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The conventional voter model is modified so that an agent’s switching rate depends on the ‘age’

of the agent, that is, the time since the agent last switched opinion. In contrast to previous work,

age is continuous in the present model. We show how the resulting individual-based system with

non-Markovian dynamics and concentration-dependent rates can be handled both computationally

and analytically. Lewis’ thinning algorithm can be modified in order to provide an efficient simu-

lation method. Analytically, we demonstrate how the asymptotic approach to an absorbing state

(consensus) can be deduced. We discuss three special cases of the age dependent switching rate:

one in which the concentration of voters can be approximated by a fractional differential equation,

another for which the approach to consensus is exponential in time, and a third case in which the

system reaches a frozen state instead of consensus. Finally, we include the effects of spontaneous

change of opinion, i.e., we study a noisy voter model with continuous ageing. We demonstrate that

this can give rise to a continuous transition between coexistence and consensus phases. We also

show how the stationary probability distribution can be approximated, despite the fact that the

system cannot be described by a conventional master equation.

I. INTRODUCTION

Sociophysics, understood as the application of physics-inspired techniques to problems of sociological interest, has

made important progress towards the understanding of consensus formation in populations [1–7]. In the most basic

models, there are two different points of view (or opinions) about a topic. Each individual in the population holds one

of these opinions at any one time, and switches between the two states according to basic mechanisms of imitation

and spontaneous opinion changes. Imitation plays a similar role to that of positive interaction in physical systems,

namely the attractive forces leading particles to align their states, e.g. their spin or velocity. This tends to drive the

system towards consensus, or order. The second component in many models of opinion dynamics is a tendency to act

independently. This is a force favouring disorder, akin to temperature or noise. The competition between imitation

and noise can lead to a phase transition between states near consensus, in which a significant fraction of the population

adopts the same opinion, and disordered states in which both opinions coexist in the population with almost equal

proportions. This very simple setup lies at the heart of the voter model [8–11], which we will be considering in detail

throughout the paper.

The voter model is an example of an individual-based stochastic model. Other applications of such models include

population dynamics in biology [12], game theory and evolution [13], the evolution of languages [14–18], and opinion

dynamics more generally [1, 19, 20]. These models often consist of a very stylised description of the real-world

processes, and focus not primarily on studying specific real-world situations, but rather on characterising generic

cause-and-effect relations.

One simplifying assumption that is often made in the formulation of such models is that of Markovianity, i.e.,

the time evolution of the system is taken to depend only on its current state, but not on its previous history.

Making this assumption is mathematically convenient, as the machinery for Markovian stochastic processes is well

developed [21, 22] and can therefore readily be applied.

Discarding memory and history independence is a choice that is made when setting up a particular model. Together

with the propensity of physicists to focus on stylised models, the Markovian assumption limits the range of mechanisms
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and phenomena that can be studied. For example, it is is sensible to assume that real-world agents will be subject to

some sort of ‘inertia’ when it comes changing their opinion on a particular topic. Their propensity to change will depend

on how long they have held their current opinion. Similarly, the rate with which a member of a population infects others

with a disease, or recovers from it will depend on how long they have been infected [23–27]. Similarly, the Markovian

assumption breaks down in other applications of individual-based modelling: the production of mRNA and protein

in gene regulatory systems are delayed events [28–32], and anomalous diffusion is manifestly non-Markovian [33–35].

Other recent works [36, 37] consider memory effects in opinion dynamics happening online, where the whole history

of past events of an individual becomes relevant. In this case, the memory effects are a consequence of social online

platforms storing personalized information about their users.

There are typically two (related) ways to introduce history-dependence into a model. In order to capture the more

detailed dynamics leading to delays and memory, one can extend the state space of the model. For example one

can introduce different stages of a disease, or different classes of agents with different ages. The progression between

these states can then be modelled as Markovian. Alternatively, one can depart from the assumption of Markovianity

entirely and set up a model in which the dynamics become non-Markovian. These two approaches are not entirely

disparate; they are merely complementary descriptions of the same underlying processes. Fundamentally it does not

make sense to say that a particular process in nature either has or does not have memory – it is only models of this

process that can be Markovian or non-Markovian. Which one it is depends on the scale at which one chooses to model

the process mesoscopically.

In previous incarnations of the voter model with ageing [38–41] (as well as in the majority-vote model [42]), age

has been implemented as a set of discrete ‘stages’ through which individuals progress at a constant rate. As they

progress through these stages, voters have different proclivities to change opinion. This discretisation of age was a

convenient simplification that meant that the usual methods of analysis and simulation for Markovian systems could

still be used. Other existing literature, however, addresses models with dependence of the transition rates on internal

persistence times [43–45]. These latter works relied mostly on numerical simulations.

In this work, on the contrary, we use analytical and numerical methods to study a non-Markovian variant of

the voter model, in which each agent has an age (a continuous variable), given by the time since the agent last

changed opinions. This setup presents us with several challenges. From a computational standpoint, even a numerical

simulation of the system is a non-trivial task, as the celebrated Gillespie algorithm [46] can no longer be used in its

standard form. Modifications are instead necessary following the lines of, for example, [47–49]. From an analytical

perspective, the powerful framework associated with the master equation has to be substantially modified to deal with

non-Markovian systems [50, 51]. To remedy this, path-integral approaches have been developed that allow one perform

system-size expansions, thus avoiding the need to write down a master equation [26, 28, 33]. Alternatively, there often

exist parameter regimes in which one can approximate the full non-Markovian dynamics with an effective Markovian

system [23, 24, 39, 52]. Such an approximation replaces history-dependence with an additional non-linearity.

We demonstrate several advantages to employing a continuous ageing process over a discrete version. In addition

to being more natural and realistic, the elimination of the age variables for each individual to obtain the macroscopic

concentrations for either opinion as a whole is far simpler in the continuous case. Further, we are able to demonstrate

that the approach to consensus in the case of power law ageing and in the absence of spontaneous opinion changes

follows a fractional differential equation. This is not at all transparent for discrete ageing. Also, we are able to

approximate the full stationary distribution using an adiabatic reduction method. All of these analytical advantages

are available without sacrificing computational efficiency through the appropriation of Lewis’ thinning algorithm [49,

53].

The rest of work is structured as follows. We first introduce the modified voter model with continuous ageing

in Section II A. We then describe how Lewis’ thinning algorithm can be used to simulate the system in Section

II B. Section III focuses on the model without spontaneous opinion changes. In particular, we use a deterministic

approximation to examine the approach to consensus and the conditions under which consensus is reached in Section

IV. This is achieved through a linearisation of the deterministic dynamics near an absorbing state. We analyse different

scenarios of ageing and show that the type of ageing can severely affect the presence or absence of ordering, and in

cases where the system orders, the approach to consensus. In Section V A, we include the possibility of spontaneous

change of opinion and analyse the resulting continuous phase transition between order and disorder, and describe

how ageing makes this transition different from that in the conventional voter model. Finally, we go beyond the
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deterministic dynamics and analyse the stochastic fluctuations about the deterministic fixed points in Section V B.

We discuss the results and conclude in Section VI.

II. MODEL DEFINITION AND METHOD OF SIMULATION

A. Voter model with age-dependent switching rates

Consider a population of N agents (voters). At each point in time t, each agent is described by a binary variable

si(t) = ±1, representing the agent’s opinion, where i = 1, . . . , N . We write n±(t) for the total number of voters in

each of the two states at time t. We have n+(t) + n−(t) = N for all t. The corresponding intensive variables are

x±(t) = n±(t)/N , and we have x+(t) + x−(t) = 1. Adopting the terminology of ferromagnetism, it is convenient to

introduce a ‘magnetization’ m(t) = |x+(t)− x−(t)|.
The variables si(t) evolve in time via a stochastic process, defined by the rates ri(t) at which agent i changes its

current opinion from si to −si. In addition to the state of the system s(t) = {s1(t), . . . , sN (t)}, the rate ri(t) can

depend on the age τi(t) of the agent at time t in our model, defined as the time since the agents’ last change of state.

Given the all-to-all connectivity of agents that we adopt throughout this paper, the rates are

ri(t) ≡ r [si(t)→ −si(t); s(t); τi(t)] = a+
pτi(t)

N

∑
j 6=i

[
1− δsi(t),sj(t)

]
. (1)

The first term, involving the model parameter a, describes spontaneous changes of opinion. The second term reflects

the imitation mechanism. This term is proportional to the density of agents holding the opinion opposite to the current

state of agent i. The factor pτi(t), the activation rate, represents the age-dependence of the propensity of agent i to

imitate another agent (we will refer to this as the ‘ageing profile’). The rates in Eq. (1) can also be re-expressed in

the following form,

r±τ (t) = a+ pτx
±(t). (2)

These are the per capita rates with which voters of age τ switch from state ∓1 to ±1.

Classifying agents by their age τ , we define the number densities n±(τ, t) such that
∫ τ2
τ1
dτ n±(τ, t) is the number

of voters in opinion state ±1 with ages between τ1 and τ2 at time t. The corresponding intensive variables are

x±(τ, t) = n±(τ, t)/N , and we have the relation

x±(t) =

∫ ∞
0

dτ x±(τ, t), (3)

and similarly for n±(t).

We first note that the model reduces to the conventional noisy voter model [54, 55] when pτ is a constant not

depending on τ . The phenomenology of this special case is well known: for a = 0 (and assuming N is finite) the

system reaches a consensus state in which all agents hold the same opinion (either +1 or −1). One then has m(t)→ 1

in every realisation as t→∞. For a > 0, there is a critical value a = ac such that m(t) assumes values close to 0 for

a > ac. Here, as t→∞, both opinions are present in the population in similar proportions at any one time. However,

when a < ac, m(t) tends to a non-zero value. The critical value ac = O(1/N) separates the two regimes. We note

that ac → 0 as N → ∞, hence this is a finite-size transition. As we will show, both the approach to consensus (for

a = 0) and the mean magnetisation of the system (for a > 0) can be affected dramatically by the introduction of

different ageing profiles pτ .

If the activation rate is a decreasing function such that the asymptotic value is lower than the initial one, pτ=∞ <

pτ=0, we have a situation in which it becomes more difficult for an agent to change state the longer it has been holding

the current state. This is typical of ageing in which an agent becomes more reluctant to adopt new opinions. The

opposite case, p∞ > p0, that we name anti-ageing, models a situation in which agents get tired of the current state

and are more prone to adopt new viewpoints. In previous studies of the discrete version of aging [38, 39] it was shown

that when p∞ = 0 the system may or may not reach consensus. This depends on whether the decay of pτ to zero
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is slower or faster, respectively, than 1/τ . If, on the other hand, the activation rate tends to a non-zero value from

above p0 > p∞ > 0, the system orders with an exponential decay of the fraction x±(t) of individuals to the consensus

value. Finally, if the activation rate tends to a non-zero value from below (anti-ageing) p∞ > p0 > 0 then the system

does not reach consensus. As explained in Ref. [43], the results for p∞ > 0 can be understood heuristically by an

amplification by the ageing mechanism of any small asymmetry in the initial conditions.

B. Modified thinning algorithm for simulation

The fact that the rates ri(t) in Eq. (1) depend on age (and hence vary with time, even when the configuration s(t)

remains constant) means that we cannot use the traditional Gillespie algorithm [46] to carry out individual-based

simulations. One strategy to get around this issue would be to employ a staged transition from one state to the other

with Markovian progression between the stages [38–40]. This is the approach of defining an alternative Markovian

dynamics in a space with additional degrees of freedom, as discussed in the introduction.

A perhaps more elegant solution is to use a modification of the so-called ‘thinning’ algorithm by Lewis [49, 53],

which we will now describe.

The total rate with which any switching event occurs in the population, R(t) =
∑
i ri(t), is time-dependent. One

notes that the probability that voter i changes its opinion given that a reaction occurs at time t, is Pi(t) = ri(t)/R(t).

Lewis’ insight was to add an additional ‘null event’, with a time-dependent rate chosen such that the total rate of

events (actual events and the null event) is constant in time. This is possible provided that R(t) is bounded from

above (we discuss this for our system below). To do this we introduce an auxiliary reaction occurring with rate

R0(t) = Rmax − R(t), where Rmax ≥ maxtR(t). When this additional reaction occurs, nothing happens in the

population. The total reaction rate is now constant in time and equal to Rmax. The individual rates (R0(t), {ri(t)})
are time dependent, and preserve the statistical properties of the original process.

One requirement for this construction is that the total rate R(t) must be bounded from above, R(t) ≤ Rmax

for all t. If the condition pτ < pmax for all τ is satisfied for some pmax, then we can bound R(t) ≤ Rmax ≡
aN + 2pmaxn

−(t)n+(t)/N . The condition pτ < pmax is naturally satisfied for a decreasing function pτ of age τ . In

the event that pτ were unbounded, one could use the alternative approximate simulation method in Ref. [48].

More precisely, we simulate the system as follows:

1. Set t = 0. Initialise all ages τi(0) = 0 and draw the states si(0) from the desired initial distribution.

2. Assume the simulation has reached time t. Set Rmax = aN + 2pmaxn
−(t)n+(t)/N .

3. Draw a uniform random number u from the interval (0, 1] and calculate the time interval to the next event

∆ = − ln u/Rmax. Update time and the ages of all voters such that t→ t+∆, and τi → τi+∆ for i = 1, . . . , N .

4. Choose the type of event to occur (all rates are evaluated at the updated time):

(i) With probability R0(t)/Rmax, nothing happens.

(ii) With probability ri(t)/Rmax, voter i switches opinion, si(t)→ −si(t); set τi(t) = 0; update n±(t).

5. Go to item 2.

One inevitable consequence of the introduction of ageing into the model is that individuals become distinguishable;

each individual transitions with a different rate. This means that there are N possible events to consider rather than

simply two events, as would be the case for the voter model without ageing. The above algorithm comes as close to

replicating the efficiency of the Gillespie algorithm as is feasible, given the far greater number of possible events to

consider.
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III. DETERMINISTIC APPROXIMATION FOR THE MODEL WITHOUT SPONTANEOUS OPINION

CHANGES (a = 0)

We now set out to determine analytically how continuous ageing affects the approach to consensus in the model

without spontaneous opinion changes (a = 0). We examine the model with spontaneous changes of opinion (a > 0)

in Section V.

We could, in principle, begin by writing down the generating functional [26, 33] using the rates in Eq. (2) and then

perform a system-size expansion to obtain a systematic approximation to the individual-based dynamics. With that

being said, we suppose for now that N is large enough that fluctuations (of order 1/
√
N) in the numbers of voters

in either state can be ignored and we simply aim at writing down deterministic rate equations for the concentrations

x±(t) = n±(t)/N . This approach is valid in the thermodynamic limit N →∞. We relax the deterministic assumption

in Section V, where we examine stochastic fluctuations about deterministic fixed points.

Let us consider a small interval of time ∆t. At time t, the average number of individuals in the state ±1 and

ages in the interval [τ, τ + ∆t) is ∆tNx±(τ, t). Following Eq. (2), during the time interval [t, t + ∆t) each one of

these agents switches state with probability ∆t pτ x
∓(t). Noting that the number of voters in state ±1 with ages in

[τ + ∆t, τ + 2∆t) at time t+ ∆t is equal to the number of voters in the same state at time t with ages in [τ, τ + ∆t)

minus the number of those voters that change state in the interval [t, t+ ∆t), we find

N∆tx±(τ + ∆t, t+ ∆t) = N∆tx±(τ, t)− [∆tNx±(τ, t)]× [∆t pτ x
∓(t)]. (4)

Expanding the left-hand-side to first order in ∆t and taking limit ∆t→ 0, we obtain

∂x±(τ, t)

∂t
+
∂x±(τ, t)

∂τ
= −pτx∓(t)x±(τ, t). (5)

This equation has to be implemented with an initial condition x±(τ, t = 0). If all ages are set to τ = 0 at t = 0, then

the initial condition is

x±(τ, t = 0) = x±0 δ(τ), (6)

where x±0 = x±(t = 0) are the initial proportions of voters holding the ±1 opinion, and δ(·) is the Dirac-delta function.

Further, the average number of voters arriving at the state ±1 during the time interval [t, t + ∆t) and subsequently

adopting age τ = 0 can be approximated by ∆tNx±(t)
∫ t

0
du pu x

∓(u, t). The number of agents with zero age is hence

n±(τ = 0, t) = Nx±(t)
∫ t

0
du pu x

∓(u, t). This encapsulates the influx of age-zero voters into state ±1 due to opinion

changes at time t, and translates into the boundary condition

x±(τ = 0, t) = x±(t)

∫ t

0

du pux
∓(u, t). (7)

Eq. (5) along with the initial condition in Eq. (6) and the boundary condition in Eq. (7) are the basis of our analysis.

Following [33, 56–58], we use the method of characteristics to solve Eq. (5). Parameterising the coordinates t and

τ such that

τ = s, t = c+ τ, (8)

one finds along characteristics of constant c that

dx±(s, s+ c)

ds
=
∂x±(τ, t)

∂t

dt

ds
+
∂x±(τ, t)

∂τ

dτ

ds
=
∂x±(τ(s), t(s))

∂t(s)
+
∂x±(τ(s), t(s))

∂τ(s)

= −psx∓(s+ c)x±(s, s+ c). (9)

This can be solved to yield

x±(s, s+ c) = x±(0, c)e−
∫ s
0
du pux

∓(c+u). (10)
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We then obtain in the original coordinates t and τ

x±(τ, t) = x±(0, t− τ)e−
∫ τ
0
ds psx

∓(t−τ+s), t ≥ τ. (11)

Note that this expression is not yet a closed solution since x∓(·) appears on the right-hand-side. This quantity must

satisfy Eq. (3). The factor x±(0, t− τ) in front of the exponential is given by the boundary condition in Eq. (7).

The expression in Eq. (11) has a simple interpretation. The right-hand-side accounts for voters that switch at an

earlier time t − τ (and hence become age-zero agents at that time), and who then survive τ units of time without

switching opinions again. The exponential factor in Eq. (11) is the probability that such a voter does not change

opinion in this time interval.

We can also integrate Eq. (5) directly with respect to τ and use Eqs. (3) and (7) to obtain an integral-differential

equation for the evolution of x±(t):

dx±(t)

dt
= x±(t)

∫ ∞
0

dτ pτx
∓(τ, t)− x∓(t)

∫ ∞
0

dτ pτx
±(τ, t). (12)

The initial condition in Eq. (6) implies x±(τ > t, t) = 0 (no agent can have an age larger than the current time t), so

that the upper limits of the integrals can be replaced by t,

dx±(t)

dt
= x±(t)

∫ t

0

dτ pτx
∓(τ, t)− x∓(t)

∫ t

0

dτ pτx
±(τ, t). (13)

This is to be implemented with the initial condition Eq. (6), which implies x±(t = 0) = x±0 . The first term on

the right-hand side of Eq. (13) describes the influx of voters newly converted to the ±1 opinion. The second term

represents the outflux of voters, namely those that are converted to the ∓1 opinion. Again, these equations are not

closed in terms of x±(t). Nevertheless, as discussed in the next section, they can be used as a starting point to analyse

the approach to the consensus states x+ = 0 or x+ = 1.

IV. ORDERING DYNAMICS WITH CONTINUOUS AGEING

In the conventional voter model without ageing, consensus is reached through fluctuations, i.e. there is no deter-

ministic drift driving the system to absorption. As we show below, the system with a power-law ageing profile pτ
instead moves deterministically towards consensus. On the other hand, when the ageing profile decays exponentially,

the system tends towards a frozen state which is dependent on the initial configuration of opinions. In the case where

a constant value of the switching propensity pτ → p∞ is approached as τ → ∞, we show instead that the ultimate

fate of the system is determined by whether pτ is an increasing or decreasing function of τ . If p0 > p∞, then the

system approaches consensus. If p0 < p∞, consensus is not achieved.

These observations were also made in the case of discrete ageing [38]. However, our objective here is to demonstrate

the relative ease with which the results can be derived in the model with continuous ageing. For the power-law ageing

profile, we demonstrate additionally that the ensemble-averaged number of agents in a specific opinion satisfies a

fractional differential equation. We also verify our results numerically with the aforementioned thinning algorithm.

A. Linearisation close to the absorbing state

We now examine the behaviour close to the absorbing state of consensus at x− = 1 (and x+ = 0). A similar analysis

could be performed for the state x− = 0 (and x+ = 1). Here, we assume that x+(t) is a small quantity and examine

its time-dependence. With this in mind, we can linearise Eqs. (11) and (12) in terms of x+(t). Our aim is then to

eliminate the age variable τ from these linearised equations in order to find a closed equation for x+(t).

To carry out the analysis, we start at time t = 0 with x+
0 = ε and x+(τ, 0) = εδ(τ). We then have x−(0) = 1 − ε,

and we set x−(τ, 0) = (1− ε)δ(τ). We assume ε� 1, and – within a linear expansion – that x+(t) and x+(τ, t) remain

of order ε, and neglect terms of order ε2 and higher.
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We focus on the expression for x+(τ, t) resulting from Eq. (11). Within the linear expansion in ε, we can replace

x−(t− τ + s) = 1 in the exponential. Reiterating that x+(τ, t) = O(ε), we then obtain

x+(τ, t) = x+(0, t− τ)Ψ(τ) +O(ε2), (14)

with the survival probability Ψ(t) = e−
∫ t
0
dτ pτ .

We next write pτ = ψ(τ)/Ψ(τ) where ψ(t) = −dΨ(t)
dt is the probability density function of switching times for an

agent who is of age zero at time t = 0. As shown in Appendix A, the second term of the right-hand-side of Eq. (13)

can then be written as ∫ t

0

dτ pτx
+(τ, t) =

∫ t

0

dτ K(τ)x+(t− τ), (15)

where the memory kernel K(τ) is defined via its Laplace transform K̂(u) = ψ̂(u)/Ψ̂(u).

For the first integral in the right-hand-side of Eq. (13), we use the fact that the number of agents in state +1 is of

order ε, within our approximation. The fraction of agents that can switch out of state −1 is then also (at most) of

order ε. Noting that all agents have age zero at the beginning, the age of agents who remain in the state −1 up to

time t is t, and we have x−(τ, t) = (1 − ε)δ(t − τ) + O(ε). The first term describes the agents that did not change

state, and there is an O(ε) correction from agents who do change state. Hence,∫ t

0

dτ pτx
−(τ, t) = pt +O(ε). (16)

Replacing x−(t) = 1 +O(ε) and the above results in Eq. (13) we finally arrive at

dx+

dt
= ptx

+(t)−
∫ t

0

dτ K(τ)x+(t− τ). (17)

We have thus achieved our goal of eliminating the age coordinates in favour of the global variable x+(t). One notes

that in place of this single equation, the linearisation in Ref. [38] gave rise to a pair of coupled equations, one governing

the influx of voters into a particular opinion, the other governing the total number in that opinion.

B. Power-law ageing and the approach to consensus

Let us now consider a particular example of the approach to consensus in the presence of ageing. Consider the

power law ageing profile

pτ =
γ

t0 + τ
, (18)

with constants γ > 0, t0 > 0. The corresponding survival function and distribution of switching times are, respectively,

Ψ(τ) =

(
1 +

τ

t0

)−γ
, ψ(τ) =

γ

t0

(
1 +

τ

t0

)−(1+γ)

. (19)

respectively. Here we consider only the case 0 < γ < 1 (see Appendix B for a discussion of the case of γ ∈ N).

1. Fractional differential equation

We now show that the concentration of voters in state +1 can be approximated by a fractional differential equation

upon the approach to consensus. We first compute the Laplace transform of Ψ(τ) as

Ψ̂(u) = t0e
t0u(t0u)−1+γΓ[1− γ, t0u], (20)
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where Γ(·, ·) is the incomplete Gamma function. For γ < 1 we now investigate the limit of small u. One finds, to

leading order,

K̂(u) ≈ u1−γ

T γ
, (21)

where T γ = Γ(1− γ)tγ0 , and Γ(·) is the standard gamma function.

It is now useful to recall that the Riemann-Liouville fractional derivative of a function f(t) is defined as [35]

0D
1−γ
t f(t) =

1

Γ(γ)

∂

∂t

∫ t

0

dt′
f(t′)

(t− t′)1−γ , (22)

and that it has the following Laplace transform

L
[

0D
1−γ
t f(t)

]
= u1−γ f̂(u). (23)

Taking the Laplace transform of the second term on the right-hand side of Eq. (17), substituting the expression for

the memory kernel in Eq. (21) and using (23), one then finds, after transforming back to t,

dx+

dt
≈ γx+(t)

t
− 1

tγ0Γ(1− γ)
0D

1−γ
t

[
x+(t)

]
. (24)

This fractional differential equation is valid for t� t0.

2. Asymptotic behaviour

We now deduce the scaling of x+(t) for large times. We multiply both sides of Eq. (24) [or equivalently of Eq. (17)]

by t, and then take a Laplace transform. Using the fact that L [tf(t)] = − d
du f̂(u), one obtains after some algebra

[
1 + γ +

(1− γ)

tγ0Γ(1− γ)
u−γ

]
x̂+ +

[
u+

u1−γ

tγ0Γ(1− γ)

]
dx̂+

du
= 0. (25)

This can be solved to yield

x̂+(u) = C
uγ−1

1 + tγ0Γ(1− γ)uγ
, (26)

where C is a constant. For small u we therefore have x̂+(u) ∼ uγ−1. Using the Tauberian theorem [58–60]

x̂(u) ∼ uγ−1 ⇔ x(t) ∼ t−γ , (27)

we therefore find that x+(t) ∼ t−γ at long times. This scaling behaviour is verified in Fig. 1.
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FIG. 1. The ageing-induced power-law approach to consensus. Individual-based simulations of the ageing voter model were

performed using the method given in Section II B for the case where pτ = γ/(t + t0). The solid red line is the mean 〈x+(t)〉
averaged over 1000 trials and the dotted black line is x+(t) = t−γ . The remaining system parameters were γ = 0.8, N = 100,

t0 = 0.8.

C. Ageing profile with non-zero asymptotic value

We now consider an ageing profile that tends to a finite value at infinite age,

pτ = p∞ +
γ

t0 + τ
, (28)

with constants p∞ > 0, t0 > 0. From this definition, we note that γ = (p0 − p∞)t0.

If γ > 0, then pτ is a decreasing function of τ as p∞ < p0. In this case, as in the ones we considered before, agents

become more ossified in their views if they maintain their opinions. However, in contrast to the previous cases, there

now remains a residual propensity for change even at very large ages τ . If, on the other hand, p∞ > p0, i.e., γ < 0

(but also γ > −p∞t0 to ensure that pτ > 0, ∀τ), then the propensity to change state increases with age (but is limited

from above by the finite value p∞). We call this ‘anti-ageing’.

To analyse if consensus is reached for this functional form of the ageing profile, we take Eq. (17) as a starting

point. The kernel K(τ) = L−1
[
1/Ψ̂(u)− u

]
can be computed from the knowledge of the Laplace transform of

Ψ(t) = e−p∞t(1 + t/t0)−γ

Ψ̂(u) = t0e
t0(u+p∞)[t0(u+ p∞)]−1+γΓ[1− γ, t0(u+ p∞)]. (29)

In order to find the asymptotic solution of Eq. (17), we replace pt in the first term on the right-hand side of the

equation by its asymptotic value p∞. We note that we retain the dependence of the ageing profile on γ in the

second term [through the expression in Eq. (29)]. Upon taking the Laplace transform of that equation and using

L
[
dx+(t)
dt

]
= ux̂+(u)− x+(0). We find after some algebra that

x̂+(u) =
x(0)

1
Ψ̂(u)

− p∞
. (30)

A detailed analysis of this equation, shows that the right-hand-side has a single pole at a value u∗ whose position

depends on the value of γ. Inverting the Laplace transform, the pole translates into an asymptotic behavior x+(t) ∼
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eu
∗t. Furthermore, it can be shown, as illustrated in Fig. 2 for a given choice of the remaining model parameters,

that the value of u∗ is negative for γ > 0 (ageing) and positive for γ < 0 (anti-ageing). Therefore, we conclude

that the ageing mechanism with a final non-zero value of the activation probability leads to consensus only when

this final value is approached from above. On the other hand, a situation of disorder (lack of consensus) is obtained

when the final value of pτ is approached from below. This counter-intuitive result agrees with the results observed

in the discrete version of the model [38]. We show in Fig. 3 the decay of the density x+(t) in the particular case

t0 = 0.8, p∞ = 0.5, γ = 0.1, together with the exponential functional form eu
∗t.

-0.4

-0.2

0.0

0.2

0.4

-1 -0.5  0  0.5  1  1.5  2

Keep Adopt

u*

γ

FIG. 2. The location of the pole u∗ of the right-hand-side of Eq. (30), given by the solution of Ψ̂(u∗) = 1
p∞

, as a function of γ

for t0 = 2.0, p∞ = 0.5. Note that the sign of u∗ matches that of γ (see the text for the discussion of this result).
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t

10−4
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FIG. 3. We plot (solid line) the evolution of the average density 〈x∗(t)〉 of agents holding the +1 opinion as a function of time

t using the functional form for the activation rate given by Eq. (28) with p∞ = 0.5, t0 = 0.8, γ = 0.1. The results have been

averaged over 100 realizations of the stochastic dynamics starting at x∗(0) = 0.2. The dashed line is the theoretical prediction

of an asymptotic exponential decay x+(t) ∼ eu
∗t with a value of u∗ = −0.0517 given by the solution of Ψ̂(u∗) = 1

p∞
, the pole

of the right-hand-side of Eq. (30).
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D. Exponential ageing and the frozen state

To demonstrate how severely the qualitative behaviour of the deterministic dynamics can be affected by the precise

choice of ageing profile we now consider the case of exponential ageing,

pτ = p0e
−τ/t0 . (31)

The corresponding survival function is Ψ(τ) = exp
[
−p0t0

(
1− e−τ/t0

)]
, and the distribution of survival times is

ψ(τ) = p0e
−τ/t0 × exp

[
−p0t0

(
1− e−τ/t0

)]
.

In this special case, Eq. (17) becomes, after taking the Laplace transform and multiplying through by Ψ̂(u) [and

noting that 1− uΨ̂(u) = ψ(u) and that L
{
e−t/t0x+(t)

}
= x̂+(u+ 1/t0)],

x̂+(u) = x+(0)Ψ̂(u) + p0x̂(u+ 1/t0)Ψ̂(u). (32)

One can expand this expression as an infinite series to obtain

x̂(u) = x+(0)
[
Ψ̂(u) + p0Ψ̂(u)Ψ̂(u+ 1/t0) + p2

0Ψ̂(u)Ψ̂(u+ 1/t0)Ψ̂(u+ 2/t0) + · · ·
]
. (33)

One can also find a series solution for Ψ̂(u) by first expanding Ψ(t) as a series in e−t/t0 . One finds

Ψ̂(u) = e−p0t0
[

1

u
+
p0t0
1!

t0
1 + ut0

+
(p0t0)2

2!

t0
2 + ut0

+
(at0)3

3!

t0
3 + ut0

· · ·
]
. (34)

If we now define

fn(p0t0) =
1

n
+
p0t0
1!

1

1 + n
+

(p0t0)2

2!

1

2 + n
+

(p0t0)3

3!

1

3 + n
· · · , (35)

we obtain an expression for the final value x+(∞) as a series entirely in the dimensionless parameter p0t0 by using

the final value theorem for Laplace transforms [61]

x+(∞) = lim
u→0

ux̂(u) = x+(0)e−p0t0
[
1 + p0t0e

−p0t0f1 + (p0t0)2e−2p0t0f1f2 + · · ·
]
, (36)

where fn is a short-hand for fn(p0t0).

We therefore see that when the rate of switching decays exponentially, consensus never occurs on the deterministic

level. One can thus find x+(∞) as a function of the rate parameters and the starting value. We verify the expression

for the frozen state in Eq. (36) in Fig. 4.
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FIG. 4. The final frozen state in the case of exponentially decaying transition rate. Results of individual-based simulations of

the ageing voter model were performed using the Lewis method (see Section II B) for the case where pτ = p0e
−t/t0 . The red

points are the simulation results for the mean 〈x+(t)〉 averaged over 100 trials and the dotted black line is the series in Eq. (36)

truncated after 100 terms. The remaining system parameters were t0 = 1, N = 1000.

V. MODEL WITH SPONTANEOUS OPINION CHANGES (a > 0)

Having studied the effect that continuous ageing has on the approach to consensus, we now allow for the possibility

of spontaneous changes of opinion. Without ageing this is known in the literature as the ‘noisy voter’ or Kirman

model [54, 55, 62]. That is, now each voter changes its opinion with a constant rate a 6= 0 [see Eq. (2)] as well as

copying others at an age-dependent rate pτn
∓/N .

We demonstrate here how the order-disorder transition in the noisy voter model is modified in two different ways.

First, the transition in the noisy voter model is discontinuous, in the sense that the mode of the stationary distribution

has a discontinuity at the transition. As we will show, there is no such discontinuity in the models with ageing that we

consider. Second, the transition occurs at a value of a that scales as N−1 in the noisy voter model without ageing, that

is, this is a finite-size transition. In the model with ageing instead, the value of a at which the transition occurs does

not depend on the system size N , and remains non-zero as N →∞. Similar results were also derived in Refs. [39, 40]

for the case of staged ageing. We show here that modelling ageing as a continuous process makes the analysis more

straightforward than in the case of staged ageing.

In addition to studying the transition on a deterministic level, we also show how the fluctuations about the de-

terministic fixed points can be quantified. We show that the stationary distribution can be approximated using an

adiabatic elimination [39].

A. Continuous phase transition

Let us now revise the deterministic rate equation Eqs. (5) and (7) to include spontaneous changes of opinion. One

obtains

∂x±(τ, t)

∂τ
+
∂x±(τ, t)

∂t
= −[a+ pτx

∓(t)]x±(τ, t) (37)
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With initial and boundary conditions:

x±(τ, t = 0) = x±(0)δ(τ),

x±(τ = 0, t) =

∫ t

0

dτ [a+ pτx
±(t)]x∓(τ, t). (38)

Now we suppose that there exists a stationary solution such that ∂x(τ,t)±

∂t = 0, and we write x±(τ, t) → x̄±(τ) for

the stationary profile of agents across ages. We also introduce x̄± =
∫∞

0
dτ x̄±(τ). We wish to solve Eq. (38) for this

stationary profile x̄±(τ). For τ 6= 0, we have

∂x̄±(τ)

∂τ
= −[a+ pτ x̄

∓]x̄±(τ), (39)

which yields

x̄±(τ) = x̄±(0) exp

[
−aτ − x̄∓

∫ τ

0

ds ps

]
. (40)

Now using the boundary condition in Eq. (38), one obtains the following expression for the stationary influx of

voters into the states ±

x̄±(0) =

∫ ∞
0

dτx̄∓(τ)
[
a+ pτ x̄

±] . (41)

Substituting Eq. (40) into Eq. (41), and realising that the integral over τ becomes trivial, we obtain

x̄+(0) = x̄−(0) ≡ x̄(0). (42)

We note that x̄±(τ = 0) describes agents that have newly arrived in state ±1 (and hence have age zero). Hence, this

is the influx of agents into state ±1 in the stationary state. It is then clear why Eq. (42) must hold: if the influxes

into the two opinion states were different from each other, then there would be a net flow of agents from one state to

the other, and the system would be non-stationary.

Next, integrating both sides of Eq. (40) with respect to τ , and using x̄+(0) = x̄−(0), we arrive at the following

closed equation for x̄+

1

x̄+

∫ ∞
0

dτ exp

[
−aτ − (1− x̄+)

∫ τ

0

ds ps

]
=

1

1− x̄+

∫ ∞
0

dτ exp

[
−aτ − x̄+

∫ τ

0

ds ps

]
. (43)

For any given ageing profile pτ , Eq. (43) can be solved for the deterministic fixed point x̄+. We note that the trivial

solution x̄+ = 1/2 always exists. However, there are ageing profiles for which there are further non-trivial solutions.

We consider the specific example pτ = γ/(t0 + τ). Evaluating the integrals in Eq. (43), we define

I(x̄+) ≡
∫ ∞

0

dτ exp

[
−aτ − x̄+

∫ τ

0

ds ps

]
=

∫ ∞
0

dτ

(
1 +

τ

t0

)−γx̄+

e−aτ = a−1(t0a)γx̄
+

eat0Γ
(
1− γx̄+, t0a

)
. (44)

One thus finds the fixed points x̄+ and x̄− = 1− x̄+ by solving

1− x̄+

x̄+
=

I(x+)

I(1− x̄+)
. (45)

There is no closed-form analytical solution in this case, but Eq. (45) can be solved numerically. We find (see Fig. 5)

that for certain values of a, multiple solutions are possible. As a is increased, the non-trivial fixed points converge to

the central value x̄+ = 1/2 and we are left with the usual coexistence stationary state. Importantly, the value of a

at which the bifurcation occurs is independent of N , and the transition is now preserved in the thermodynamic limit

N →∞.
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FIG. 5. Ageing-modified noise-induced phase transition. Here t0 = 1, γ = 2, N = 100. Coloured crosses represent the modal

value of the magnetisation m = |x+ − x−| = |2x± − 1| obtained from simulations using the method detailed in Section II B.

The dashed line is the solution of Eq. (45).

B. Fluctuations about the steady state

Having found the deterministic fixed points of the noisy voter model with ageing, we now improve on this picture

by including the stochastic fluctuations about these fixed points. Because the rates at which voters change from one

opinion to the other are both concentration dependent and non-Markovian, a Gaussian approximation to the noise

along the lines of Ref. [33] is difficult to achieve. In the present case, we instead make an adiabatic approximation [39].

That is, we imagine that there is a separation of time scales between the time it takes for the stationary distribution

of ages to be arrived at and the time between large changes in the population of opinions. More precisely and as

described below, we assume that the profile of ages in the population is stationary given the current distribution of

agents n±(t) across the two opinion states ±1.

We begin by noting that the total rates at which voters of age τ switch from opinion ± to ∓ in the population at

time t are given by

Ω±τ (t) =
[
a+ pτx

±(t)
]
n∓(τ, t). (46)

We stress that we use ± as a superscript for the rate for transitions from ∓ to ±.

We now regard the global quantities x±(t) = n±(t)/N as slow variables to which the quantities n±(τ, t) are

enslaved. One can then replace n±(τ, t) with their stationary averages, conditioned on the global variables n±(t).

That is, n±(τ, t) satisfy [c.f. Eq. (40)]

n̄±(τ, t) = n±(0, t) exp

[
−aτ − n∓(t)

N

∫ τ

0

ds ps

]
. (47)

From Eq. (46) we obtain

Ω±(t) ≡
∫ ∞

0

dτ Ω±τ (t) =

∫ ∞
0

dτ
[
a+ pτx

±(t)
]
n∓(τ, t) = n∓(0, t), (48)

where we have used Eq. (47) in the last step, and the fact that the integral over τ can be carried out directly.

Further, integrating both sides of Eq. (47) with respect to τ , and using the definition of I(x±) in Eq. (44), we have

n±(t) = n±(0, t)I(x∓).

Ω±(t) =
n∓(t)

I[x±(t)]
. (49)
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The stationary state for n± can now be approximated from the one-step process for n+. We have n+ → n+ − 1

with rate Ω−(n+) = n+/I[(N − n+)/N ], and n+ → n+ + 1 with rate Ω+(n+) = (N − n+)/I[n+/N ].

Using the well-known result for the WKB (or Eikonal) approximation of the stationary distribution of the master

equation Pst(x
+) ∝ exp

{
N
∫ x+

dy ln
[

Ω+(Ny)
Ω−(Ny)

]}
[63], one finally obtains

Pst(x
+) ∝ exp

{
N

∫ x+

dy ln

[
(1− y)I(1− y)

yI(y)

]}
. (50)

This approximation for the stationary state is verified in Fig. 6. One notes that the maxima of the stationary

distribution are given by the fixed points in Eq. (43). Our approximation of the stationary distribution is valid in

parameter regimes where there is only one fixed point. In the vicinity of the transition point and beyond, the adiabatic

approximation no longer applies.

FIG. 6. The stationary distribution of the concentration x+ for various values of the noise strength [(a) a = 1, (b) a = 0.2, (c)

a = 0.126]. The age-dependent rate in Eq. (18) was used with fixed parameters t0 = 1, γ = 2 and N = 100. Coloured crosses

are the results of simulations using the Lewis’ method discussed in Section II B and the dashed line is given by Eq. (50).

VI. DISCUSSION AND CONCLUSION

In this work we have studied an augmented version of the voter model, in which the rate at which individuals are

persuaded to change their opinion depends on their age, i.e., on the time since the individual last changed opinion.

Our analysis is based on numerical approaches and on analytical approximations. We outlined a modified version

of Lewis’ thinning algorithm, which allowed us to carry out efficient simulations of the system. We then went on to

analytically characterise the deterministic dynamics (the analog of rate equations in this non-Markovian system) for
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the voter model with ageing, but without the possibility for agents to change opinions spontaneously. Depending on

the form of the ageing profile, we find both a power-law and exponential approaches to consensus, as well as frozen

states in which both opinion states remain in the population indefinitely.

Allowing the possibility of spontaneous opinion changes the behaviour of the system. We demonstrated within a

deterministic approximation that the fixed points then undergo a pitchfork bifurcation at a critical value of the propen-

sity to spontaneously change opinions. Unlike in the conventional voter model (without ageing) the location of the

transition point does not depend on the size of the population, and the transition remains even in the thermodynamic

limit.

Even though no simple master equation can be formulated for the model (due to its non-Markovian dynamics), we

were also able to go beyond a deterministic description, providing an approximation to the stationary distribution

of fluctuations about the fixed points. Depending on the rate of spontaneous opinion changes, we find unimodal or

bimodal distributions for the number of agents in either opinion state.

The use of continuous ageing has several advantages in comparison to earlier models with discrete ageing. First,

it is a much more natural way to describe the ageing process – changes in the proclivity of individuals to alter their

opinions do not occur suddenly, but rather vary gradually. Further, the expressions that are obtained from the

analytical treatment are more compact. For example, we obtain a closed equation for the approach to consensus in

Eq. (17), whereas two coupled equations were required in Ref. [38]. With this equation we were able to find for several

ageing profiles whether or not the system reaches asymptotically the consensus state and at what rate.

The types of equations that we encounter in this work are familiar from other problems in which memory effects

are important. For example, the convolution with the memory kernel in Eq. (17), which resulted from our elimination

of the age variables, is also found in the context of anomalous diffusion [33, 56], and in systems with distributed

delay [26, 28]. Our work therefore connects the voter model with ageing with this existing literature. We also showed

that the memory kernel can be traded for a fractional derivative for survival time distributions with a power-law tail

with an exponent γ between zero and one. This is a general trait in non-Markovian systems [34, 35].

One feature that sets the voter model with ageing apart from many existing systems with non-Markovian dynamics

is the fact that the rate with which agents change opinion depends on the fraction of voters in the opposite state.

Hopping rates in systems with anomalous diffusion in contrast typically do not depend on the concentration of other

substances in the system [60]. Similarly, delayed recovery in a model of epidemics does not depend on, say, the

number of susceptible or recovered agents in the population. The concentration dependence in the reaction rates adds

a layer of complexity in the voter model with ageing. It is the combination of non-Markovianity and concentration-

dependence that meant we had to linearise about the absorbing state in order to eliminate the age variable τ . No

such linearisation was required to eliminate the age variables in, for example, Refs. [26, 28, 33, 56, 57].

We envisage that the approaches developed here could be useful for a variety of other problems. The thinning

algorithm by Lewis [49] is somewhat undervalued in our opinion and can be modified for systems beyond those

involving single-species Poisson processes for which it was originally conceived. We have here shown how the algorithm

can be used for systems in which the reaction rates at a given point vary in time due to a dependence on the state

of the system at an earlier time. We also anticipate that the analytical methods we used could be applied in

other systems. Fluctuations in subdiffusive systems or gene regulatory circuits are often treated using a Gaussian

approximation [28, 29, 33]. One future avenue might be to try to eliminate the equivalent of the ageing variable in

those systems along the lines of what we have done in Sec. V B. One could then try to characterise the stationary

distribution of these models based on a reduced Markovian birth-death process. As a further line of future work, our

method for studying the approach to consensus could also be re-purposed for the approach to absorbing states in

more general non-Markovian models. The approach to fade-out in models of an epidemic could be an example.
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Appendix A: Derivation of Eq. (17).

We recall the definition of the Laplace transform L[f(t)] ≡ f̂(u) =
∫∞

0
dt f(t)e−ut of an arbitrary function f(t) and

the convolution theorem L
[∫ t

0
dτ f(τ)g(t− τ)

]
= f̂(u)ĝ(u).

We start from the integral in the second term on the right-hand side of Eq.(13), and use Eq. (14) to leading order

in ε, we obtain ∫ t

0

dτ pτx
+(τ, t) =

∫ t

0

dτ pτΨ(τ)x+(0, t− τ)

=

∫ t

0

dτ ψ(τ)x+(0, t− τ)

= L−1

[
L
[∫ t

0

dτ ψ(τ)x+(0, t− τ)

]]
= L−1

[
ψ̂(u)L

[
x+(0, t)

]]
= L−1

[
ψ̂(u)

Ψ̂(u)
Ψ̂(u)L

[
x+(0, t)

]]

= L−1

 ψ̂(u)

Ψ̂(u)
L

∫ t

0

dτ Ψ(τ)x+(0, t− τ)︸ ︷︷ ︸
=x+(τ,t), [Eq. (14)]




= L−1

[
ψ̂(u)

Ψ̂(u)
L
[
x+(t)

]]

=

∫ t

0

dτ K(τ)x+(t− τ), (A1)

We have used
∫ t

0
dτ x+(τ, t) = x+(t), and defined the memory kernel via its Laplace transform K̂(u) = ψ̂(u)/Ψ̂(u).

Using the known properties of the Laplace transform, one finds ψ̂(u) = 1− uΨ̂(u), leading to K̂(u) =
1

Ψ̂(u)
− u.

Appendix B: An alternative to the linearised Eq. (17).

In Section IV A, we derived a linearised integro-differential equation [see Eq. (17)] for the evolution of the global

fraction x+(t) close to the consensus state x− = 1, x+ = 0. In this section, we explore an alternative integral equation

and apply it to the ageing profile of section IV B for the case with γ ∈ N.

Taking the characteristics solution for x+(τ, t), Eq. (11), around the absorbing state x− = 1, x−(τ, t) = δ(t − τ),

and using the boundary condition Eq. (7), we have

x+(τ, t) = x+(0)δ(t− τ)e−
∫ τ
τ−t dupu + Θ(t− τ)x+(t− τ)pt−τe

−
∫ τ
0
dupu , (B1)

where Θ(z) is the Heaviside function, Θ(z) = 0 for z ≤ 0 and Θ(z) = 1 for z > 0.

Using the definitions of the survival probability Ψ(τ), this reduces to

x+(τ, t) = x+(0)δ(t− τ)
Ψ(τ)

Ψ(τ − t) + Θ(t− τ)x+(t− τ)pt−τΨ(τ). (B2)

Integrating over
∫∞

0
dτ we find

x+(t) = x+(0)Ψ(t) +

∫ t

0

dτpτx
+(τ)Ψ(t− τ), (B3)

which is a closed integral equation for x+(t).
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For the special case pτ = γ/(t0 + τ), we have Ψ(t) = (1 + t/t0)−γ and Eq. (B3) becomes

x+(t) =
x+(0)

(1 + t/t0)γ
+ γ

∫ t

0

x+(τ)

(t0 + τ)(1 + (t− τ)/t0)γ
dτ. (B4)

For γ ∈ N, we apply a partial fraction decomposition to the integral kernel, which is a rational polynomial function.

We obtain a sum of simple fractions

1

(t0 + τ)(1 + (t− τ)/t0)γ
=

1

(2 + t/t0)γ(t0 + τ)
+

γ∑
n=1

tγ−n0

(2 + t/t0)n(t0 + t− τ)γ−n+1
. (B5)

Introducing Eq. (B5) in Eq. (B4), we have

x+(t) =
x+(0)

(1 + t/t0)γ
+

γ

(2 + t/t0)γ

∫ t

0

x+(τ)

t0 + τ
dτ + γ

γ∑
n=1

tγ−n0

(2 + t/t0)n

∫ t

0

x+(τ)

(t0 + t− τ)γ−n+1
dτ. (B6)

We note that if x+(t) ∼ (t0 + t)−γ , the first two terms of Eq. (B6) also have the asymptotic behaviour ∼ t−γ for

t → ∞. We now prove that the remaining terms decay faster than this and therefore that x+(t) ∼ (t0 + t)−γ is a

self-consistent solution to Eq. (B6).

First consider the following auxiliary series decomposition

1

(t0 + τ)γ(t0 + t− τ)γ−n+1
=

γ∑
m=1

Am
(2t0 + t)2γ−n+1−m(t0 + τ)m

+

γ−n+1∑
m=1

Bm
(2t0 + t)2γ−n+1−m(t0 + t− τ)m

, (B7)

where Am and Bm are (constant) coefficients. Eq. (B7) corresponds to the integrand in the terms of the sum in Eq.

(B6) after introducing the proposed solution x+(t) ∼ (t0 + t)−γ . This fraction decomposition allow us to perform the

integrals in Eq. (B6), from which we conclude that asymptotically the leading term corresponds to∫ t

0

dτ

(t0 + τ)γ(t0 + t− τ)γ−n+1
≈ t−γ+1

0

γ − 1

Aγ
(2t0 + t)γ−n+1

. (B8)

Thus, we have

1

(2 + t/t0)n

∫ t

0

x+(τ)

(t0 + t− τ)γ−n+1
dτ ∼ t−γ−1. (B9)

As a result, We see that the asymptotics of the solution x+(t) in Eq. (B6) satisfy t−γ for γ ∈ N, which is the the same

scaling behaviour as the previously studied case with 0 < γ < 1 in Section IV B.
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[39] Antonio F Peralta, Nagi Khalil, and Raúl Toral. Reduction from non-Markovian to Markovian dynamics: the case of aging

in the noisy-voter model. Journal of Statistical Mechanics: Theory and Experiment, 2020(2):024004, 2020.

[40] Oriol Artime, Antonio F Peralta, Raúl Toral, José J Ramasco, and Maxi San Miguel. Aging-induced continuous phase

transition. Physical Review E, 98(3):032104, 2018.

[41] Oriol Artime, Adrián Carro, Antonio F. Peralta, José J. Ramasco, Maxi San Miguel, and Raúl Toral. Herding and
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[48] Marian Boguná, Luis F Lafuerza, Raúl Toral, and M Ángeles Serrano. Simulating non-Markovian stochastic processes.

Physical Review E, 90(4):042108, 2014.

[49] PA W Lewis and Gerald S Shedler. Simulation of nonhomogeneous Poisson processes by thinning. Naval research logistics

quarterly, 26(3):403–413, 1979.

[50] L. F. Lafuerza and R. Toral. Role of delay in the stochastic creation process. Physical Review E - Statistical, Nonlinear,

and Soft Matter Physics, 84(2):1–9, 2011.

[51] L. F. Lafuerza and R. Toral. Exact solution of a stochastic protein dynamics model with delayed degradation. Physical

Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(5):051121, 2011.

[52] Joseph W. Baron and Tobias Galla. Effective diffusion coefficients in reaction-diffusion systems with anomalous transport.

Phys. Rev. E, 99:012212, Jan 2019.

[53] Yosihiko Ogata. On Lewis’ simulation method for point processes. IEEE transactions on information theory, 27(1):23–31,

1981.

[54] Boris L. Granovsky and Neal Madras. The noisy voter model. Stoch. Process. Their Appl., 55(1):23 – 43, 1995.

[55] Alan Kirman. Ants, Rationality, and Recruitment*. Q. J. Econ., 108(1):137–156, 02 1993.

[56] Marcel Ovidiu Vlad and John Ross. Systematic derivation of reaction-diffusion equations with distributed delays and

relations to fractional reaction-diffusion equations and hyperbolic transport equations: Application to the theory of neolithic

transition. Phys. Rev. E, 66:061908, Dec 2002.

[57] Sergei Fedotov and Steven Falconer. Subdiffusive master equation with space-dependent anomalous exponent and structural

instability. Phys. Rev. E, 85:031132, Mar 2012.

[58] S. B. Yuste, E. Abad, and Katja Lindenberg. Reaction-subdiffusion model of morphogen gradient formation. Phys. Rev.

E, 82:061123, Dec 2010.

[59] William Feller. An introduction to probability theory and its applications. Wiley, London, 1957.

[60] Ralf Metzler and Joseph Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics

Reports, 339(1):1–77, 2000.

[61] Joel L Schiff. The Laplace transform: theory and applications. Springer Science & Business Media, New York, 1999.
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