned.Every pair of node interhanges (transpositions) of the type mentioned above de�nes a symmetry.For instane, if we an interhange nodes i and j, and also nodes k and l, then we have the followingsymmetry loal to the urrent state,�(xij) = xij; �(xkl) = xkl;�(xik) = xjl; �(xjl) = xik; �(xil) = xjk; �(xjk) = xil;�(xir) = xjr; �(xjr) = xir; �(xkr) = xlr ; �(xlr) = xkr; 8r r 6= i r 6= j r 6= k r 6= l;�(xqr) = xqr; 8q; r q; r 6= i q; r 6= j q; r 6= k q; r 6= l;�qr = I; 8q; r:We restrit our analysis and experimentation to symmetries resulting from the ombination of suhnode interhanges. They are easy to detet and onstitute an important subset of all automorphismsof the oloured graph developed so far. Of ourse, onditions for progressively more omplex subgraphinterhangeability, suh as those skethed in [21℄, ould be developed for the Ramsey problem, but it isnot lear that the e�ort required to detet more omplex symmetries would pay o� in terms of searheÆieny.Let us alulate the number of loal symmetries of the type mentioned. First note that interhange-ability of nodes is an equivalene relation leading to a partition of the set of nodes into equivalene lasses.Suppose e1; e2; : : : ek are the sizes of suh lasses at the urrent state. Then, sine all permutations insideeah lass lead to loal symmetries, the total number of suh symmetries is e1! e2! : : : ek!.If we assign a variable xij, with i and j belonging to the same equivalene lass, say p, then the numberof remaining symmetries after the assignment will be: e1! e2! : : : 2 (ep � 2)! : : : ek!, beause i and j willnow belong to a new lass. If, on the ontrary, i belongs to lass p, and j belongs to lass q, p 6= q, thenthe number of remaining symmetries after assigning xij will be: e1! e2! : : : (ep � 1)! : : : (eq � 1)! : : : ek!Thus, the ratio of remaining symmetries over the total will be 2=(ep(ep � 1)) in the former ase, and1=(epeq) in the latter one.3A graph in whih eah node is onneted to every other node.4For eah pair of nodes (i; j); i 6= j, there is only one variable, either xij or xji, depending on whether i < j or j < i.To ease the notation, in what follows, we will not distinguish between the two ases, and thus both xij and xji will referto the same, unique variable. 16



To maximize symmetry-breaking, we have to determinemin1�p;q�k;p 6=q � 2ep(ep � 1) ; 1epeq�Now, note that the equivalene relation over nodes indues an equivalene relation over edges, whihare the variables of our problem. Two variables xik and xjl are symmetri if and only if either (i � jand k � l) or (i � l and k � j), where � denotes node interhangeability. The size ij of the equivalenelass to whih xij belongs is,ij = � ep(ep � 1)=2; if i and j belong to the same node lass pepeq; if i belongs to lass p; and j belongs to lass q:Therefore, to maximize symmetry-breaking we have to selet a variable xij from the largest equivalenelass, in perfet agreement with the ase in whih we had strongly permutable variables.5.1.2 Results and DisussionWe aimed at solving the Ramsey problem with 3 olours using the same algorithm and heuristis forsolvable and unsolvable ases. As referene algorithm, we take forward heking with onit-diretedbakjumping (F-bj) [19℄, adapted to deal with ternary onstraints.Regarding variable seletion heuristis, we tried the following ones (riteria ordering indiates priority),� dg: minimum domain, maximum degree5, breaking ties randomly.� dgs: minimum domain, maximum degree, largest equivalene lass, breaking ties randomly.� vm': we tried the variety-maximization heuristi (vm), whih ombines minimum-domain andsymmetry-breaking. Sine vm does not inlude the degree, whih has proved to be quite importantfor variable seletion in this problem, we ombined them both in the following way:{ if the variable seleted by vm has a two-valued domain (i.e., minimum-domain dominatessymmetry-breaking), use the dg heuristi;{ if the variable seleted by vm has a three-valued domain (i.e., symmetry-breaking dominatesminimum-domain), use the following heuristi: maximum degree, largest equivalene lass,breaking ties randomly.Notie that loal symmetries indued by node interhanges do not generate equivalene lasses ofstrongly permutable variables, so the justi�ation for the vm heuristi does not stritly hold in thisase. Nevertheless, we take vm as an approximation for the ombination of minimum-domain andsymmetry-breaking heuristis.The value seletion heuristi is as follows: for variable xij, selet the olour with less ourrenes inall triangles inluding xij with only one oloured edge, breaking ties randomly.The F-bj algorithm was unable to �nd that no solution exists for n = 17 within 1 CPU hour, forany of the onsidered heuristis. Then, we added the symmetri value pruning proedure svp6, obtainingthe F-bj-svp algorithm, whih has been able to solve the Ramsey problem for n from 14 to 17 withthe proposed heuristis. Given that several deisions are taken randomly, we repeated the exeution foreah dimension 100 times, eah with a di�erent random seed. Exeution of a single instane was abortedif the algorithm visited more than 100,000 nodes.Experimental results appear in Table 3, where for eah n and heuristi, we give the number of solvedinstanes within the node limit, and for those instanes, the average number of visited nodes, the averagenumber of fails and the average CPU time.5In this problem, we take as degree of variable xij (edge from node i to node j) the number of triangles inluding xijwith only one edge oloured.6If xij is the urrent variable, the subset of symmetriesused for symmetrinogood generation is formed by the symmetriesexhanging one node (node i or node j) while the other (node j or node i) is kept �xed.17



F-bj-svpdg dgs vm'n Sol Nodes Fails Time Sol Nodes Fails Time Sol Nodes Fails Time14 99 4494 1009 3.03 100 2167 384 0.69 100 201 15 0.2015 59 20673 6627 19.46 100 20706 6168 19.50 100 1732 237 0.5716 100 17172 5290 13.01 100 17027 5247 13.01 100 906 114 0.3517 100 7418 3232 1.41 100 7485 3175 1.86 100 2952 1132 0.75Table 3: Performane results for the Ramsey problem.Gent and Smith Pugetn Fails Time Fails Time16 2030 1.61 2437 1.4017 161 0.26 636 0.27Table 4: Performane results of previous approahes on the Ramsey problem (from [12℄).We ompare the three variable seletion heuristis dg, dgs and vm', within the F-bj-svp algorithm.Of the 400 runs, F-bj-svp with dg solved 358 instanes within the node limit, while it was able tosolve all instanes with dgs or vm'. Considering instanes solved within the node limit, there is littledi�erene between dg and dgs, exept for n = 14 where dgs improves signi�antly over dg. A mainimprovement in performane ours when passing from dgs to vm'. For solvable ases, we observe aderement of one order of magnitude in visited nodes and number of fails, and of almost two orders ofmagnitude in CPU time. For n = 17, the improvement is not so strong but it is still important.These results show learly the importane of exploiting symmetries in the solving proess. The svpproedure allowed us to ahieve an eÆient solution for n = 17. The symmetry-breaking heuristipermitted to solve all instanes within the node limit, preventing the searh proess from getting lostin large subspaes without solution. vm' uses the same information as dgs but in a more suitableway, leading to a very substantial improvement for solvable dimensions. Thus, results substantiatethe dominane of vm' over dgs, providing experimental support to the theoretially-developed variety-maximization heuristi.We ompare these results with those of Puget [20℄ and Gent and Smith [12℄, whih are given inTable 4. For n = 16, the number of fails for the dgs is higher than Puget's, and Gent and Smith'snumbers, while the number of fails for the vm' heuristi is one order of magnitude lower than Puget's,and Gent and Smith's numbers. For dimension 17, results from dgs and vm' are worse than previousapproahes. This is not surprising, beause our variable seletion heuristis have been devised for solvableproblems. CPU time annot be ompared beause these results ome from di�erent mahines. From thisomparison, we an aÆrm that our approah, based on a new variable ordering and a pruning proedure,remains ompetitive with more sophistiated approahes based on a areful problem formulation [20℄ plusthe inlusion of new onstraints during searh [12℄, and it is even able to outperform them for solvabledimensions.5.2 BIBD GenerationBlok designs are ombinatorial objets satisfying a set of integer onstraints [14, 5℄. Introdued in thethirties by statistiians working on experiment planning, nowadays they are used in many other �elds,suh as oding theory, network reliability, and ryptography. The most widely used designs are theBalaned Inomplete Blok Designs (BIBDs). Although up to our knowledge, BIBD generation has notbeen takled from the CSP viewpoint, it appears to be a wonderful instane of highly symmetri CSP,thus o�ering the possibility to assess the bene�ts of di�erent searh strategies on suh problems.5.2.1 Problem FormulationFormally, a (v; b; r; k; �)-BIBD is a family of b sets (alled bloks) of size k, whose elements are from a setof ardinality v, k < v, suh that every element belongs exatly to r bloks and every pair of elementsours exatly in � bloks. v; b; r; k, and � are alled the parameters of the design. Computationally,18



0 1 1 0 0 1 01 0 1 0 1 0 00 0 1 1 0 0 11 1 0 0 0 0 10 0 0 0 1 1 11 0 0 1 0 1 00 1 0 1 1 0 0Figure 11: An instane of (7,7,3,3,1)-BIBD.designs an be represented by a v� b binary matrix, with exatly r ones per row, k ones per olumn, andthe salar produt of every pair of rows is equal to �. An example of BIBD appears in Fig. 11.There are three neessary onditions for the existene of a BIBD:1. rv = bk,2. �(v � 1) = r(k � 1), and3. b � v.However, these are not suÆient onditions. The situation is summarized in [16℄, that lists all param-eter sets obeying these onditions, with r � 41 and 3 � k � v=2 (ases with k � 2 are trivial, while aseswith k > v=2 are represented by their orresponding omplementaries, whih are also blok designs).For some parameter sets satisfying the above onditions, it has been established that the orrespondingdesign does not exist; for others, the urrently known bound on the number of non-isomorphi solutions isprovided; and �nally, some listed ases remain unsettled. The smallest suh ase is that with parameters(22,33,12,8,4), to whose solution many e�orts have been devoted [25, Chapter 11℄.Some (in�nite) families of blok designs (designs whose parameters satisfy partiular properties) anbe onstruted analytially, by diret or reursive methods [14, Chapter 15℄, and the state of the art inomputational methods for design generation is desribed in [5, 25℄. The aforementioned unsettled ase,with vb = 726 binary entries, shows that exhaustive searh is still intratable for designs of this size. Inthe general ase, the algorithmi generation of blok designs is an NP problem [6℄.Computational methods for BIBD generation, either based on systemati or randomized searh pro-edures, su�er from ombinatorial explosion whih is partially due to the large number of isomorphion�gurations present in the searh spae. The use of group ations goes preisely in the diretion ofreduing this isomorphism [25, Chapter 3℄. Thus, BIBD generation an be viewed as a large family ofhighly symmetri CSPs and, as suh, onstitutes a good testbed on whih to test strategies to exploitsymmetries within onstraint satisfation searh.The problem of generating a (v; b; r; k; �)-BIBD admits several CSP formulations. The most diretone would be representing eah matrix entry by a binary variable. Then, there would be three types ofonstraints: (i) v b-ary onstraints ensuring that the number of ones per row is exatly r, (ii) b v-aryonstraints ensuring that the number of ones per olumn is exatly k, and (iii) v(v�1)=2 2b-ary onstraintsensuring that the salar produt of eah pair of rows is exatly �. All are high-arity onstraints, butespeially the last type is very ostly to deal with, beause of its highest arity and its large number ofinstanes.We have opted for an alternative formulation that avoids onstraints of type (iii), as follows. Tworows i and j of the BIBD should have exatly � ones in the same olumns. We represent this by �variables xijp; 1 � p � �, where xijp ontains the olumn of the pth one ommon to rows i and j. Thereare v(v�1)=2 row pairs, so there are �v(v�1)=2 variables, all sharing the domain f1; : : : ; bg. From thesevariables, the BIBD v � b binary matrix T is omputed as follows:T [i; ℄ = � 1, if 9j; p s.t. xijp =  or xjip = ,0, otherwise.Constraints are expressed in the following terms,xijp 6= xijp0 ; bX=1 T [i; ℄ = r; vXi=1 T [i; ℄ = k19



where 1 � p; p0 � �, 1 � i; j � v, 1 �  � b. Note that the last two types of onstraints are exatlythe same as the former two in the previous formulation, while we have replaed the ostly type (iii)onstraints by binary inequality onstraints. This redues onsiderably the pruning e�ort.Turning to symmetries, all row and olumn permutations are global symmetries of the problem,whih are retained in both formulations above. Note, however, that eah of these symmetries involvesinterhanging many variables at one, i.e., they do not yield strongly permutable variables in neither ofthe two formulations. Moreover, as variables are assigned, many of these global symmetries disappear,beause they involve hanging past variables. Sine we are interested in loal symmetries that an beeasily deteted, we onsider the following ones relating future variables,1. Variable mapping exhanges xijp and xijp0 , domainmappings are the identity; this symmetry oursamong variables of the same row pair.2. Variable mapping is the identity, one domain mapping exhanges values 1 and 2; this symmetryours when T [l; 1℄ = T [l; 2℄ for l = 1; : : : ; v.3. Variable mapping exhanges xijp and xi0j0p0 , domain mappings are the identity; this symmetryours when T [i; ℄ = T [i0; ℄ and T [j; ℄ = T [j0; ℄ for  = 1; : : : ; b.4. Variable mapping exhanges xij1p and xij2p0 , the domain mappings orresponding to these variablesexhange values 1 and 2; this symmetry ours when,T [j1; 1℄ = T [j2; 2℄ = 1; T [j1; 2℄ = T [j2; 1℄ = 0;T [j1; ℄ = T [j2; ℄;  = 1; : : : ; b;  6= 1;  6= 2;T [j; 1℄ = T [j; 2℄; j = 1; : : : ; v; j 6= j1; j 6= j2.5. Variable mapping exhanges xij1p and xij2p0 , the domain mappings orresponding to these variablesexhange values 1 and 2, and 3 and 4; this symmetry ours when,T [j1; 1℄ = T [j2; 2℄ = 1; T [j1; 2℄ = T [j2; 1℄ = 0;T [j1; 3℄ = T [j2; 4℄ = 1; T [j1; 4℄ = T [j2; 3℄ = 0;T [j1; ℄ = T [j2; ℄;  = 1; : : : ; b;  6= 1;  6= 2;  6= 3;  6= 4;T [j; 1℄ = T [j; 2℄; j = 1; : : : ; v; j 6= j1; j 6= j2,T [j; 3℄ = T [j; 4℄; j = 1; : : : ; v; j 6= j1; j 6= j2.These symmetries have a lear interpretation. Symmetry (1) is inherent to the formulation. Symmetry(2) is the loal version of olumn permutability: assigned values must be equal in olumns 1 and 2, forthe values 1 and 2 of a variable to be interhangeable. Symmetry (3) is the loal version of two pairs ofsimultaneous row permutations: rows i and i0 (respetively, rows j and j0) must have the same assignedvalues for variables xijp and xi0j0p0 to be permutable. The next two symmetries are generalizations of thepreeding one. Symmetry (4) relates variables sharing row i, and rows j1 and j2 that are equal but fortwo olumns 1 and 2. These olumns are also equal but for rows j1 and j2. Exhanging rows j1 andj2, and olumns 1 and 2, matrix T remains invariant. Symmetry (5) develops the same idea in the asewhere i is not shared, and thus two rows i1 and i2 need to be onsidered. It ours when exhangingrows i1 and i2, and olumns 1 and 2, and 3 and 4, matrix T remains invariant. It is worth notingthat these symmetries keep invariant matrix T beause they are loal to the urrent state, that is, theydo not hange past variables.Conerning the way symmetries at on variables, symmetry (1) is the only one de�ning stronglypermutable variables. Symmetries (3), (4) and (5) are indued by exhanging rows and olumns withinthe BIBD matrix, leading to equivalene relations of the same type as in the Ramsey problem. Takentogether, the symmetries of the latter three types form a subgroup, leading to equivalene lasses inwhih the variables are related by one symmetry type only. In other words, if two variables within a lassare related by a given symmetry, all other variables in the lass are related by symmetries of the sametype. Let us onsider a variable xijp whih is strongly permutable with r � 1 other variables throughsymmetry (1), and whih belongs to a lass of size 0s when the subgroup formed by symmetries (3), (4)and (5) is onsidered. Then, xijp belongs to a lass of size r0s when the four variable symmetries areonsidered together. Now, by ombining the reasonings in Setions 3.2 and 5.1.1, we an dedue that,after assigning xijp, the ratio of remaining symmetries over those before the assignment would be:minr;s 1r0s :20



Therefore, in the ase of BIBDs, in order to maximize symmetry-breaking, we also have to selet avariable belonging to the largest equivalene lass.5.2.2 Results and DisussionBIBD generation is a non-binary CSP. We use a forward heking algorithm with onit-direted bak-jumping (F-bj [19℄) adapted to deal with non-binary onstraints as referene algorithm.Regarding variable seletion heuristis, we tried the following ones (riteria ordering indiates priority),� dg: minimum-domain, maximum-degree7, breaking ties randomly.� sdg: symmetry-breaking, minimum-domain, maximum-degree, breaking ties randomly.� vm: variety-maximization heuristi, maximum-degree, breaking ties randomly.Equivalene lasses for variables are omputed using symmetries 1, 3, 4 and 5, de�ned in the preedingsubsetion. Only symmetry 1 generates strongly permutable variables, so justi�ation for the vm heuristidoes not stritly hold in this ase. Nevertheless, we take vm as an approximation for the ombination ofminimum-domain and symmetry-breaking heuristis. Equivalene lasses for values are omputed usingsymmetry 2. Values are seleted as follows,� if � = 1, a value within the largest equivalene lass;� if � > 1, randomly.We ompare the performane of these heuristis generating all BIBDs with vb < 1400 and k = 3, allhaving solution. Sine the performane of the proposed algorithm depends on random hoies, we haverepeated the generation of eah BIBD 50 times, eah with a di�erent random seed. Exeution of a singleinstane was aborted if the algorithm visited more than 50,000 nodes.Empirial results appear in Table 5, where for eah heuristi and BIBD, we give the number of solvedinstanes within the node limit, the average number of visited nodes of solved instanes, and the averageCPU time in seonds for the 50 instanes. Of the 2400 instanes exeuted, F-bj with dg solves 940,with sdg solves 2393 and with vm solves 2394. F-bj with dg does not solve any instane for 5 spei�BIBDs, while F-bj with both sdg and vm provide solution for all BIBDs tested. Regarding CPUtime, sdg dominates dg in 45 lasses, and vm dominates sdg in 46 lasses, out of the 48 BIBD lassesonsidered. These results show learly that the inlusion of the symmetry-breaking heuristi is a verysigni�ative improvement for BIBD generation, allowing the solution of almost the whole benhmark,while the dg heuristi solved slightly more than one third of it. The vm heuristi means a re�nement ofsdg: it an solve one more instane, and CPU time dereases for most of the lasses tested.Adding the symmetri value pruning proedure8 to F-bj, we get the F-bj-svp algorithm, onwhih we have tested the heuristis sdg and vm. Empirial results appear in Table 6. F-bj-svpwith sdg an solve 4 more instanes than in the previous ase, while F-bj-svp with vm inreases in3 the number of solved instanes. In terms of CPU time, the dominane of vm over sdg remains in42 ases. From this assessment, we onlude that symmetri value pruning does not play an importantrole in this problem: it produes ertain bene�ts but the main advantadge is provided by the inlusionof symmetries in variable seletion, either in the form of symmetry-breaking or in the more elaboratedvariety-maximization heuristi.6 ConlusionsIn this paper we have analysed how to take symmetry into aount to redue searh e�ort. Two variableseletion heuristis and a value pruning proedure have been devised to exploit symmetries inside adepth-�rst searh sheme. We have shown how our symmetry-breaking heuristi an be ombined with7The degree of variable xijp is the number of future variables xklp0 suh that i = k and j = l, or i 6= k and j 6= l.8Given that F-bj with sdg or vm solved most of the problem instanes, we inluded a svp proedure allowing a singleform of symmetri value pruning: the one due to symmetri nogoods at the urrent branh. Therefore, nogoods are notexpliitly reorded in this ase. 21



the minimum-domain one to yield a new variable seletion heuristi that outperforms them both. Thisis alled variety-maximization heuristi beause it selets for assignment the variable leading to a searhsubspae with the greatest number of distint �nal states. Moreover, our value pruning proedure basedon nogood reording has proven e�etive in both solvable and unsolvable problem instanes.These strategies have been tested on two highly symmetri ombinatorial problems, namely the Ram-sey problem and the generation of BIBDs. For the former, we have ompared our results with thoseobtained in previous works. In the ase of solvable instanes, i.e., for n � 16, our general-purposestrategies have been able to outperform the alternative approah of reformulating the original problemby adding new onstraints to break problem symmetries. For n = 17, our strategies an still ompete,although it must be noted that the variable seletion heuristis are oriented towards �nding solutions norto prove their inexistene.BIBD generation is an NP problem that has triggered a onsiderable amount of researh on analytiand omputational proedures. Its wide variability in size and diÆulty makes it a very appropriatebenhmark for algorithms aimed at exploiting symmetries in CSPs. We believe that systemati searhproedures are more likely to shed light on the solution of diÆult instanes of the problem, althoughrandomized algorithms may be quiker at �nding solutions in easier ases. The present work has notbeen aimed at solving a partiular suh instane, but instead at proposing and evaluating tools to dealwith symmetries. In this respet, the proposed strategies have been shown to be e�etive in reduingsearh e�ort.It is worth mentioning that there is always a trade-o� between the e�ort spent in looking for andexploiting symmetries, and the savings attained. Thus, instead of onsidering all possible symmetries, itis advisable to establish a hierarhy of them and try to detet the simplest �rst, as we have done.Conerning future work, we would like to study whether other variable seletion heuristis (suh asdegree-maximization) an also be integrated with symmetry-breaking and minimum-domain, under asingle deision riterion. Along the same line, we would like to extend the variety-maximization heuristito other variable relations, beyond strong permutability. Moreover, we will try to identify riteria forvalue seletion whih omplement our heuristis for variable seletion. Finally, it would be interesting toassess up to what extent our approah depends on the type and number of symmetries ourring in apartiular problem.AknowledgementsThis work has been partially supported by the Spanish Siene and Tehnology Commission (CICYT)under ontrat TAP99-1086-C03 (projet \Constraint-based omputation in robotis and resoure allo-ation"). We thank Thierry Petit, who provided us referene [13℄. We also thank Javier Larrosa, Llu��sRos and three anonymous reviewers for their useful ritiisms.Referenes[1℄ R. Bakofen, and S. Will. Exluding symmetries in onstraint based searh. In Pro. of CP'99,pp. 73{87, 1999.[2℄ A. Baker. The hazards of fany baktraking. In Pro. of AAAI'94, pp. 288{293, 1994.[3℄ D. Brelaz. New methods to olor the verties of a graph. Journal of ACM, 22(4), 251{256, 1979.[4℄ C.A. Brown, L. Finkelstein, and P.W. Purdom. Baktrak searhing in the presene of symmetry. InPro. 6th Int. Conf. on Applied Algebra, Algebrai Algorithms and Error Correting Codes, pp. 99{110, 1988.[5℄ C.H. Colbourn and J.H. Dinitz (Eds.). The CRC Handbook of Combinatorial Designs, CRC Press,1996.[6℄ D.G. Corneil and R.A. Mathon. Algorithmi tehniques for the generation and analysis of stronglyregular graphs and other ombinatorial on�gurations. Ann. of Disrete Math., 2, 1{32, 1978.22
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F-bjBIBD dg sdg vm(v; b; r; k; �) Sol Nodes Time Sol Nodes Time Sol Nodes Time7,7,3,3,1 50 21 1.4e-3 50 22 1.4e-3 50 21 2.6e-36,10,5,3,2 50 60 3.6e-3 50 31 6.6e-3 50 30 4.6e-37,14,6,3,2 50 2152 1.3e-1 50 60 1.9e-2 50 43 1.1e-29,12,4,3,1 50 40 1.8e-3 50 80 2.0e-2 50 48 1.0e-26,20,10,3,4 18 435 3.7e+0 50 77 5.7e-2 50 61 3.3e-27,21,9,3,3 16 2877 4.3e+0 50 65 6.7e-2 50 75 4.5e-26,30,15,3,6 6 196 9.9e+0 50 117 2.4e-1 50 95 1.4e-17,28,12,3,4 11 195 7.6e+0 50 146 2.2e-1 50 86 1.2e-19,24,8,3,2 44 763 1.2e+0 50 75 1.2e-1 50 77 8.2e-26,40,20,3,8 3 156 1.7e+1 50 124 6.5e-1 50 128 3.9e-17,35,15,3,5 6 230 1.5e+1 50 111 4.3e-1 50 109 2.7e-17,42,18,3,6 6 141 1.9e+1 50 131 8.0e-1 50 139 4.8e-110,30,9,3,2 38 181 3.4e+0 50 100 2.7e-1 50 120 2.0e-16,50,25,3,10 1 1057 3.1e+1 50 467 1.8e+0 50 155 8.1e-19,36,12,3,3 29 478 6.8e+0 48 116 2.5e+0 50 202 3.8e-113,26,6,3,1 50 1076 3.5e-1 50 151 2.2e-1 50 151 1.7e-17,49,21,3,7 2 151 3.3e+1 50 651 2.0e+0 50 164 8.0e-16,60,30,3,12 2 139 4.6e+1 50 184 2.7e+0 50 189 1.5e+07,56,24,3,8 1 36401 4.6e+1 50 258 2.3e+0 50 179 1.2e+06,70,35,3,14 0 0 5.4e+1 50 216 4.9e+0 50 215 2.3e+09,48,16,3,4 19 685 1.6e+1 50 151 1.2e+0 50 153 7.3e-17,63,27,3,9 0 0 6.0e+1 50 240 3.4e+0 50 196 1.7e+08,56,21,3,6 5 285 3.7e+1 49 188 3.9e+0 50 498 1.7e+06,80,40,3,6 0 0 7.2e+1 50 243 8.6e+0 50 245 3.6e+07,70,30,3,10 1 235 6.7e+1 50 215 5.1e+0 50 215 2.4e+015,35,7,3,1 48 395 9.8e-1 50 219 5.3e-1 50 219 4.2e-112,44,11,3,2 41 591 5.1e+0 50 166 9.6e-1 50 191 6.5e-17,77,33,3,11 0 0 9.3e+1 50 243 7.7e+0 50 246 3.2e+09,60,20,3,5 12 386 2.9e+1 49 188 4.8e+0 50 256 1.7e+07,84,36,3,12 1 1027 9.2e+1 50 316 1.1e+1 50 254 4.2e+010,60,18,3,4 12 613 2.6e+1 50 244 2.8e+0 50 189 1.5e+011,55,15,3,3 33 680 1.2e+1 50 180 2.0e+0 50 234 1.2e+07,91,39,3,13 0 0 1.3e+2 50 274 1.5e+1 50 280 5.4e+09,72,24,3,6 8 671 4.2e+1 49 221 8.4e+0 50 252 2.7e+013,52,12,3,2 43 298 4.6e+0 50 583 2.4e+0 49 218 2.9e+09,84,28,3,7 8 2054 5.4e+1 50 662 1.5e+1 50 257 4.2e+09,96,32,3,8 9 3997 6.6e+1 50 558 2.0e+1 50 296 6.3e+010,90,27,3,6 8 3131 5.6e+1 50 279 1.4e+1 50 289 5.3e+09,108,36,3,9 3 1193 9.6e+1 50 335 3.0e+1 49 365 1.4e+113,78,18,3,3 37 1392 1.6e+1 50 274 7.7e+0 50 282 3.5e+015,70,14,3,2 36 1647 2.3e+1 50 615 6.1e+0 49 383 5.5e+012,88,22,3,4 33 1271 2.8e+1 50 292 1.3e+1 50 296 5.1e+09,120,40,3,10 6 10429 1.1e+2 50 386 4.8e+1 50 268 1.4e+119,57,9,3,1 46 778 4.8e+0 48 802 9.1e+0 48 802 8.2e+010,120,36,3,8 4 9927 1.1e+2 50 422 5.1e+1 50 377 1.3e+111,110,30,3,6 24 2491 4.9e+1 50 353 3.6e+1 49 366 1.6e+116,80,15,3,2 40 2275 2.3e+1 50 795 1.1e+1 50 485 4.7e+013,104,24,3,4 30 1076 4.9e+1 50 402 2.7e+1 50 344 8.7e+0Table 5: Performane results of BIBD generation using F-bj with three di�erent variable seletion heuristis,on a Sun Ultra 60, 360MHz. 24



F-bj-svpBIBD sdg vm(v; b; r; k; �) Sol Nodes Time Sol Nodes Time7,7,3,3,1 50 22 3.0e-3 50 21 4.2e-36,10,5,3,2 50 31 7.2e-3 50 30 5.6e-37,14,6,3,2 50 53 1.9e-2 50 44 1.2e-29,12,4,3,1 50 78 1.9e-2 50 48 1.0e-26,20,10,3,4 50 62 5.4e-2 50 62 3.5e-27,21,9,3,3 50 65 6.8e-2 50 69 4.4e-26,30,15,3,6 50 103 2.4e-1 50 95 1.4e-17,28,12,3,4 50 111 2.1e-1 50 86 1.2e-19,24,8,3,2 50 75 1.2e-1 50 77 8.4e-26,40,20,3,8 50 123 6.6e-1 50 126 3.9e-17,35,15,3,5 50 111 4.3e-1 50 109 2.7e-17,42,18,3,6 50 130 7.9e-1 50 133 4.8e-110,30,9,3,2 50 99 2.7e-1 50 123 2.0e-16,50,25,3,10 50 239 1.7e+0 50 156 8.3e-19,36,12,3,3 50 1896 1.0e+1 50 173 3.8e-113,26,6,3,1 50 145 2.1e-1 50 145 1.7e-17,49,21,3,7 50 321 1.8e+0 50 163 7.9e-16,60,30,3,12 50 184 2.7e+0 50 185 1.5e+07,56,24,3,8 50 219 2.2e+0 50 173 1.2e+06,70,35,3,14 50 213 4.9e+0 50 217 2.3e+09,48,16,3,4 50 152 1.2e+0 50 152 7.3e-17,63,27,3,9 50 220 3.3e+0 50 193 1.7e+08,56,21,3,6 49 179 1.3e+1 50 323 2.0e+06,80,40,3,6 50 242 8.5e+0 50 246 3.6e+07,70,30,3,10 50 213 5.0e+0 50 216 2.4e+015,35,7,3,1 50 193 5.0e-1 50 193 3.9e-112,44,11,3,2 50 166 9.5e-1 50 204 6.7e-17,77,33,3,11 50 242 7.6e+0 50 240 3.3e+09,60,20,3,5 49 188 1.3e+1 50 238 1.6e+07,84,36,3,12 50 270 1.1e+1 50 254 4.2e+010,60,18,3,4 50 232 2.8e+0 50 188 1.5e+011,55,15,3,3 50 180 2.0e+0 50 229 1.3e+07,91,39,3,13 50 274 1.5e+1 50 277 5.4e+09,72,24,3,6 50 979 1.4e+1 50 309 3.0e+013,52,12,3,2 50 541 2.5e+0 50 1008 3.4e+09,84,28,3,7 50 440 1.2e+1 50 257 4.2e+09,96,32,3,8 50 418 2.0e+1 50 295 6.4e+010,90,27,3,6 50 279 1.4e+1 50 286 5.3e+09,108,36,3,9 50 335 3.0e+1 49 341 4.0e+113,78,18,3,3 50 273 7.7e+0 50 280 3.5e+015,70,14,3,2 50 573 6.1e+0 50 1058 5.7e+012,88,22,3,4 50 290 1.3e+1 50 296 5.0e+09,120,40,3,10 50 381 4.8e+1 50 461 1.4e+119,57,9,3,1 49 745 7.7e+0 49 745 6.9e+010,120,36,3,8 50 417 5.1e+1 50 377 1.3e+111,110,30,3,6 50 352 3.5e+1 49 366 3.6e+116,80,15,3,2 50 643 1.0e+1 50 490 4.7e+013,104,24,3,4 50 397 2.8e+1 50 344 8.5e+0Table 6: Performane results of BIBD generation using F-bj-svpwith two di�erent variable seletion heuristis,on a Sun Ultra 60, 360MHz. 25


