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Abstract
Stem borers (Lepidoptera) are common cereal pests. In many parts of the world, the species Ostrinia nubilalis and Sesamia 
nonagrioides stand out as important insect pests of economically important crops such as maize. Their management relied 
mainly on transgenic host plant resistance over the last 25 years. Technologies based on the insecticidal properties of Bacil-
lus thuringiensis-derived proteins allowed widespread pest population suppression, especially for O. nubilalis. However, the 
recent discovery of Bt resistance, which has revitalized interest in both pests’ biology and management, may jeopardize the 
effectiveness of such transgenic technologies. Historical information on O. nubilalis bionomy may need to be reassessed in 
light of changing climate conditions and changing agricultural practices, as well as increased production of alternate host 
crops across its distribution range. The current paper examines the bioecology and historical research that has been conducted 
to manage these two important maize-boring pests.
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Introduction

Many agricultural crops are affected by stem borers from 
the Crambidae and Noctuidae families (Albajes et al. 2002; 
Agusti et al. 2005; Folcher et al. 2009). Stem borers’ larvae 
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feed by tunneling on the vegetative tissues of host plants, 
resulting in direct qualitative and quantitative yield losses. 
The European corn borer, Ostrinia nubilalis Hübner (Lepi-
doptera: Crambidae), is a cosmopolitan species attacking 
a wide range of robust herbaceous plants (Capinera 2000). 
The Mediterranean corn borer Sesamia nonagrioides Lefeb-
vre (Lepidoptera: Noctuidae) is a polyphagous species with 
a broad host range, primarily feeding on plants within the 
Poaceae family (Cruz and Eizaguirre 2016; Camargo et al. 
2020). However, both economically important pest species 
have a strong preference for maize (Zea mays L.) as a host 
plant in their areas of distribution (Pedigo and Rice 2009; 
Cruz and Eizaguirre 2016). Sesamia nonagrioides and O. 
nubilalis are the main pests of maize crops in those Mediter-
ranean countries where considerable damage by larvae has 
been reported (Malvar et al. 2002). Furthermore, contami-
nation from fungal pathogens entering through larval entry 
holes in the maize stalk or ear can degrade grain quality.

Integrated Pest Management (IPM) is a control strategy 
relying on the monitoring of insect populations and the use 
of environmental resources to control potential pests in an 
economic, ecological, toxicological, social, and long-term 
satisfactory manner. In contrast to the traditional pest control 
strategy, IPM denotes an approach in which a combination 
of methods is used to manage pest populations while taking 
into account environmental impacts and economic efficiency. 
IPM integration in modern agriculture has resulted in recent 
technological advances in pest management and increased 
public awareness of food safety and a healthy-living environ-
ment. In countries where the Bt technology is not allowed 
like most of the European countries, stem borers’ conven-
tional control relies on the foliar spray of broad-spectrum 
synthetic insecticides, with well-known side effects includ-
ing negative impacts on nontarget organisms and the risk 
of resistance development. Besides chemical control, one 
of the most used control tactics against stem borers is the 
cultivation of transgenic maize events expressing Bt pro-
teins. The development of resistance in targeted lepidopteran 
pests is a potential concern for the widely used and very 
effective Bt technology. Only very few reports pointed out 
that Bt transgenic maize expressing Cry1F that had been 
successfully controlling O. nubilalis populations in the past 
is no longer attaining high levels of pest mortality in some 
regions of North American countries like Canada, while O. 
nubilalis populations from Europe remain susceptible to 
Cry1Ab-expressing maize (Thieme et al. 2018; Smith et al. 
2019). The development of O. nubilalis resistant populations 
may be variable in different geographic locations depend-
ing on the environmental conditions, Bt proteins that are 
employed in a regional scale in maize or other crops, level 
of adoption of structured refuge areas, and the possibility 
of cross-resistance. Therefore, the deployment of efficient 
multi-tactics IPM strategies is warranted to keep stem borer 

populations below economic injury levels as these pests can 
become more problematic in damaging transgenic maize in 
the following years.

As stem borers continue to be problematic in maize fields 
worldwide, knowledge about these economically important 
pest species and research on control methods need to be 
updated. To effectively manage stem borers, several control 
methods must be integrated into multi-tactic pest manage-
ment programs. Commercial pheromone-based products 
for monitoring, decision-making support tools, and mating 
disruption should be used in conjunction with biological 
control using natural enemies such as predators, parasitoids, 
as well as entomopathogens. Novel approaches associating 
conventional breeding for resistance to corn stemborers with 
RNAi breakthroughs must be adopted to find applications in 
managing populations of lepidopteran pests. Chemical-based 
methods will continue to be one of the most popular control 
tactics for managing lepidopteran pests even though they can 
be challenging to apply for stem borer control, especially 
in areas where farmers have not yet adopted Bt maize pro-
duction. Therefore, we present a comprehensive review of 
recent trends in IPM options and programs used in regions 
where the two major maize borer pests, O. nubilalis and S. 
nonagrioides, are found.

Geographic distribution and bioecology 
of maize stem borers Ostrinia nubilalis 
and Sesamia nonagrioides

Ostrinia nubilalis originated in Europe and subsequently 
invaded parts of Africa, North America, and Eurasia (Dicke 
and Guthrie 1988; Capinera 2000; Velasco et al. 2007; Las-
sance 2010). In Europe, and based on biological constants 
and climatological data, its northern limit of expansion can 
be attributed to latitude 58° N (Keszthelyi and Somfalvi-Toth 
2020). In North America, the actual distribution of O. nubi-
lalis overlaps with most of the maize-producing regions in 
the USA (east of the Rocky Mountains) and Canada (Hutch-
ison and Cira 2017; Mason et al. 2018; Keszthelyi and Som-
falvi-Toth 2020). Ostrinia nubilalis has been observed in 
most of Eurasia as well as in North Africa; however, the 
eastern limits of the distribution may be underestimated 
(Lassance 2010).

The adult longevity of O. nubilalis is 18 to 24 days dur-
ing which the females lay their egg masses of 5–50 cream-
colored eggs in an overlapping fish-scale arrangement. Dur-
ing a 14-d oviposition period, the female can lay 400 up to 
600 eggs that hatch in 4–9 days (Capinera 2000; McLeod 
and Studebaker 2003). Five larval instars are achieved in 
about 50 days under field conditions; however, instar dura-
tion varies with temperature. The young larvae prefer to 
feed in the whorls of vegetative-stage and on the tassels and 
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upper leaves during the reproductive stages; then larvae 
enter the leaf midrib, stem, and ear shank causing weakened 
stalks, ear drop, and restriction of ear and grain develop-
ment. Ostrinia nubilalis overwinters in a state of diapause at 
the fifth instar inside the lower portion of the maize stalk, the 
majority within 30 cm of the soil surface (Schaafsma et al. 
1996; Hudon et al. 1989). In the spring, the larva spins a 
cocoon to pupate, which takes 10–12 days. Depending on the 
environmental conditions, the number of generations varies 
from 1 to 4 (Capinera 2000; Velasco et al. 2007; Gagnon 
et al. 2019).

Sesamia nonagrioides is the major pest in maize-growing 
areas of the Mediterranean Basin, including Portugal, Spain, 
Morocco, France, Italy, Greece, Turkey, Middle East, and 
many countries in Africa (Eizaguirre and Fantinou 2012). 
In European countries, S. nonagrioides can be found up to 
46° N latitude while its distribution in southern Mediter-
ranean countries, such as Morocco, Iran, Syria, and Israel, 
extended to  31oN (Eizaguirre and Fantinou 2012; Naino Jika 
et al. 2020).

The phenology and biology of S. nonagrioides have 
been reported in detail in several studies (Anglade 1972; 
Andreadis et al. 2013). The Mediterranean corn borer devel-
ops through four main stages: egg, larvae, pupae, and adult, 
and it overwinters as a diapausing larva in maize stalks and 
roots difficulting its control by some agronomic practices 
such as uprooting and exposing the larvae to winter cold 
(Gillyboeuf et a., 1994, Maiorano et al. 2014). A female of 
S. nonagrioides lays about 200 up to 300 eggs that hatch in 
5–6 days depending on temperature. For 1–2 days, the young 
larvae remain grouped and feed on leaf tissue. Larvae then 
bore galleries into the stems and ears where they spend 25 
to 30 days and go through 6–7 molts before pupation. The 
pupal stage takes 12 to 15 days and adults mate right after 
emergence (Özbek and Hayat 2003). 3–4 generations are 
completed each year in Greece and Portugal, two to three 
in Spain, France, and Israel, and four or five in some Medi-
terranean regions such as Iran and Turkey (Galichet 1982; 
Tsitsipis et al. 1984; Cordero et al. 1998; Kayapınar and 
Kornoşor 1998; Cerit et al. 2006; Velasco et al. 2007).

Agronomic and cultural control

Agronomic and cultural practices play important roles in 
regulating pest populations, including intercropping with 
non-host crops, crop rotation (Khan et al. 1997; Cook et al. 
2007; Letourneau et al. 2011; Damien et al. 2017), cover 
crops, tillage practices (Pearsons and Tooker 2017), soil fer-
tility, and irrigation management (Han et al. 2019). However, 
these tactics likely need to be applied on a landscape scale 
by numerous farmers to have implications for area-wide pest 
management (Gu et al. 2021). Based on present literature, 

applied research on agronomic and cultural control mostly 
targets O. nubilalis, with little information regarding S. 
nonagrioides.

Intercropping and crop rotation—In maize, intercrop-
ping with soybean does not affect the abundance of O. 
nubilalis (Tonhasca and Stinner 1991). However, an ear-
lier study showed that maize fields adjacent to potato fields 
have lower incidence of early season damage by O. nubilalis, 
even though a higher incidence of late-season damage was 
observed (Umeozor et al. 1986). This finding was attrib-
uted to the change in function of intercrops, i.e., the potato’s 
role shifting from trap to nursery crop between O. nubilalis 
generations. In non-maize systems, intercropping practices 
are also effective in reducing pest abundance, mainly via 
supporting natural enemy populations. For example, in bell 
peppers, intercropping with flowering plants has been shown 
to improve biocontrol of O. nubilalis by generalist predators, 
despite that efficacy may depend on prey density (Bickerton 
and Hamilton 2012). Moreover, the effectiveness of parasi-
toid release (e.g., Trichogramma ostriniae) could also be 
improved by intercropping with flowering plants (Russell 
and Bessin 2009). In maize agroecosystems, multi-year rota-
tions significantly reduced O. nubilalis abundance because 
of increased predators abundance compared with no-rotation 
system (Brust and King 1994). A more recent study has 
stated that crop rotation does not provide protection against 
O. nubilalis consistently enough to warrant recommendation 
as a management tactic (Mason et al. 2018).

Cover crops and tillage practices—Cover crops, which 
are grown between cash crops, could also provide benefits 
to cropping systems, including pest control. A recent study 
showed that the inclusion of winter and interseeded cover 
crops in organic crop rotations could provide environmen-
tal benefits without increasing the risk of damage by insect 
pests including the O. nubilalis (Regan et al. 2020). Yet, this 
study failed to include a control cropping system in which 
cover crops were not planted, providing no evidence on the 
ecological role of cover crops. With a better understanding 
of the interactions among below-ground and above-ground 
crop-inhabiting organisms, different cover crop species 
were found to affect mycorrhizal colonization of subsequent 
maize roots, which in turn influenced plant nutrient status 
and herbivory resistance to O. nubilalis (Murrell et al. 2020). 
Compared with a chisel plow and ridge tillage in maize, 
Chrysopa sp. predation of O. nubilalis first-generation eggs 
was highest in no-tillage systems (Andow 1992).

Soil fertility management—The relationship between 
mineral fertility and plant susceptibility to insects and dis-
ease has been revealed by a considerable body of research. 
Soil fertility may have an influence on pest incidence via 
so-called bottom-up effects (Han et al. 2022). Soil fertil-
ity status impacted maize mineral balance, which in turn 
influenced O. nubilalis oviposition preference, resulting in 
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differences in egg laying that were nearly 18 times higher 
between plants in conventional soil than among those in 
organically managed soil (Phelan et al. 1996). Maize root 
colonization by arbuscular mycorrhizal fungi (AMF) was 
shown to interact with fertilization practices in modifying O. 
nubilalis female oviposition response (Murrell et al. 2015). 
The number of eggs oviposited per plant was much lower on 
conventionally fertilized plants (36.68 ± 7.04) than on either 
standard organically grown plants (70.84 ± 16.10) or plants 
with the soil nutrients management based on the basic cation 
saturation ratio (BCSR) approach (95 ± 23.41) (Murrell et al. 
2015). The oviposition response increased significantly as 
AMF colonization increased in organically managed plants 
while the opposite effect was observed in BCSR plants.

Once the oviposition choice is made, larval performance 
is key for O. nubilalis population dynamics in the field. Lar-
val development time was affected by the fertilization his-
tory of conventional versus organic maize. Ostrinia nubilalis 
larvae developed significantly faster on BCSR plants than on 
plants under the standard organic approach, with intermedi-
ate development on conventionally fertilized plants (Mur-
rell and Cullen 2014). In that study, the authors concluded 
that O. nubilalis responded positively to the BCSR maize as 
neither larval weight nor survivorship was compromised by 
faster development time.

Few studies have examined the effects of agronomic and 
cultural practices on S. nonagrioides. Pest damage could be 
minimized when the most susceptible crop stage does not 
coincide with peak pest populations. Indeed, early planting 
of maize results in the tissues being as mature as possible at 
the time of S. nonagrioides larval attack, which significantly 
reduced pest injury (Ordas et al. 2013). Other agronomic 
practices have been shown to be ineffective. For example, 
larval density did not vary with irrigation level or fertiliza-
tion regimes (organic versus conventional soil fertilization) 
in sweet sorghum (Dimou et al. 2007). Similarly, a modeling 
approach providing estimates on the effects of climate warm-
ing on S. nonagrioides distribution and development indi-
cated that the agronomic practice of uprooting and exposing 
the stubble on the soil surface to cold winter temperatures 
may be ineffective for managing the pest (Maiorano et al. 
2014).

Pheromone‑based monitoring and control

Both S. nonagrioides and O. nubilalis emit sex pheromone 
blends that comprise typical lepidopteran compounds that 
were identified several decades ago. Since then, they became 
a model system for basic and applied studies on pheromone 
biosynthesis, chemoreception, evolution, and genetics (Mas 
et al. 2000; de Santis et al. 2006; Lassance 2010, 2016; 
Unbehend et al. 2021). Females of S. nonagrioides release a 

four-component mixture of Z-11-hexadecenyl acetate (Z11-
16:Ac), Z-11-hexadecenol (Z11-16:OH), Z-11-hexadecenal 
(Z11:14:Al), and dodecyl acetate (12:Ac) (Sreng et al. 1985; 
Mazomenos 1989; Krokos et al. 2002), while O. nubilalis 
female emits a binary blend of (Z)-11-tetradecenyl acetate 
(Z11-14:Ac) and (E)-11-tetradecenyl acetate (E11-14:Ac) 
(Klun et al. 1967; Russell et al. 1975). Their pheromone 
blends are different enough so there is no pheromonal cross-
attraction among the two species (Gemeno et al. 2006; Cruz 
and Eizaguirre 2016).

Nowadays, pheromone-based commercial products are 
used for monitoring and mating disruption for O. nubilalis 
and S. nonagrioides. Pheromone-based monitoring allows 
to detect the onset of flight peak and adult emergence of the 
maize borers in crops, so control measures can be applied 
early resulting in more effective population suppression 
(Bažok et al. 2009). Capture of adults in pheromone traps 
associated with egg mass sampling also facilitates timing 
of spraying chemicals, microbial insecticide, or release of 
egg parasitoids to control maize borers. There is also the 
possibility of setting a threshold for the number of adults 
captured to guide control measures. As O. nubilalis and S. 
nonagrioides can have up to four generations depending on 
the environmental conditions (Velasco et al. 2007), phero-
mone-based monitoring is an important tactic throughout 
the growing season.

Despite the numerous advantages of pheromone-based 
monitoring relative to blacklight traps and scouting fields for 
eggs or injury (Laurent and Frérot 2007), the tactic has some 
drawbacks. Both species exhibit variability in the proportion 
of the pheromone components across populations, making 
this tactic difficult to implement without prior knowledge 
on the pheromone composition of the target population. In 
the case of S. nonagrioides, despite variability in the phero-
mone blend composition emitted by females from different 
geographic populations (Spain, France, and Greece), males 
are attracted to a broad range of pheromone blends (Krokos 
et al. 2002). However, slight changes in the ratio of the com-
ponents of the synthetic pheromone blend for monitoring S. 
nonagrioides can enhance efficacy and selectivity in male 
traps in a given location (Mazomenos 1989; Sans et al. 1997; 
Krokos et al. 2002).

In O. nubilalis, the dominance of the Z and E geometric 
isomers in the sex pheromone determines two genetic strains 
that exhibit different behavioral and physiological responses 
to Z-11:14:Ac and E-11:14:Ac (Anglade et al. 1984; Glover 
et al. 1987; Dopman et al. 2009; Olsson et al. 2010). The 
most prevalent strain in maize fields is the Z strain, which 
releases the Z and E isomers at 97:3 ratios, while the pro-
portion is reversed to 1:99 for the E strain, which is often 
associated with many different host crops including hops, 
wheat, peppers, etc. (Klun et al. 1973; Cardé et al. 1975; 
Kochansky et al. 1975). The two O. nubilalis pheromone 
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strains can occur sympatrically and eventual crossbreeding 
results in hybrid individuals that emit a sex pheromone with 
an intermediary Z/E ratio of 35: 65 (Peña et al. 1988; Glover 
et al. 1991; Dopman et al. 2009). Thus, as for S. nonagri-
oides, before employing a pheromone-based monitoring 
strategy for O. nubilalis either in Europe or North America, 
the locally dominant pheromone strain should be considered.

Besides the issue of the Z/E ratio in the pheromone blend, 
trap design and placement have impacted the effectiveness 
and consistency of pheromone-based monitoring of O. nubi-
lalis (Pelozuelo and Frerot 2006; Laurent and Frérot 2007; 
Kárpati et al. 2013). Unlike the monitoring of several moth 
pests in which the delta trap is used, the most appropriate 
trap design for monitoring O. nubilalis is the nylon or wire-
mesh cone trap (also known as the Heliothis trap), which 
traps up to six times more adults than delta traps (Pelozuelo 
and Frerot 2006; Kárpati et al. 2013). Moreover, captures 
of O. nubilalis males in pheromone-baited cone traps are 
optimized when they are placed within the maize canopy 
instead of above it (Mason et al. 1997). The many factors 
that influence moth catches in pheromone-baited traps, such 
as those presented, are not always given as instructions by 
manufacturers, hence making this tactic less efficient.

Although pheromone-based monitoring of S. nonagri-
oides has been far less studied than that of O. nubilalis 
(Mazomenos 1989; Sans et al. 1997; Ameline and Frérot 
2001), the method for S. nonagrioides mating disruption has 
advanced further (Perdiguer et al. 1992). For monitoring, 
the four-component blend of S. nonagrioides is necessary 
to selectively capture males, and depending on the locality 
the component ratio in the blend is different as previously 
mentioned (Mazomenos 1989; Sans et al. 1997; Ameline 
and Frérot 2001; Albajes et al. 2002). Mating disruption of 
S. nonagrioides, measured in terms of reduction of popula-
tion density between generations in treated and untreated 
areas, has been tested using either the full pheromone blend 
or a simplified blend comprising the two major components 
(Frérot et al. 1997; Albajes et al. 2002,). Interestingly, the 
simplified pheromone blend at high concentrations not only 
works for suppressing S. nonagrioides population, but also 
of O. nubilalis (Albajes et al. 2002; Eizaguirre et al. 2002). 
The reduction of O. nubilalis population in areas treated 
with S. nonagrioides pheromone does not result from mating 
disruption as the two maize borers do not share pheromonal 
components, but from an inhibition response of males being 
attracted to their own sex pheromone (Eizaguirre et al. 2002; 
Gemeno et al. 2006; Linn et al. 2007). A similar antagonistic 
effect is observed when S. nonagrioides males are exposed 
to O. nubilalis sex pheromone in both the laboratory and 
field (Eizaguirre et al. 2007, Lopez-Alonso et al. 2011). This 
cross-inhibition effect using either maize borers’ pheromone 
blend makes mating disruption a promising behavioral strat-
egy to suppress both pests.

Besides pheromones, other semiochemicals of varying 
effects (e.g., pheromone analogs and plant volatiles) have 
also been proposed for manipulating the behavior of the 
maize borers in the field. Sole et al. (2007) found that 
(Z)‐11‐hexadecenyl trifluoromethyl ketone (an antagonist 
analogue of the pheromone of S. nonagrioides) was effec-
tive in reducing damage caused by second and third gener-
ations of S. nonagrioides and O. nubilalis. More recently, 
a non-pheromone lure to capture male and female O. nubi-
lalis has been developed. The well-known lepidopteran 
attractant phenylacetaldehyde, a floral volatile, when com-
bined with 4-methoxy-2-phenethyl alcohol increased the 
capture of O. nubilalis individuals three- to fivefold com-
pared to the attractant alone (Tóth et al. 2016). Because 
this lure traps both sexes, it has the potential for being 
used in the mass-trapping of O. nubilalis.

Although at initial laboratory experimental stages, host 
volatile emissions have been investigated as a source of 
attractants to O. nubilalis and S. nonagrioides females, and 
may be used in the future in lures for monitoring or mass-
trapping tactics. For gravid female O. nubilalis (Z strain), 
nonanal, decanal, and methyl salicylate, which are volatile 
organic compounds (VOCs) emitted by maize plants, con-
sist of important cues to identify the host plant, and the 
mixture of nonanal and decanal seems to be promising to 
capture females in the field (Solé et al. 2010, Mólnar et al. 
2015). These two aldehydes are also biologically active 
compounds for S. nonagrioides; however, they act as ovi-
position deterrents when tested individually (Konstanto-
poulou et al. 2004). At last, another approach to exploiting 
plant volatiles is the inoculation of microorganisms that 
promote plant growth at the same time that they elicit or 
prime plant chemical defenses, often resulting in a distinct 
VOC profile (Pereira et al. 2021). Disi et al. (2018) tested 
this management strategy in O. nubilalis-maize system 
under laboratory conditions, and showed that seed inocula-
tion with the rhizobacteria Bacillus pumilus reduces VOC 
emission of maize plants, making them less attractive to 
moths.

After more than three decades from the identification of 
the sex pheromone of the two corn borers, formulation of 
pheromone-based monitoring for both pests has been made 
viable after understanding the variability in the sex phero-
mone blend across populations. In contrast, development 
of a commercial product for mating disruption of the corn 
borers is at initial stages. The synthesis of large quantities of 
their pheromone compounds is still expensive, and a tech-
nology that release them at constant rates for weeks in the 
field is needed (Albajes et al. 2002; de Vlieger 2008). Novel 
and less costly methods for scaling up the synthesis of pher-
omone components of O. nubilalis have been investigated 
and may make mating disruption a less costly tactic in the 
future (Petkevicius et al. 2021).
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Biological control using predators 
and parasitoids

To reduce pests, biological control using natural enemies 
such as predators and parasitoids has been developed. It is an 
eco-friendly and efficient integrated pest management tactic 
that generally has no negative effects (Dreistadt 2007).

Trichogramma spp. parasitoids have been used for over 
100 years as biocontrol agents against many lepidopteran 
pests and are widely used in Europe for inundative and aug-
mentative release against O. nubilalis (Bigler and Brunetti 
1986; Ravensberg and Berger 1988; Hassan 1993; Pavlík 
1993; Hassan and Wajnberg 1994) (Table 1). In China, 
France, Germany, Moldova, and Turkey, Trichogramma 
ostriniae (Russell and Bessin 2009) and T. evanescens 
(Westwood) have been found to be the most effective species 
for controlling O. nubilalis (Özpinar et al. 1999). Several 
Trichogramma spp. continue to be commercially available 
for biological control worldwide (Smith 1996; Pinto 1999; 
Consoli et al. 2010). Besides being easily and quickly pro-
duced, they are also effective at controlling pest eggs and 
minimizing subsequent larval injury (Smith 1996; Mansour 
2010; Mills 2010). Therefore, Trichogramma species should 
continue to be considered as an augmentation approach for 
effective biological control against O. nubilalis.

In the USA, Trichogramma ostriniae has also been identi-
fied as a potential biological control agent for O. nubilalis 
(Hoffmann 1997; Wang et al. 1999; Wright et al. 2001) but 

because even low levels of insect feeding on sweet corn ears 
render the product unusable, previous attempts to improve 
O. nubilalis biological management using this parasitoid 
have largely failed (Hoffmann et al. 1996). In fact, although 
the released T. ostriniae adults were effectively established 
during each season and increased O. nubilalis larval mortal-
ity by 61–93% (Kuhar et al. 2002), they were found unable to 
overwinter in the USA (Hoffmann et al 2002) and the control 
provided was affected by extreme high and low tempera-
tures (Wang et al. 1997). Additionally, inundative releases 
of indigenous Trichogramma spp. such as T. evanescens, 
T. brassicae Bezdenko and T. nubilale Ertle and Davis for 
the biological control of O. nubilalis have shown variable 
results (Losey et al. 1995; Mertz et al. 1995; Smith 1996). 
The effect of indigenous natural enemies alone on O. nubila-
lis was insufficient to reduce economic damage (Wright et al. 
2002) and is mostly compromised by insecticide applications 
(Pimentel and Andow 1984). Furthermore, the inundative 
approach is relatively costly and not always effective, as 
releases must be carefully timed to maximize their effect. 
Inoculative releases, in contrast, involve the introduction of 
a small number of parasitoids early in the season and rely on 
their successful establishment in the crop for control later in 
the season. Because the parasitoid population is established 
early in the season and allowed to track changes in the tar-
get pest population, rather than acting as a cure option, this 
approach should be less sensitive to timing constraints as in 
the case of inundative releases (Hoffmann et al. 2002).

Table 1  Reported egg parasitism rates, larval infestation, and plant damage reduction for different Trichogramma species assessed for the control 
of Ostrinia nubilalis and Sesamia nonagrioides 

Species Reported egg parasitism, larval infestation, or plant dam-
age reduction

Region or country References

Trichogramma spp. Egg parasitism: 86.8–96.2% France Voegele et al. (1975)
T. evanescens Egg parasitism: 100% Northern Switzerland Bigler and Brunetti (1986)

Egg parasitism: 96% Black Sea region, Turkey Özdemir (1981)
Reduced infestation from 68.3–95.2% to 4.0–5.6% Suter and Babler (1976)
Natural rates of egg parasitism: from 2.4 to 51.1% Cukurova, Turkey Kayapinar (1991)
Egg parasitism: up to 75.5% Cukurova, Turkey Kayapinar (1991), Özpi-

nar and Kornoşor (1997)
Egg parasitism: 80.93% and reduction of the larval infesta-

tion to 57.14% in infested plants
Mediterranean region of Turkey Kornoşor et al. (1995a, b)

Natural egg parasitism: between 87.2 and 98.6% Western Black Sea region, Turkey Melan et al. (1996)
Reduced plants damages by 96% Turkey Oztemiz (2009)

T. maidis Egg parasitism: 87% Bulgaria Karadjov (1989)
Inundative release reduced the larval attack by about 70% Switzerland Bigler and Brunetti (1986)

T. ostriniae Egg parasitism: 34.4–48.7% USA Kuhar et al. (2002, 2004)
Egg parasitism: 14.9–15.3% Kentucky, USA Friley (2004)
Egg parasitism: 4–6% Kentucky, USA Russell and Bessin (2009)
Plant damage was reduced by about 50% New York, USA Wright et al. (2002)
Egg parasitism: 70–90% Massachusetts, USA Wang et al. (1997)
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Other parasitoids of O. nubilalis include many species 
of Hymenoptera (i.e., Braconidae; Eulophidae; Ichneumo-
nidae) and Diptera (Tachinidae). Additionally, numerous 
generalist predator species have been reported to be effec-
tive for biological control of O. nubilalis, including those 
from various Coleoptera (Coccinellidae, Staphylinidae, etc.), 
Hemiptera (Anthocoridae, Pentotomidae, Reduviidae, etc.), 
Neuroptera (Chrysopidae), Dermaptera (Anisolabididae), 
Orthoptera (Acrididae), and some acari (Trombidiidae, 
Erythraeidae) families, have been reported to be success-
ful in controlling O. nubilalis biologically (Supplementary 
Table 1). However, the potential use of these parasitoids and 
predators at large scale and under field conditions for the 
management of O. nubilalis is still to be confirmed.

One of the most effective biocontrol agents of S. nona-
grioides is Telenomus (Platytelenomus) busseolae Gahan 
(Hymenoptera: Scelionidae), a solitary egg parasitoid of 
many lepidopteran pests (Alexandri and Tsitsipis 1990; 
Setamou and Schulthess 1995). The geographic distribu-
tion of this parasitoid covers all of Africa, the Middle East, 
India, Iran, Iraq, Israel, Greece, and Turkey (Kayapınar 
and Kornoşor 1990; Polaszek et al. 1993). Many research-
ers have confirmed the efficiency of T. busseolae as an egg 
parasitoid of maize borers (Bayram et al. 2005; Jamshidnia 
et al. 2010).

The T. busseolae parasitism of Sesamia sp. eggs was 
found to range from 60 to 80% on sugarcane in Ghana 
(Scheibelreiter 1980). Telenomus busseolae was found to 
be associated with 60–80% of S. nonagrioides egg masses in 
the Mediterranean region of Turkey (Kornosor et al. 1995). 
Similar results were reported in Greece by Alexandri and 
Tsitsipis (1990).

Other parasitoids of S. nonagrioides include species from 
the Hymenoptera (i.e., Braconidae; Eulophidae; Ichneumo-
nidae; Pteromalidae; Scelionidae) and Diptera (Tachini-
dae; Sarcophagidae). In addition, many generalist predator 
species have been shown to effectively control S. nonagri-
oides, including species from Coleoptera (Coccinellidae), 
Hemiptera (Anthocoridae; Miridae; Nabidae; Lygaeidae), 
Neuroptera (Chrysopidae), and some acari (Trombidiidae) 
(Supplementary Table 2).

Parasitoids of the geniuses Trichogramma spp. and Tel-
enomus spp. can be considered the most promising natural 
enemies to be used in applied biological control of stem bor-
ers within IPM systems, especially because of their recog-
nized efficacy as biocontrol agents worldwide, and available 
methodologies for mass rearing. Furthermore, these parasi-
toids target the egg stage which is beneficial as the control is 
achieved before the larval stage that is harmful to the plant. 
Therefore, devising compatible management strategies to 
optimize their efficacy is highly encouraged. For instance, 
identifying and releasing the most adapted parasitoid species 
(e.g., T. ostriniae, T. evanescens, T. brassicae, or T. nubilale 

in the case of O. nubilalis) in each production region should 
provide higher levels of control (Losey et al. 1995; Mertz 
et al. 1995; Smith 1996; Gagnon et al. 2017). Evaluation of 
insecticides registered for stem borer control regarding their 
selectivity is also necessary to be harmoniously integrated 
with biological control (Vasileiadis et al. 2017). In addi-
tion, the frequency and number of parasitoids to be released 
in the field (Murali-Baskaran et al. 2021) are to be opti-
mized for each targeted pest and environmental conditions. 
Finally, synergism between plant kairomones, pheromones, 
and parasitoids through changes in previous experience and 
behavior of the natural enemy should improve foraging effi-
ciency and biocontrol in the field, as already reported for 
related insect species (Tognon et al. 2020), meriting further 
investigations for stem borers.

Microbial control

Entomopathogenic nematodes

Entomopathogenic nematodes (EPNs) have recently 
attracted attention in plant protection as a biological control 
agent that can be commercially produced and used for soil-
inhabiting insects (Gaugler 1981; Klein 1990; Smart 1995; 
Canhilal et al. 2017). Approximately 3000 insect-nematode 
associations have been reported, covering 19 insect orders 
and 14 EPNs families (Kaşkavalci 1999). Juvenile EPNs 
penetrate the body cavity of insects either through natural 
body openings such as the anus, mouth, respiratory system, 
and genital pore or by penetrating the insect cuticle. EPNs 
from the Heterorhabditidae and Steinernematidae families, 
including (Gaugler 1981; Kaya and Gaugler 1993) Stein-
ernema (Rhabditida: Steinernematidae) and Heterorhabditis 
(Rhabditida: Heterorhabditidae) species, are mutually asso-
ciated with Xenorhabdus spp. and Photorhabdus spp. bacte-
ria, respectively. Consequently, the mutualistic relationship 
results in bacteria rapidly multiplying and causing the death 
of the insect host within 24–48 h (Kaya and Gaugler 1993; 
Berry 2007).

Steinernema glaseri or S. feltiae were shown to protect 
maize plants against O. nubilalis under laboratory and 
greenhouse conditions (Riga et al. 2001). Steinernema car-
pocapsae similarly caused high mortality of O. nubilalis 
larvae in the greenhouse (Ben-Yakir et al. 1998).

To the best of our knowledge, the potential of EPNs for 
the control of S. nonagrioides has not been investigated 
so far. However, Halawa et al., (2007) noted that S. car-
pocapsae caused between 60 and 73% mortality of S. cre-
tica depending on their inoculation density. Furthermore, 
Gözel and Güneş (2013) determined the virulence of three 
Turkish strains of the entomopathogenic nematodes H. bac-
teriophora, S. feltiae, and S. carpocapsae on S. cretica last 
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instars under different temperatures (15, 20, 25, and 30 °C). 
They reported similar mortality among the three strains at 
all applied temperatures and their effectiveness increased as 
temperature increased. Mortality of S. cretica exposed to S. 
carpocapsae, S. feltiae, and H. bacteriophora reached 82, 
90, and 90% at 25 ºC, respectively.

Entomopathogenic fungi

With over 28 species, the genus Beauveria is one of the most 
common and widely used entomopathogenic fungi in plant 
protection. Application of B. bassiana against O. nubilalis 
larvae dates back to the 1920s (Metalinkov and Toumanoff 
1928). The potential of different isolates of Beauveria to 
control O. nubilalis populations when used as a biopesticide 
has been previously investigated (Safavi et al. 2010; Medo 
et al. 2021), although previous bioassays indicated that B. 
bassiana loses virulence against O. nubilalis once the pest 
colonizes maize (Wagner and Lewis 2000). Mortality of  4th 
instars ranging from 34 to 96% at a concentration of  107 
conidia  ml−1 has been reported in a screening of 46 soil 
isolates of Beauveria spp. against O. nubilalis (Medo et al. 
2021). Field-collected strains of B. bassiana were reported 
to be virulent to O. nubilalis larvae at a concentration of 
4.8 ×  105 conidia  ml−1 (Demir et al. 2012). Moreover, B. 
bassiana reduced tunneling by O. nubilalis from between 
10.07 and 3.24 cm per plant in untreated maize plants to 
less than 0.69 cm per plant in the B. bassiana-treated plants 
(Bing and Lewis 1992). Maize borer infestation was signifi-
cantly reduced in plots with B. bassiana-treated plants (less 
than 21%) compared to untreated plots (over 97%) under 
field conditions (Sabbour et al. 2011).

Interactions between the entomopathogenic bacte-
rium Bacillus thuringiensis (Bt) ssp. kurstaki and two 
entomopathogenic fungi, B. bassiana and Metarhizium rob-
ertsii, against S. nonagrioides larvae were evaluated with 
laboratory bioassays (Mantzoukas et al. 2015). A positive 
interaction between pathogens was observed, leading to 
mortality between 54 and 100% at 16 days of larval exposure 
to a combination of either fungus with the entomopatho-
genic bacterium.

The same authors (Mantzoukas et al. 2015, 2020) inves-
tigated the entomopathogenic action of three fungal endo-
phytes, B. bassiana (Balsamo), M. robertsii, and Isaria 
fumosorosea, against S. nonagrioides larvae artificially 
introduced into Sorghum bicolor L. plants under natural con-
ditions. They reported that the fungi efficiently induced the 
mortality of larvae, reduced their relative growth rate, and 
feeding performance. They also noted that the entomopath-
ogens prevented 50–70% of larvae from entering stalks, 
caused larval mortality ranging from 70 to 100%, and reduc-
tion of tunnel lengths by 60–87%.

Entomopathogenic bacteria

Over the last 25 years, researchers, industry, and farmers 
have become increasingly interested in entomopathogenic 
bacteria as a form of biological control (ISCCCA 29,021). 
Bacillus thuringiensis (Berliner) (Bt) is the most commonly 
used entomopathogenic bacterium. It is gram-positive, aero-
bic, spore-forming, and produces crystals containing specific 
insecticidal endotoxins (Cry proteins) (Ruiu et al. 2013). 
Cry endotoxins act in the insect midgut via a pore-form-
ing mechanism, causing damage to the epithelium (Pigott 
and Ellar 2007). Several Cry toxins are classified by their 
spectrum of activity. Primary Cry proteins for maize pests 
include Cry1, Cry2, and Vip3A for lepidopteran species, 
and Cry3 for coleopteran species (Schnepf et al. 1998). Most 
of the scientific community and industry efforts have been 
focused on Bt among the entomopathogenic bacteria for its 
ease of use, efficiency, low production cost, considerable 
diversity of toxins, and lack of toxicity to humans and non-
target organisms (Sanchis and Bourguet 2008).

Bt first became available as a commercial bioinsecticide 
in France in 1938 where it was used to manage O. nubilalis 
damage in maize fields via foliar application (Aronson et al. 
1986). Laboratory bioassays using pure Cry1Ab endotoxin 
from Bt to establish baseline susceptibility of O. nubilalis 
and S. nonagrioides have indicated that S. nonagrioides is at 
least as susceptible to this toxin as O. nubilalis (González-
Núñez et al. 2000). According to Eski et al. (2015), Bt and 
B. safensis caused 93 and 80% mortality in S. nonagrioides 
larvae, respectively. However, the most widespread and suc-
cessful application of Bt was achieved with the introduction 
of genetically engineered crops (see Bt technology and vari-
etal resistance section).

Microsporidia

Microsporidia are widespread and persistent entomopath-
ogens with integrated pest management implications. A 
few of them are considered as potential biocontrol agents 
(Lewis et al. 2009; Zimmermann et al. 2016; Malysh et al. 
2021). Several species of microsporidia are highly virulent 
to insects with reported regulatory effects on populations of 
lepidopterans. The microsporidium Nosema pyrausta Pail-
lot (Microsporidia: Nosematidae) is an obligate intracellular 
parasite that can negatively affect the biology of O. nubilalis. 
The pathogen is maintained in a population by horizontal 
transmission to other host individuals and by vertical trans-
mission to the progeny via infected eggs.

This microsporidium was found frequently in larvae and 
adults of O. nubilalis in maize-growing regions of France, 
Italy, Hungary, Germany, Slovakia, the Czech Repub-
lic, Serbia, and Russia (Zimmermann et al. 2016). In the 
USA, Lewis et al. (2006) determined the establishment and 
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behavior of N. pyrausta in a natural O. nubilalis population 
in an extensive six-year field study. Nosema pyrausta causes 
chronic infections leading to slowed larval development and 
increased larval mortality. Depending on the intensity of the 
infection and the age of the host, it can extend time to pupa-
tion, decrease adult longevity, female oviposition, and fecun-
dity (Lewis et al. 2009; Zimmermann et al. 2016). Nosema 
pyrausta has been reported to cause depression of insect host 
populations (Lewis et al. 2009; Zimmermann et al. 2016) 
and is suspected of inducing female-biased sex ratios in low-
density populations of O. nubilalis (White et al. 2014). The 
6- to 8-year periodicity of O. nubilalis populations in the 
USA has been attributed to this pathogen (Hutchison et al. 
2010). In China, besides N. pyrausta, its related species N. 
furnacalis is also present (Zimmermann et al. 2016). No 
association between this pathogen and S. nonagrioides has 
been reported up to now.

Microbials are generally considered desirable options for 
pest management, but their potential to control O. nubila-
lis and S. nonagrioides remains largely neglected and less 
explored. Overall and despite the increased research on 
microbials as potential biopesticides, only limited quanti-
ties of microbial biopesticides have been produced. Some of 
the already commercialized microbial-based biopesticides, 
like the bacterium B. thuringiensis and the fungi B. bassiana 
and M. robertsii, with proven activity against other lepidop-
teran pests, might be tested and used, alone or in combina-
tion, in corrective applications against the two stem borers. 
Depending on the target pest and the mechanism of action, 
microbial-based biopesticides can be applied as foliar sprays, 
root dips, soil amendments, seed treatments, or a combina-
tion of different methods. However, as for the control of 
other pests, the efficacy of such products will continue to 
suffer from some limitations. Under field conditions, envi-
ronmental factors like high temperatures and UV radiation 
heat might be detrimental to the viability and infectivity of 
the applied microbial agent. With the advent and the use of 
new technologies like micro-encapsulation, specific formu-
lations could be developed to enhance the efficiency and 
tolerance of microbial against adverse environmental effects.

Biotechnological controls

Varietal resistance and Bt technology

In the twentieth century, conventional breeding for resist-
ance to corn stemborers began. In the mid 1950s, the first 
recurrent selection program to improve maize resistance 
against the first generation of O. nubilalis was initiated in the 
USA (Penny et al. 1967). That pioneer recurrent selection, as 
well as subsequent recurrent selections, significantly reduced 
O. nubilalis leaf and/or sheath-collar damage but did not 

improve resistance to stem damage caused by the second 
generation; in the meantime, some agronomic traits, such 
as yield or precocity, were negatively correlated with plant 
resistance (Penny et al. 1967; Russell et al. 1979; Tseng et al. 
1984; Klenke et al. 1986; Nyhus et al. 1988). Afterward, 
inbred lines with partial resistance to O. nubilalis’ first gen-
eration were obtained through pedigree selection or back-
crossing (Abel et al. 2000; Willmot et al. 2005).

As researchers began to emphasize the importance of 
developing materials that were resistant to both generations 
of O. nubilalis, recurrent and pedigree selection programs 
were re-oriented resulting in the successful release of mate-
rials that were resistant to both generations (Russell and 
Guthrie 1982; Barry et al. 1983, 1995; Hawk 1985; Dicke 
and Guthrie 1988). Nonetheless, selection for increased 
resistance appeared to be associated with lower yield, so 
new efforts were focused on selection for tolerance, defined 
as the plants’ ability to reduce yield loss when attacked by 
insects. Recurrent selection for tolerance to O. nubilalis 
resulted in yield increases of 0.49 Mg  ha−1 for uninfested 
plots and 0.74 Mg  ha−1 for infested plots; meanwhile, 63 
flint and dent inbred lines, adapted to European conditions, 
with high-yielding feature and appreciable levels of O. nubi-
lalis tolerance were developed and released (Anglade 1972; 
Panouillé et al. 1998).

At the beginning of the XXI century, Bt hybrids began 
to be seen as the final solution for maize stemborer control 
and breeding programs for increasing maize natural resist-
ance and tolerance to O. nubilalis were almost closed in 
the USA and Europe. However, as marker-assisted selection 
(MAS) was also seen as a promising alternative to conven-
tional breeding, some quantitative trait loci (QTL) studies 
for resistance to O. nubilalis were developed, but no MAS 
programs based on those results have been carried out, 
although it has been empirically demonstrated that MAS 
can be effective in selecting for resistance to O. nubilalis 
(Jampatong et al. 2002; Flint-Garcia et al. 2003; Cardinal 
et al. 2006; Orsini et al. 2012; Foiada et al. 2015).

On the other hand, selection programs for improving 
maize resistance and/or tolerance to stalk tunneling by S. 
nonagrioides larvae have been ongoing since the 1920s 
at the Misión Biológica de Galicia (CSIC, Spain). Intra-
populational and reciprocal recurrent programs as well as 
pedigree selection for inbred development were successful 
in reducing stem tunnel lengths by S. nonagrioides larvae or 
increasing yield under high insect pressure (Sandoya et al. 
2008; Samayoa et al. 2012; Ordas et al. 2013; Butrón et al. 
2014). However, as it was observed in breeding for resist-
ance to O. nubilalis, resistance to stem tunneling by S. nona-
grioides and yield are often negatively correlated (Butrón 
et al. 2012). Therefore, MAS selection was envisioned as an 
alternative to phenotypic selection once genetic factors for 
resistance and yield could be disentangled. QTL studies for 
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maize resistance to stem tunneling by S. nonagrioides larvae 
were carried out and MAS selection based on DNA markers 
flanking some QTLs was proven suitable to improve resist-
ance without detrimental effects on yield (Ordas et al. 2009, 
2010, 2013; Samayoa et al. 2014, 2015a, 2015b, 2019; Jimé-
nez-Galindo et al. 2017, 2019). Nowadays, genomic selec-
tion is preferred over MAS selection approaches when traits 
are controlled by many genes with small additive effects as 
is the case for maize resistance and tolerance to stemborer 
attack. In this scenario, genomic selection for yield under 
S. nonagrioides infestation was useful to simultaneously 
increase yield and resistance to stem tunneling (paper in 
preparation).

Simultaneously to direct selection programs to improve 
resistance to stem borers, selections for the DIMBOA 
(2,4-dihidroxi-7-metoxi-1,4-benzoxazin-3-ona) content 
and for pith cell-wall strengthening were carried out to indi-
rectly improve resistance to leaf feeding and stem tunneling, 
respectively. Those indirect selection approaches were suc-
cessful for developing maize varieties with increased resist-
ance, probing that hydroxamic content of the leaf-whorl 
and pith cell-wall strength are important components of 
resistance to the first and second generations of stem bor-
ers, respectively (Russell et al. 1975; Barros-Rios et al. 
2015). Rodriguez et al. (2021) recently reported that levels 
of resistance in the field should depend on induced defense 
responses of maize plants infested by S. nonagrioides rather 
than on constitutive resistance levels, evaluating the con-
centrations of candidate metabolites that may be involved. 
Therefore, specific methodologies for evaluation of induced 
plant resistance on stem borer biological performance are 
needed, as well as the quantification of those potential sec-
ondary compounds underlying induced resistance, which 
could be added as a complementary control method in IPM 
systems, especially where transgenic Bt hybrids are not 
allowed or in organic agriculture.

Although many maize varieties with partial resistance 
to O. nubilalis and S. nonagrioides attack have been deliv-
ered through decades of maize breeding for resistance and/
or tolerance to attack by these insects, these materials have 
been underused because they cannot compete with the 
total resistance of Bt hybrids. The use of biotechnology 
and genetic engineering techniques in the development of 
new plant varieties began at the end of the XX century and 
has meant an enormous advance in pest control with the 
appearance of insect-resistant transgenic crops or Bt crops, 
which incorporate genetic material from Bt in their genome. 
As mentioned above, Bt has insecticidal properties due to 
the production of Cry (crystal) and Cyt (cytolytic) insec-
ticidal proteins produced during the sporulation phase of 
the bacterium, and Vip (vegetative insecticidal proteins) 
produced during the vegetative growth phase (Bravo et al. 
2017; Terenius et al. 2011). Currently, Cry proteins are the 

active ingredient in the vast majority of genetically modi-
fied (GM) maize hybrids for the control of O. nubilalis and 
S. nonagrioides (Hutchison et al. 2010; Huang et al. 2011). 
The great advantage of Bt maize in the control of maize bor-
ers compared to conventional chemical insecticides is that 
the toxin is expressed in plant tissues throughout the crop 
cycle, protected from UV radiation, and provides maize with 
inherent resistance to the pests. In this way, maize-boring 
larvae, which are not usually accessible to insecticides as 
most of their larval cycle takes place inside the maize stalk, 
are killed when they feed on the plant. Bt maize has sig-
nificantly reduced the occurrence of O. nubilalis in North 
America, shown excellent yield protection from this pest, 
and reduced the infection of secondary mycotoxigenic fungi 
(Schaafsma et al. 2002; Hutchison et al. 2010; Dively et al. 
2018; Pellegrino et al. 2018). Finally, it has been shown that 
varieties expressing Cry proteins for maize borer control 
have no significant negative effects on non-target arthropods 
present in the crop (Daly and Buntin 2005; Farinós et al. 
2008; Higgins et al. 2009; Lopez et al. 2011; Arias-Martín 
et al. 2016, 2018). For these reasons, Bt maize is considered 
a suitable tool in integrated pest management strategies and 
has been widely adopted (Kennedy 2008). However, there is 
still great social rejection in many countries due to a number 
of reasons. These include the public's unfamiliarity with bio-
technology and agriculture and misconceptions about GM 
technology (Huesing et al. 2016). Particularly in the case of 
the EU, this rejection is based on political considerations 
rather than scientific principles (Davison 2010).

In 1996 and 1997, the first transgenic maize was com-
mercialized in the USA and Canada, respectively, expressing 
a high dose of Cry1Ab targeting O. nubilalis (Ostlie et al. 
1997; Marçon et al. 1999). Cultivation of Bt maize express-
ing Cry1Ab spread rapidly in North America. Cry1Ab maize 
was first grown in Europe in 1998 for the control of O. nubi-
lalis and also S. nonagrioides, which proved to be very effec-
tive (Farinos et al. 2004), being also highly efficient in the 
reduction of mycotoxigenic fungi (Arias-Martín et al. 2021). 
Since then, a number of transgenic maize events incorporat-
ing Cry1Ab or other Bt toxins, alone or in combination (sin-
gle or pyramided events), have been successfully developed 
and marketed for the control of O. nubilalis and other pests 
(ISAAA 2021). Currently, there are five Bt proteins pro-
duced from various maize events targeting lepidopteran pests 
in North America: Cry1Ab, Cry1Fa, Cry1A.105, Cry2Ab2, 
and Vip3A (DiFonzo 2021). Ostrinia nubilalis has proven 
to be susceptible to these Cry toxins (Tan et al. 2013), but is 
not susceptible to Vip3A (Hernández-Rodríguez et al. 2013; 
ISAAA 2021). As for S. nonagrioides, it has been shown to 
be highly susceptible to the Cry1Ab toxin expressed in MON 
810 maize, the only Bt maize approved so far for cultivation 
in the EU. At present, the only European countries growing 
MON 810 maize are Spain and Portugal, but only in Spain 
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have these hybrids been continuously commercialized on a 
large scale (Albajes et al. 2012; Farinós et al. 2018). Never-
theless, laboratory studies have revealed that S. nonagrioides 
is also susceptible to other Cry toxins (González-Cabrera 
et al. 2006) and to TC1507 maize event expressing Cry1F, 
which was shown in feeding trials to cause mortality equiva-
lent to that obtained with a maize hybrid expressing Cry1Ab 
(Farinós et al. 2011; Albajes et al. 2012).

One of the main threats to the long-term sustainability of 
Bt crops is the evolution of resistance in target pest popula-
tions to the insecticidal proteins as large-scale cultivation, 
continuous exposure to Bt proteins, and the use of transgenic 
events expressing proteins with the same action mechanism, 
represent strong selection pressure for resistance (Tabashnik 
et al. 2009; Tabashnik and Carrière 2017). For this reason, 
insect resistance management (IRM) programs have been 
developed with the aim of maximizing product lifespan 
and delaying the development of target pest resistance to 
Bt maize (Head and Greenplate 2012). The most generally 
recommended and widely adopted IRM strategy for maize 
borers is known as “high dose/refuge” (HDR). This strategy 
is based on the use of varieties with a high dose of Bt toxin 
against the target pest and on the establishment of non-Bt 
plants that act as refuge for insects that are susceptible to 
the toxin (Siegfried and Hellmich 2012). The expression 
of high doses of Bt toxins allows both susceptible (SS) and 
heterozygous resistant (RS) individuals to be controlled by 
feeding on the plant. The refuge functions as a source of 
susceptible insects to mate with the homozygous resistant 
(RR) insects that may emerge from the Bt field. Refuges are 
planted either as structured blocks or strips within or close 
to the Bt field or integrated throughout the field by planting 
blended seed lots (also called refuge-in-the-bag (RIB) or 
integrated refuge) (Yang et al. 2015). In addition, the combi-
nation (pyramiding) of multiple Bt toxins in the same hybrid 
is intended to further delay the possible emergence of pest 
resistance more effectively than using individual Bt toxins 
(Carrière et al. 2015).

The HDR resistance management strategy has proven 
to be very successful in maintaining the susceptibility of 
O. nubilalis and S. nonagrioides to Bt toxins (Huang et al. 
2011; Terenius et al. 2011; Castañera et al. 2016). No field 
control failures have been reported for either species in Ibe-
ria after more than 20 years of commercial use of Cry1Ab-
expressing MON810 maize, as evidenced by monitoring 
programs carried out to detect early changes of susceptibil-
ity in field insect populations (Farinós et al. 2018; Thieme 
et al. 2018). However, a recent study has concluded that the 
frequency of resistance alleles of S. nonagrioides in the Ebro 
valley, an important maize-growing region in Spain, is now 
triple the value recommended for effective implementation 
of the HDR strategy (Camargo et al. 2018). Therefore, if the 
control of this species continues to rely on the use of a single 

Cry toxin, strict adherence to the HDR strategy is of utmost 
importance so that the pest does not develop resistance. In 
the case of the much more widely distributed O. nubilalis, no 
significant decrease in susceptibility to Cry1Ab nor Cry1F 
has been observed in the USA since 1996 (Tabashnik and 
Carrière 2019); however, one case of practical resistance to 
Cry1F-expressing Bt maize (event TC1507) has been docu-
mented in a minor maize-growing region in Canada (Smith 
et al. 2019). Concern about the possible development of 
resistance to the Cry toxins expressed by Bt maize, together 
with the social rejection of GM crops in many European 
countries, make maize breeding for increasing natural resist-
ance to maize borers an important complementary approach 
in pest management, since it would render additional genes 
to stack in Bt hybrids to slow down the appearance of insect 
resistance, and improve cultivars for organic and low-input 
farming (Mohan et al. 2008).

RNAi

RNA interference (RNAi) refers to an evolutionary con-
served mechanism of eukaryotic cells in which dou-
ble-stranded RNA (dsRNAs) molecules are involved in 
sequence-specific suppression of gene expression. Exoge-
nously applied or endogenously expressed double-stranded 
RNAs, complementary to developmentally important genes, 
trigger a gene-specific cellular mRNA degradation cascade 
that results in the knock-down of a specific gene (Kourti 
et al. 2017; Kontogiannatos et al. 2021). The realization that 
in vitro or in vivo synthesized specific dsRNAs have impor-
tant insecticidal properties when applied to insects through 
spraying or genetic engineering techniques has attracted 
great interest for research in this field (Kourti et al. 2017; 
Kontogiannatos et al. 2021).

RNAi has already found applications in the pest control 
industry. For example, Monsanto (now Bayer CropSci-
ence) has developed the use of RNAi through a technology 
called “BioDirect,” in which dsRNAs are applied exoge-
nously to protect plants against insects (https:// monsa nto. 
com/ innov ations/ agric ultur al- biolo gicals/) (Cagliari et al. 
2019). “SmartStax Pro” maize traits containing both Cry 
and dsRNA (event DvSnf7) transgenes are expected to be 
commercialized in 2022 in the USA to control maize root-
worms, Diabrotica sp. (DiFonzo 2021). Studies have shown 
that, compared to the Cry Bt maize (e.g., SmartStax), the 
SmartStax Pro maize containing dsRNAs is effective to con-
trol Cry3Bb-resistant rootworms such as the western corn 
rootworm, D. virgifera virgifera LeConte (Head et al. 2017). 
Additionally, Syngenta scientists are also developing biocon-
trol products based on RNAi to protect potato plants from 
attack by Colorado potato beetle (https:// www. youtu be. com/ 
embed/ BiVZb Ay4NHw? ecver=1) (Cagliari et al. 2019). 
Despite the aforementioned breakthrough technologies, 
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RNAi has not been widely used in pest control applications 
because of important technical limitations that must be 
taken into consideration. RNAi efficiency seems to be vari-
able among lepidopteran species (Terenius et al. 2011) and 
other insect orders as well (Singh et al. 2017). The factors 
that play major roles in this varying effects are seemingly 
the degradation of dsRNA by dsRNases and the presence 
or absence of key RNAi components in the corresponding 
insect cells (Swevers et al. 2013; Singh et al. 2017). Another 
factor that must be taken into consideration with respect to 
RNAi efficiency is the cellular uptake of dsRNA. Previous 
studies showed differential dsRNA transport and uptake pat-
terns between lepidopteran and coleopteran cell lines and 
tissues but the process of cleaving long dsRNAs into small 
interfering siRNAs could only be achieved by the Coleop-
teran ones (Shukla et al. 2016).

One of the first reports of successful RNAi in O. nubilalis 
was that of Khajuria et al. (2010) (Table 2). In this study, 
researchers were able to silence a chitinase encoding gene 
(OnCht) using a feeding-based RNAi technique. Feeding-
mediated RNAi caused a 64% reduction of OnCht in the lar-
val midgut, an increased chitin content of 26% and decreased 
larval body weight of 54%; however, no insecticidal activity 
was reported (Khajuria et al. 2010). Following the obser-
vations mentioned above, researchers indicated low RNAi 
efficiency in O. nubilalis with both dsRNA injection and 
feeding (Cooper et al. 2020a, b). By comparing the dsRNA 
stability in O. nubilalis larval guts and hemolymph with 
that of D. virgifera virgifera, a coleopteran exhibiting high 
RNAi efficiency, researchers showed rapid dsRNA degra-
dation in the European corn borer (Cooper et al. 2020a, b) 
which later was attributed to nuclease activity (Cooper et al. 
2020a, b). The authors further identified complementary 
DNAs putatively encoding four dsRNases (OndsRNase 1, 
2, 3, and 4) and one REase (OnREase) (Cooper et al. 2020a, 
b). OndsRNase2 and OnREase were highly expressed in the 
O. nubilalis larval gut, and OndsRNase1 showed the high-
est expression in hemolymph, especially in older devel-
opmental stages (Cooper et al. 2020a, b). Transcript level 
analysis after dsRNA exposure revealed that expression of 
OnREase rapidly increased upon dsRNA ingestion or injec-
tion, whereas OndsRNase4 expression only increased after 

long-term ingestion of dsRNA (Cooper et al. 2020a, b). Τhe 
core RNAi pathway genes, Argonaut 2 (OnAgo2), Dicer 2 
(OnDcr2), and the dsRNA binding protein R2D2 (OnR2D2) 
were cloned and characterized in O. nubilalis (Cooper et al. 
2021a, b). However, a comparison of evolutionary distances 
revealed potentially important variations in the first RNase 
III domain of OnDcr2, the double-stranded RNA binding 
domains of OnR2D2, and both the PAZ and PIWI domains 
of OnAgo2. Moreover, the introduction of non-target dsRNA 
into O. nubilalis second-instar larvae via microinjection did 
not affect OnAgo2, OnDcr2, or OnR2D2 expression (Cooper 
et al. 2021a, b). In contrast, ingestion of the same dsRNAs 
resulted in upregulation of OnDcr2 but downregulation of 
OnR2D2 (Cooper et al. 2021a, b).

RNAi can be improved by identifying methodologies 
that overcome the biochemical, molecular, and physical 
boundaries imposed by insect cells (Kontogiannatos et al. 
2021). There are many technologies that are currently being 
developed in order to enhance RNAi efficiency, encapsulate 
dsRNAs, and increase cellular uptake (Kontogiannatos et al. 
2021). Of these, more important seem to be the nanoparticle, 
ribonucleoprotein and virus-like particle (VLP)-mediated 
dsRNA encapsulation and delivery (Kontogiannatos et al. 
2021). Ostrinia nubilalis ex vivo incubation experiments 
revealed that Meta dsRNA lipoplexes, EDTA, chitosan-
based dsRNA nanoparticles, and  Zn2+ enhanced dsRNA sta-
bility in their hemolymph and gut content extracts, compared 
to the uncoated dsRNA (Cooper et al. 2021a, b). Despite 
that, these formulations failed to enhance RNAi efficiency 
in O. nubilalis in vivo (Cooper et al. 2021a, b), meaning that 
other factors must be explored in order to improve RNAi in 
this insect.

Silencing of a juvenile hormone esterase-related gene 
(SnJHER) in S. nonagrioides using different methodolo-
gies and dsRNA lengths resulted to a wide range of results 
(Kontogiannatos et al. 2013). For hemolymph larval injec-
tion, different sizes of the target gene caused efficient gene 
downregulation, but only the longer one which corresponded 
to almost the entire SnJHER cDNA resulted in a lethal phe-
notype (Kontogiannatos et al. 2013). In contrast, admin-
istration of the dsRNAs at the pre-pupal stage resulted in 
lethal phenotypes regardless of the length of the dsRNA 

Table 2  Summary of RNAi experiments performed with O. nubilalis and S. nonagrioides 

Species Gene Function Delivery Silencing Phenotype References

Ostrinia nubilalis OnCht Chitin synthase Feeding Yes Chitin con-
tent/body 
weight

Khajuria et al. (2010)

OnLgl Lethal giant larvae protein Injection/feeding Various No Cooper et al. (2021a, b)b

Sesamia nonagrioides SnJHER Juvenile hormone 
esterase-related

Injection/feeding/bacterial 
feeding/baculovirus-
mediated

Various Various Kontogiannatos et al. 
(2013)
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(Kontogiannatos et al. 2013). The same authors showed that 
bacterial administration of the dsJHER had no developmen-
tal consequence in S. nonagrioides larvae, despite the silenc-
ing of the gene (Kontogiannatos et al. 2013).

Baculovirus-mediated RNAi in lepidoptera was first 
described by Hajós et al., (1999). The authors used a recom-
binant Autographa californica multicapsid nucleopolyhedro-
virus (AcMNPV) expressing a juvenile hormone esterase 
(JHE) gene from H. virescens in the antisense orientation, 
driven by a viral p10 promoter (Hajos et al. 1999). The same 
authors showed that infection with this recombinant virus 
greatly reduced the hemolymph JHE level and resulted in 
aberrant morphogenesis of final-instar H. virescens larvae 
(Hajos et al. 1999). A similar approach had been used by 
Kontogiannatos et al. (2013) in which a recombinant Bom-
byx mori nucleopolyhedrovirus (BmNPV) expressing a hair-
pin dsRNA of SnJHER was used to infect S. nonagrioides 
(Kontogiannatos et al. 2013). The phenotype produced by 
infection with the BmNPV/dsJHER virus was similar to this 
of the hemolymph administration of the in vitro synthesized 
dsJHER but was almost inconclusive for studying RNAi in 
pupal and adult stages due to its high nonspecific effects 
at these stages (Kontogiannatos et al. 2013). A medium 
to a low degree of silencing was observed to the BmNPV/
dsJHER infected insects (Kontogiannatos et al. 2013).

RNAi technology is one of the most recent trends in crop 
protection and it conceptually approaches the “ideal” of 
the perfect pesticide in that it targets only the intended pest 
and is expected to have little impact on non-target organ-
isms (pollinators, parasitoids, predators, and vertebrates) 
(Kourti et al. 2017). Furthermore, it is biodegradable pos-
ing little risk to human health and the environment (Kourti 
et al. 2017). For the reasons stated above, the application 
of this technology to combat lepidopteran pests, specifi-
cally O. nubilalis and S. nonagrioides requires considerable 
improvement. Based on our inferences, we believe that new 
approaches are required for RNAi to be used in the manage-
ment of lepidopteran pest populations. Technologies involv-
ing RNAi that have been shown to be effective in modern 
medicine (e.g., VLPs, Ribonucleoproteins, etc.) must be 
investigated for use in RNAi-mediated pest control. These 
technologies are estimated as able to overcome all obstacles 
that insect cells pose to RNAi and the future for mass pro-
duction of RNAi pesticides lies ahead.

Chemical control

Chemical control remains one of the most widely used 
methods for lepidopteran pest management, particularly 
in areas where Bt maize cultivation is not permitted or has 
not yet been adopted by farmers. Chemical insecticides are 
often not effective against O. nubilalis and S. nonagrioides 

infestations due to the prolonged duration of adult flight, 
the irregular arrangement of egg laying in the field, and 
especially the rapid penetration of larvae into the plant and 
cryptic behavior, where they are protected inside against 
insecticide application (Blandino et al. 2006). An aggra-
vating circumstance is the height of the crop, which often 
requires the use of specialized machinery including aerial 
spraying in large cultivated areas.

Chemical control of both species is especially challeng-
ing because there is only a narrow window for insecticide 
application between egg hatch and larvae entering into 
plants (Shelton et al. 2002). The efficacy of various insec-
ticides used for this purpose is determined not only by 
the active ingredient and the rate of application, but also 
by the application conditions, and most importantly, the 
application timing.

Historically, chemical control of maize borers was done 
using organochlorides, organophosphates, and carbamates 
insecticides in their granular form. From the mid-1970s 
and during the 1980s, synthetic pyrethroids gained impor-
tance due to their efficiency and low mammalian toxicity. 
However, the overreliance on one mode of action increases 
the likelihood of resistance evolution. Although pyrethroid 
resistance in O. nubilalis has not yet been documented in 
the USA, lambda-cyhalothrin resistance has been reported 
in France (Siegwart et al. 2012). Later on, other active 
ingredients from new insecticide classes were added to 
the chemical control strategies against maize borers, 
including biological insecticides. Currently, many insec-
ticides are approved for control of these pests, including: 
chlorpyriphos-methyl, chlorpyriphos-ethyl, deltamethrin, 
cyfluthrin, esfenvalerate, lambda-cyhalothrin, cyperme-
thrin, indoxacarb, novaluron, lufenuron, imidacloprid, spi-
nosad, and azadirachtin. These active ingredients include 
diamides, oxadiazines, benzoylureas, pyrethroids, and a 
bioinsecticide with different mechanisms of action, reduc-
ing the likelihood of insecticide resistance especially if 
used in rotation (Blandino et al. 2006, 2010; Saladini et al. 
2008).

Foliar broad-spectrum insecticides are conventionally 
applied to maize in many European countries (e.g., Spain, 
Hungary, Poland, Germany, Italy, and France) to control 
maize borers and other lepidopteran species. Many fields 
and laboratory studies have been carried out with the gen-
eral objective of testing and validating innovative IPM solu-
tions including the sustainable use of pesticides and choos-
ing selective insecticides. Over two years, Ostojčić et al. 
(2001) tested the efficacy of several insecticides including 
organophosphates (fenthion, dimethoate, and thiomethone), 
pyrethroids (cypermethrin and lambda-cyhalothrin) and two 
Bt preparations to control O. nubilalis larvae. Organophos-
phates provided 42 and 32% control in the first and second 
years of testing and pyrethroids were 40 and 30% effective, 
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both being similar to the Bt-based preparations (42 and 29% 
in the first and the second years of testing).

The insect growth regulators (IGRs) lufenuron, tef-
lubenzuron, and hexaflumuron were investigated over the 
course of 3 years with poor to acceptable results in control-
ling O.nubilalis, similar to the neonicotinoid imidacloprid 
(Bažok et al. 2009). The same study reported that spinosad-
based insecticide showed satisfactory efficacy, while Bt var. 
kurstaki insecticide applications as well as pyrethroids and 
organophosphate, alone or in combinations, performed very 
well.

New active ingredients representing several chemical 
groups such as diamides, oxadiazines, and benzoylureas have 
been tested and registered for chemical control of maize bor-
ers. The use of indoxacarb (oxidiazines), chlorantraniliprole 
and cyantraniliprole (diamides) against O. nubilalis in the 
field gave generally satisfactory results especially in com-
parison with the active ingredients that have been in use for 
decades, although the number of studies is still limited. In 
previous investigations, indoxacarb was more effective than 
chlorpyrifos but similar in efficacy to alpha-cypermethrin 
(Saladini et al. 2008).

Using 2-year data from a long-term experiment in Italy, 
Vasileiadis et al. (2017) evaluated the effect of three dif-
ferent foliar insecticide treatments in maize. Lambda-
cyhalothrin (19.5 g a.i./ha), chlorantraniliprole (30 g a.i./
ha), and a biological insecticide containing Bt var. kurstaki 
(1000 g/ha) were applied against second-generation lar-
vae of O. nubilalis. Results showed greater efficacy of the 
broad-spectrum lambda-cyhalothrin and chlorantraniliprole 
insecticides compared to the Bt-based biopesticide. Superior 
efficacy in controlling O. nubilalis damage in snap beans 
was observed with cyantraniliprole compared to bifenthrin 
(pyrethroid) (Huseth et al. 2015), and it has been shown 
that the anthranilic diamides, especially chlorantraniliprole, 
exhibit longer-term efficacy than pyrethroids (Schmidt-Jef-
fries and Nault 2017).

Musser and Shelton (2005) investigated the toxicity of 
pyrethroids (lambda-cyhalothrin and bifenthrin), carbamate 
(methomyl), and spinosyn (spinosad), on maize-borer con-
trol at various temperatures and concluded that increasing 
temperatures from 24 to 35 °C reduced pyrethroids’ toxicity 
of by 9.5–13.6-fold, and spinosad toxicity by 3.8-fold, while 
elevated temperatures had no effect on methomyl toxicity. In 
order to test the effectiveness of insecticides depending on 
the time of application, Blandino et al. (2010) and Saladini 
et al. (2008) conducted long-term field trials with different 
times of pyrethroid application and found that treatments 
performed a week before and during the peak of O. nubilalis 
adult flight had the highest efficiency. In their 3-year inves-
tigation, Bažok et al. (2009) demonstrated that insecticide 
efficacy against O. nubilalis was time dependent, with IGRs 
and Bt insecticides requiring application closer to egg hatch, 

and that one insecticide application at the proper (early) tim-
ing resulted in the same efficacy as two successive applica-
tions of the same insecticides.

Roadmap for future research

Since the successful introduction of Bt technologies to con-
trol maize borers, research on biology and management of 
such pests has been overlooked. However, following reports 
of Cry1F resistance in some O. nubilalis populations in Can-
ada, there is a renewed interest in studying the phenology 
and management of these pests in order to mitigate and man-
age resistant populations. The risk of resistant populations 
emerging is high in other parts of the world such as Spain 
and Portugal where the majority of Bt maize in Europe is 
grown especially since only maize expressing the Cry1Ab 
toxin is currently authorized for cultivation, and varieties 
expressing other Cry toxins are not expected to be allowed 
by the European Union in the near future. Furthermore, 
pressure from organic consumer grocery markets is causing 
subtle shifts toward non-GMO organic dairy feed production 
in some maize-producing regions. Such changes are raising 
concerns about the resurgence of O. nubilalis and other stem 
borers. In such cases, it is critical to update the knowledge 
and bridge gaps on aspects of maize borer biology in general 
as well as these with resistance development.

The resistance discovery in Canada also emphasizes 
the critical importance of continuing resistance monitor-
ing efforts for O. nubilalis and Bt maize as well as research 
into cross-resistance among Bt proteins, susceptibility to 
all existing Bt proteins, and any new proteins that may be 
introduced in the future. Furthermore, resistance monitor-
ing should be extended to alternate host crops for maize 
borers’ management within their distribution range. Finally, 
research on maize natural resistance to stem borers is and 
will continue to be necessary because introgression of genes 
involved in maize resistance and tolerance would help to 
slow the appearance of insect resistance to Bt hybrids and 
the released varieties would be useful for organic and low-
input farming.
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