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Hypervalent iodine reagents have been applied in many metal-free, efficient synthesis of
natural products and other bioactive compounds. In particular, treatment of alcohols,
acetals and acids with hypervalent iodine reagents and iodine results inO-radicals that can
undergo a β-scission reaction. Under these oxidative conditions, derivatives of amino
acids, peptides or carbohydrates are converted into cationic intermediates, which can
subsequently undergo inter- or intramolecular addition of nucleophiles. Most reported
papers describe the addition of oxygen nucleophiles, but this review is focused on the
addition of carbon, nitrogen and phosphorous nucleophiles. The resulting products
(nucleoside and alkaloid analogs, unnatural amino acids, site-selectively modified
peptides) are valuable intermediates or analogs of bioactive compounds.
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INTRODUCTION

Hypervalent iodine reagents have proven very useful for the synthesis of natural products and other
bioactive compounds (Dohi and Kita, 2016; Wang, 2021). A variety of methodologies have been
developed, in many cases combining the hypervalent iodine reagents with other compounds, such as
iodine, organic peroxides, TEMPO, and organic photosensitizers or metal catalysts in catalytic
photoredox processes (Singh and Wirth, 2021; Le Du et al., 2021; Zhdankin, 2020; Chen et al., 2020;
Wang and Studer, 2017; Yoshimura and Zhdankin, 2016; Wang and Liu, 2016; Zhdankin and Stang,
2008; 2002).

The use of metal-free procedures is particularly important for the synthesis of bioactive products,
to avoid undesired contamination of the product, especially when large-scale synthesis is needed for
bioactivity assays or industrial production (Dohi and Kita, 2016). Among these metal-free
methodologies, the combination of hypervalent iodine reagents and iodine (Suárez reaction) is
quite interesting for its operational simplicity, low reagent toxicity, reagent degradation during
aqueous work-up, and easy product purification. This method has been used to generate O- and
N-radicals that can undergo different reactions depending on the substrate and reaction conditions,
mainly hydrogen abstraction and scission of the Cα,Cβ-bond (β-fragmentation) (Stella, 2001; Suárez,
2001; Li et al., 2010; Wang, 2021).

Our group and others have described different applications of the β-scission of O-radicals,
generated from alcohols, acetals or acids under Suárez conditions, to the preparation of bioactive
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FIGURE 1 | Scission-addition of C-nucleophiles.
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FIGURE 2 | Scission-addition of N- and P-nucleophiles.
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products or their analogs (Saavedra et al., 2020; Cuevas et al., 2021
and references cited therein). However, in these protocols a
further development was introduced: coupling these oxidative
scission processes to the addition of carbon, nitrogen,
phosphorous, oxygen, hydrogen, sulfur and other nucleophiles
(Boto, Gallardo et al, 2006; 2007a; Boto, Hernández et al, 2008a,b;
2009; Batchu et al, 2014; Carro et al, 2017; Saavedra et al., 2018;
Santana and González, 2020). In effect, the scission generates a
C-radical that can be readily oxidized to a cationic intermediate
when the latter is stabilized by adjacent groups. This is the case for
tertiary C-radicals, or those adjacent to nitrogen or electron-rich
oxygen functionalities (Boto et al., 1999–2004; 2005a; 2007a;
2007b; 2007c; 2007d; Francisco et al., 2001; Romero-Estudillo,
2013, 2015a, 2015b; Kiyokawa et al., 2017; André-Joyaux et al.,
2019). When the substrates are aminoacids or β-hydroxyamines,
an intermediate iminium ion is formed, while carbohydrate
substrates afford oxycarbenium ion intermediates. These
cationic species may then undergo nucleophilic addition; most
reports describe the addition of oxygen nucleophiles (Chai et al.,
1998a; 2005; Francisco et al., 2001; Boto et al., 2005a; 2007a;
2008a; Miguélez et al., 2012; Kiyokawa et al., 2018), but this
minireview will focus on carbon, nitrogen and phosphorous
nucleophiles. Since several transformations are carried out
consecutively, with no need to purify the intermediates, these
one-pot radical-polar crossover reactions save time, materials and
energy with respect to the original conditions.

A selection of these one-pot scission-oxidation-addition of C,
N and P nucleophiles methodologies is presented in this review,
as well as the known or potential bioactivities of the products thus
obtained.

OXIDATIVE O-RADICAL
SCISSION-ADDITION OF CARBON
NUCLEOPHILES
One of the first applications of this process was the generation of
aryl glycines, some of which displayed cytotoxic properties (Boto,
Gallardo et al, 2007a; 2006). As shown in conversion 1→ 6
(Figure 1), treatment of serine derivatives 1 with hypervalent
iodine reagents (such as diacetoxyiodobenzene, DIB) and iodine,
under irradiation with visible light, generated an O-radical 2 that
underwent β-scission to give a C-radical 3. The latter reacted with
iodine or with the hypervalent iodine reagent to give an unstable
intermediate 4 that was transformed into an α-acetoxyglycine 5.
On treatment with a Lewis acid an acyliminium ion 6 was
generated, that reacted with electron-rich arenes, to afford
arylglycines such as 7 in good to excellent yields. Arylglycines
are components of antibiotics such as nocardicins and
vancomycin, anti-neurodegenerative agents and alkaloids
(Williams and Hendrix, 1992; Boto, Gallardo et al, 2007a).

A related scission-alkylation reaction was used to prepare
analogues of cytotoxic indolizidine alkaloids (Miguélez et al.,
2013a). Thus, proline amides 8 underwent decarboxylation and
the addition of silyl enol ethers derived from aryl methyl ketones,
to give the substituted pyrrolidines 9. Cyclization under basic
conditions afforded the two isomers of the desired bicyclic

systems 10, which were separated and tested. Some of these
alkaloid analogues displayed a promising activity, but
interestingly, some monocyclic derivatives 9 also did, which
could be useful to determine SAR relationships.

A variation of the previous scission-alkylation methodology
was applied to the site-selective modification of peptides using
“customizable” glutamic acid (Saavedra et al., 2012c) or
C-terminal residues (Saavedra et al., 2009). In both cases, an
oxidative radical decarboxylation took place, followed in the first
case (conversion 11→ 12/13) by the addition of silyl enol ethers to
give derivatives 12 or 13 in good global yields. In that way, an
ordinary α,α-unit was converted into α,γ-peptide hybrids, which
have elicited interest for their antimicrobial, antitumour,
antihypertensive, and anti-Alzheimer properties, as well as
their superior resistance to protease degradation (Ordóñez and
Cativiela, 2007; Hernández et al., 2017).

In the second example, the substrate 14 was decarboxylated
and subjected to the addition of silyl ketenes, to give substituted
α,ß-peptide hybrids such as compound 15. These hybrids had
unusual conformations, which could be used for drug or catalyst
design (Saavedra et al., 2009; 2012a; 2012b). In addition, many
α,β-hybrids have displayed promising activities such as the
antitumour dipeptide bestatin (Ubenimex). Moreover, they are
more resistant to degradation by peptidases, as evidenced with a
series of α,β-peptide bradykinin cleavage inhibitors, whose half-
life was greatly increased with respect to the α,α-analogues
(Bauvois and Dauzonne, 2006; Aguilar et al., 2007).

The scission reaction can also be followed by a cycloaddition
reaction. Thus, when substrate 16 was decarboxylated and treated
with different dienes, it provided cycloaddition products such as
17 in good yields and excellent stereoselectivities (Boto and
Romero-Estudillo, 2011). Other addition-cyclization reactions
have been also described, such as the transformation of the
α,ß-amino sugar 18 into the oxazines 20 and 21, through
intramolecular cyclization of cationic intermediate 19 (Boto,
Gallardo and Alvarez, 2012). In another example, the one-pot
conversion of an amino acid into an oxazol (transformation 22→
28), the reagent (diacetoxyiodo)benzene was transformed in situ
into other (diacyliodo)benzenes; then, the substrate 22 was added
and underwent an oxidative radical scission to give an
acyliminium intermediate 23. This ion isomerized to an
enamide, which reacted with iodine (or the hypervalent iodine
reagent) to afford an intermediate 24, which experienced an
intramolecular cyclization with opening of the halonium ring.
The halogen group was then replaced by the acyloxy moiety
(benzoate in the example) to give the oxazolidine 26. However,
the reaction went on, with extrusion of the benzoate, formation of
a cationic intermediate 27 and aromatization, providing the
oxazole 28 in 70% global yield (Romero-Estudillo et al., 2014).
These heterocycles can be found in many bioactive peptides, and
are considered privileged structures (Boto, González et al, 2021).

Two scission reactions can be carried out in “doubly
customizable” hydroxyproline units (Hernández et al., 2021).
Thus, using the hydroxyproline substrate 29, a
decarboxylation-alkylation was carried out, to give a 2-
substituted pyrrolidine in good yield and excellent 2,4-cis
stereoselectivity. After deprotection of the 4-hydroxy group,
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the resultant pryrrolidine 30 underwent a second O-radical
scission, to afford compound 31, which presented two new
chains which could be manipulated independently (conversion
31→ 32). Thus, the α-chain was subjected to a reductive
amination, while the addition of allylTMS to the N,O-acetal
gave an olefinic chain, that could be further diversified using
olefin metathesis (Saavedra et al., 2019; Hernández et al., 2021).

In a second example (conversion 33→ 23), the
decarboxylation-allylation of compound 33, followed by
hydrogenation, afforded a 2-substituted pyrrolidine 34. The
stereogenic center at C-4 determined, as before, the configuration
at C-2, and thus, compounds 30 and 34 had opposite C2-
stereochemistry. This result was translated to the second scission
product 35, which was used in a Horner-Wadsworth-Emmons
reaction to afford the peptide 36. This peptide has a
dehydroaminoacid unit, which is often used in peptides to
provide rigidity and a better interaction with biological targets.
Dehydropeptides have displayed antimicrobial, antitumour and
phytotoxic activities (Jiang et al., 2015; Siodlak, 2015).

The addition of C-nucleophiles to oxycarbenium ions derived
from the scission of carbohydrates has also been studied, as
shown by the conversion 37→ 39 (Boto, Hernández et al,
2007c). In this case, however, the one-pot procedure was less
efficient than the two-step process, where the intermediate acetate
38 was isolated and then treated with a Lewis acid and the
C-nucleophile. Other examples were also studied, with similar
results. The resultant products were converted in a few steps and
with high optical purity into chiral furyl carbinols, which are
useful precursors of bioactive products, such as the selective
antifungal populacandin D (Balachari and O’Doherty, 2000),
or KDO, a vital component of the Gram-negative bacteria cell
wall (Martin and Zinke, 1991).

OXIDATIVE O-RADICAL
SCISSION-ADDITION OF N- AND
P-NUCLEOPHILES
The scission-addition of nitrogen nucleophiles provides other
families of potentially bioactive products, such as iminosugars
and nucleoside analogues (Figure 2). Many iminosugars have
displayed a potent activity as glycosidase inhibitors, while many
nucleoside analogues have been used as antimicrobial or
antitumour agents (Horne et al., 2011; Drug Bank, 2021).
Given the potential in this field, the main goal of our research
has been focused on synthesizing new classes of iminosugar
derivatives starting from carbohydrates.

As shown in the conversion 41/42→ 47/48 (Figure 2), the
cleavage of the carbohydrate C1-C2 bond forms a C-radical
43 that reacts with iodine or the hypervalent iodine reagent to
afford a halogenated intermediate 44 (Francisco et al., 2001).
Indeed, some iododerivatives (X = I) are stable enough to be
isolated and characterized (Francisco et al., 1998b). But in
many cases, the intermediate is rapidly converted into an acetoxy
compound (eg product 45). This acetoxyderivative 45 is in
equilibrium with its oxycarbenium ion 46, which can undergo
the intramolecular addition of nitrogen nucleophiles, to give

nitrogen heterocycles such as 47 and 48. A related conversion
of aldoses to ketoses 49→ 50 also took place in satisfactory yield
(Santana et al., 2013). This methodology, which represents an
efficient alternative to the Lobry de Bruyn-Alberda van Ekestein
alkaline isomerization, used readily available aldoses as starting
material. Despite the steric hindrance to nucleophile approach, the
reaction proceeded smoothly, affording ketoses such as 50, where a
new quaternary center with a desired configuration has been
incorporated.

Following this strategy, a variety of novel polyhydroxylated
heterocyclic compounds have been recently prepared. For
example, cyclic guanidines derived from carbohydrates were
synthesized as shown in transformation 51→ 52/53 (Santana
and González, 2020). The bidentate nucleophilic character of the
guanidinium group opened the possibility to differentiate
between the two non-equivalent nitrogen atoms, which made
the proposed methodology more versatile, as endocyclic or
exocyclic guanidines of different sizes (5-, 6-, 7- or 8-
membered rings) could be generated in good yields (85% in
the example shown). The guanidinium moiety appears in natural
products with potent biological activities, such as saxitoxin,
tetrodotoxin or crambescin, and also drugs such as
antiplasmodium compounds (Alonso-Moreno et al., 2014;
Perry et al., 2019).

This versatile strategy has also provided a battery of sugar
tetrazoles and benzimidazoles (Paz et al., 2012; André-Joyaux
et al., 2019). Remarkably, in the key cyclization step these
aromatic nitrogen heterocycles were used for the first time as
nucleophiles. The method efficiently afforded polycyclic systems
such as 55 and 57 in good yields. Tetrazole and benzimidazole are
privileged structures, and tetrazoles are found inmany fungicides.
These heterocycles have been used to protect crops since the
1970s, due to their low or moderate toxicity, broad fungicide
spectrum and potent systemic action (Pernak et al., 2015).
Benzimidazoles have displayed potent antimicrobial properties,
and carbohydrate-bound benzoimidazoles (pseudonucleosides)
are antiviral agents (Verma et al., 2016).

Nitrogen bases can also add to oxycarbenium ions, as shown in
the conversions 58→ 59 and 60→ 61 (Boto, Hernández et al,
2007b). Both purine and pyrimidine bases reacted in good to
excellent yields. The acyclic nucleosides have elicited much
interest as antivirals (de Clercq, 2005). In addition, the
reaction of nitrogen bases with acyliminium ions, as in
transformation 62→ 63 (Boto, Hernández and Hernández,
2010a), afforded azanucleosides, a class of compounds with
antimicrobial, anticancer and enzyme inhibitor properties
(Hernández and Boto, 2014). Interestingly, when the scission
reaction was carried out in acetonitrile instead of the more usual,
less polar solvent dichloromethane (conversions 64→ 66), the
initial iminium ion isomerized to an enamine derivative such as
65, which reacted with iodine and then with the nucleophile to
give the final iodoazanucleosides (eg compound 66; Boto,
Hernández and Hernández, 2010b).

The decarboxylation of acids to give tertiary cationic species
which reacted with the solvent (acetonitrile) to afford Ritter-type
products (conversion 67→ 70), was studied by Kiyokawa et al.
(2017) giving hindered amines such as 70a and 70b in good yields.
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A decarboxylative amination where boron Lewis catalysts were
used instead of iodine was reported by Narobe, König et al.
(2022).

Finally, the one-pot scission-addition of phosphorous
nucleophiles was studied for the site-selective modification of
peptides (Boto, Gallardo et al, 2005b; Saavedra et al, 2012d; 2018).
After the oxidative radical scission a phosphite was added, and an
aminophosphonate such as compound 72 was formed. A Horner-
Wadsworth-Emmons reaction with different aldehydes was
carried out to give a peptide with a dehydroaminoacid unit,
which increased the system rigidity. The reaction took place in
good yields and a high Z stereoselectivity, even when interior
positions were functionalized. The introduction of
dehydroaminoacids into peptides can improve their interaction
with their biological targets and their resistance to proteases.
Therefore, dehydroaminoacids are components in a variety of
bioactive natural peptides and drugs (Jiang et al., 2015; Siodlak,
2015).

The tandem decarboxylation-phosphorylation process was
recently adapted by Viveros-Ceballos et al. (2021) to prepare
tetrahydroisoquinoline-3-phosphonic acids, which are key
components of enzyme inhibitors and other bioactive
products. In another example, nucleotide analogs were formed
by a decarboxylation-phosphorylation reaction (Miguélez et al.,
2013b). Although the authors do not report the bioactivity for this
set of compounds, clearly this methodology would be valuable for
the preparation of chemical libraries for structure-activity
relationships.

CONCLUSION AND OUTLOOK

The use of metal-free methodologies for the synthesis of bioactive
products is a hot area in pharmaceutical chemistry, and
hypervalent iodine reagents have proven very useful to achieve
this goal. Moreover, among metal-free synthetic methodologies,
particularly interesting are those which carry out the
transformation of readily available natural products into
added-value bioactive compounds using one-pot ‘cut and
paste’ processes.

This mireview focuses on the methods which use the
generation and scission of O-radicals in their key step,
followed by the addition of carbon, nitrogen and phosphorous
nucleophiles. These methodologies include scission-alkylation,
scission-arylation, fragmentation-Diels Alder and other inter-
and intramolecular cyclization processes, scission-Ritter,
fragmentation-addition of nucleobases, and scission-
phosphorylation. A range of products can be obtained from
simple substrates such as organic acid and alcohols, amino
acids, carbohydrates and peptides. Among those interesting for
their potential bioactivity are alkaloid and nucleoside analogues,
heterocycles, aminophosphonates and other amino acid

analogues, and site-selective modified peptides and peptide
hybrids.

In most cases, these strategies afforded high added-value
products in good to excellent yields, operational simplicity and
easy work-up and product purification. These processes offer a
quick route to families of many bioactive products (such as
glycosidase inhibitors and other antimicrobial or cytotoxic
compounds) and also to some new compounds containing
privileged structures, whose biological properties deserve to be
further studied. This could be a goal for the next future in
this area.

The work carried out up to now highlights the
opportunities offered by these sustainable metal-free, one-
pot methodologies, where many other substrates and
nucleophiles remain to be explored. Since structural
diversity often translates into biological diversity, future
efforts in the topic could provide new promising bioactive
compounds and drug candidates.
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