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Abstract

A system that builds burrow-like topological maps and solves the localization of a
mobile robot for indoor environments is presented. The approach uses visual features
extracted from a pair of stereo images as landmarks. New landmarks are merged into
the map and transient landmarks are removed from the map over time. A learning rule
associated to each landmark is used to compute the landmark’s existence state. The
position of the robot in the map is estimated by combining sensor readings, motion
commands, and the current map state by means of an Extended Kalman Filter. The
combination of neural network principles for map updating and Kalman filtering for
position estimation allows for robust robot localization in indoor dynamic environments.
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1 Introduction

Efficient indoor mobile robot navigation is limited mainly by the ability of a robot to perceive
and interact with its surroundings in a deliberative way. And, for such interaction to take
place, a model or description of the environment usually needs to be specified beforehand.
If a global description or measurement of the elements present in the environment is not
available, at least the descriptors and methods that will be used for the autonomous building
of one are required. This is, either the robot has a global map, or it is given the means to
learn one.

Many systems that incorporate human-made models of the environment have been suc-
cessfully developed, even when only an approximate map is given, or in crowded environ-
ments [1, 2]. However, the autonomous building of a global, and possibly dynamic, map of
the environment for a mobile robot is still a difficult problem. Three main difficulties arise
during autonomous learning of an indoors map by a mobile robot, namely dead reckoning,
sensor uncertainty, and environment dynamics. Map construction in mobile robotics has
been made typically by updating grid maps of obstacles [3]. Probabilistic approaches that
combine map learning and localization include [4, 5]. A method that combines sensor data
from various robots to build a map using fuzzy set theory is presented in [6]. Some authors
have recently proposed the use of goal oriented cognitive maps to learn the relationship be-
tween successively explored places [7, 8]. However, these methods are usually limited in that
changing environments are only dealt with reactive behaviors.
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(a) System Architecture (b) Physical View

Figure 1: MARCO Mobile Robot

A methodology for the construction and update of a dynamic topological map of a mobile
robot is presented. Unlike grid-based techniques, it is scale independent. It was designed so
that map updating can occur even in changing environments, and exploits the relationship
between neighboring landmarks. It does not make any assumption on the distribution of
the landmark positions, but it does expect white distribution of dead reckoning and sensor
errors. The system architecture is shown in Fig. 1a, and includes three distinctive modules:
sensing, robot localization, and map updating.

2 Sensing

The extraction of landmarks from the environment is based solely on visual information. A
salient feature locator that uses Beaudet’s cornerness measure [9], with further refinement
using the variance descent approach [10] was implemented. These salient features are then
pairwise matched in the stereo set by correlation, and by the enforcement of epipolar con-
straints. Each feature’s 3-D position with respect to the robot is reconstructed from stereo
geometry. The 3-D position of a feature zR

i with respect to the robot, and an associated
vector of appearance properties, constitute a landmark. The appearance properties, which
are used to validate future map landmark matches, include the pixel gray-level mean and
distribution over a small window around the salient feature, and the energy of the feature
computed from Beaudet’s cornerness measure.

The position of a landmark in world coordinates is a nonlinear function of the robot
position, the landmark position in robot coordinates, and the uncertainty in sensor mea-
surement: zW

i (k) = h(zR
i (k),x(k),v(k)). A noise-free approximate measure of this quantity

is given by

z̃W
i (k) = RzR
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 , t = (x, y, 0)T (1)

and a linearized version for this quantity can be expressed as a Taylor Series with the



higher order terms dropped: zW
i (k) ≈ z̃W

i (k) + H(k)(x(k) − x̃(k)) + v(k). The prediction
error x(k) − x̃(k) is computed during robot localization, and the Jacobian or measurement
innovation matrix takes the simple form
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3 Map Update

To update the map of the environment, each landmark coming from sensor measurements
is searched for a match in the current map. This search is limited to a reduced number
of landmarks; all current map entries are first reprojected into the visual space, and only
those map landmarks that fall within the field of view at the robot’s current position are
considered during the map update process.

If the sensed landmark position falls within the uncertainty region of a map landmark,
and their appearance properties vectors are highly correlated, then we have a scene-to-map
landmark match. Once a match is obtained, the distribution parameters for the uncertainty
of the landmark position are updated, as well as the vector of appearance properties. The
distribution of the uncertainty of a landmark position in the map is parameterized by a
normal distribution with mean z̄W

i and covariance Si.
One of the main contributions of this work resides on the formulation of the landmark

existence state, a measuring device of how persistent a landmark is in order to be consid-
ered a strong reference for environment representation and robot localization. Temporary
landmarks and those coming from noisy sensor readings are pruned from the map as their ex-
istence state diminishes over time. On the other hand, those landmarks that are repeatedly
seen are considered stronger indicators of the structure of the environment.

We have resorted to neural network principles for the formulation of the landmark ex-
istence state, because of the exponential decay properties of the perceptron update rule,
and the possibility to link neighboring landmarks in a networked representation. Within
this framework, two approaches have been analyzed for the construction of a topological
map: first, we consider the landmarks as uncorrelated features that characterize the robot
environment; and secondly, their reciprocal relationship is examined.

3.1 Independent Landmarks

For each landmark in the map, there exists an associated perceptron that will register how
persistent, and how old the landmark is. The state of the perceptron x will be considered
as the existence state or strength of a given landmark, and the training information for the
neuron is the landmark identification stamp at time k. The proposed update rule equations
for the existence of landmark i in the map are

xi(k + 1) =
1

1 + e−wi(k)xi(k)
, wi(k + 1) = wi(k) + (1 − xi(k))(ēi(k) − cf ) (3)



where 0 ≤ cf ≤ 1 is a forgetting factor, wi(k) is the neuron weight for landmark i at time
k, and ēi(k) = {0, 1} its identification stamp. If cf ≈ 0 all landmarks will prevail in the
map regardless of how old they are or how many identification stamps they got. On the
other hand, when cf ≈ 1, the landmarks will be forgotten faster, a desirable situation in
highly dynamic environments. For the later case only persistent landmarks will remain in
the map, rewarding the associated neuron with its presence and penalizing it if they are not
identified from the current view of the scene. It should be stressed that the neuron states
are only updated for those landmarks in the map that fall within the viewable area at time
k. Finally, if the existence state xi(k) falls below a forgetting threshold tf , it means the
corresponding landmark has been forgotten, and it is immediately removed from the map.

3.2 Correlated Landmarks

The learning rule in Eq. 3 omits the relationships that exist among different landmarks,
thus neglecting correlational information. To model these correlations, consider now the
following learning rule

xi(k+1) =
1

1 + e
−

∑
j∈I(k)

wji(k)xj(k)
, wij(k+1) = wij(k)+xi(k)(1−xj(k))(ēi(k)−cf ) (4)

with I(k) the set of landmarks in the map that, when reprojected at time k, persist in the
field of view. Note that different from the perceptron rule used for the uncorrelated case,
we need now to update as much as |I(k)| weights for each landmark instead of just one.
The time and space complexities of the map updating algorithm are |I(k)| times greater in
average for the correlated case.

The proposed map update schemes have the following advantages over other map learning
algorithms: (1) The map preserves its topological structure. The prevailing relationship
among existing features are their own Euclidean metrics, as well as the learned weights for
the correlated case; (2) The map is not limited in resolution, as opposed to grid-based maps.
This permits the modeling of different size environments without the need to modify its
general structure; and (3) The dynamic property of the map allows for the robust modeling
of changing or noisy environments. It also restricts the map from growing indefinitely, a
situation that could affray with system resources (search speed and memory).

4 Robot Localization

Localization techniques can be divided mainly in three groups: (1) correlation methods that
match sensor signals against previously stored maps; (2) Kalman filters that estimate the
current robot position from current and previous sensor readings, past position estimates,
and motion commands, as well as uncertainty measurements of sensory and motion infor-
mation; and (3) Markov localization techniques, which use a probabilistic framework to
maintain a position probability density over the whole set of robot poses [2]. Kalman filters
are typically robust for local localization, whereas Markov localization is better suited for
global localization. The former technique requires that the initial location of the robot be



Figure 2: Detected Landmarks and their Uncertainties

known, whereas the latter method usually requires stronger assumptions about the nature
of the environment.

In this work, we are limited to the construction of an environment map starting from
a known position or origin. Also, since the computation of the actual robot position is
very sensitive to the accumulation of dead-reckoning error, we have opted for the use of an
Extended Kalman Filter for robot localization.

The time update equations for the a priori estimate of the robot position at time k+1, and
its error covariance are x̂−(k+1) = x̂(k)+u(k), and P−(k+1) = P(k)+Q(k), respectively.
The motion command vector is u(k); and the robot motion noise Q(k) is typically set
to a constant value, and can be computed by running a set of motion commands and
parameterizing the deviation from the desired pose. If the number of samples is sufficiently
large, white noise parameters can be estimated for Q. The position error covariance estimate,
can be initialized to I and updated with P(k) = (I − K(k)H(k))P−(k).

Lastly, the Kalman Filter Gain K(k) is chosen such that the a posteriori error covariance
P(k) is minimized: K(k) = P−(k)HT (k)

(
H(k)P−(k)HT (k) + S(k)

)−1, with S(k) being the
measurement residual error covariance at time k for each landmark. The reader is referred to
[11, 12] for a detailed explanation on Kalman Filtering techniques. Our formulation follows
closely that of [12].

5 Experiments

The mobile robot platform MARCO used in our experiments is shown in Fig. 1b. A sample
run of our map building method is shown in Fig. 2, where the hollow boxes show a group
of salient features extracted from one of the images, and the filled boxes correspond only to
those features that have been matched properly in the stereo pair. Fig. 2 shows also a top
view of the estimated position of the matched landmarks with respect to the robot as well
as their position error covariance estimate in the form of uncertainty ellipses. The sample
run shown in Fig. 2 considers only the case of uncorrelated corner landmarks. The scene



contains a total of 28 landmarks. Landmarks 7, 18, 21, and 28 were seen only once, and
they represent noise or spurious data. Stronger landmarks, such as the ones numbered 3,
19, 24, and 26, have smaller error covariance estimates when compared to landmarks 14, 15,
16, and 17, which are seen fewer times and are also further apart from the stereo head. The
updated robot position is also shown in the figure.
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