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Abstract - The categorization process defines sensor and action categories from elementary 
sensor readings and basic actions so that the necessary elements for solving a task are correctly 
perceived and manipulated. In reinforcement learning, a previous categorization process is 
needed to define sensor and action categories with special requirements that we analyze in this 
paper and that, in general, are difJicult to achieve, specially in complex tasks such as those that 
arise when working with autonomous robots. We show how these special requirements should be 
relaxed and we sketch a reinforcement learning algorithm that uses a less restrictive form of 
sensory categorization than existing algorithms. Additionally, we show how a given sensory 
categorization can be improved so that it better fits the demands of the previous algorithm. 

1. INTRODUCTION 

Continuos improvements in areas such as Mechanical 
Engineering and Micro-Electrotiics have given us the 
possibility of building autonomous robots with 
increasingly sophisticated sensorial and motor systems. 
The control of this kind of robots to accomplish 
complex tasks in dynamic environments is one of the 
challenges of Artificial Intelligence but we are far from 
achieving it. 

In the last years, some authors [2] have argued that 
traditional Artificial Intelligence approaches based on 
high level reasoning and planning are not adequate for 
the type of problems that arise when controlling a real 
robot in real time, and new control architectures have 
been proposed. The use of these new architectures 
allowed to achieve complex tasks with controllers based 
on simple principles [l], [5 ] .  But, even in these new 
paradigms, the programming of a robot is not free of 
problems. Behind each success there is usually a 
programmer that has spent lots of hours designing the 
controller, developing each one of its modules and 
adjusting their parameters and interactions until the 
desired behavior is obtained. If we want to address more 
complex tasks and environments, this programming 
process must be alleviated, and the application of 
machine learning techniques is a promising way to 
explore. The idea of automatic learning of robot 
controllers has been present in the new robot control 
architectures from the very beginning [6 ] ,  [lo], Ell], 
[ l a .  

A learning paradigm can be classified according to the 
amount of information that the designer directly 

provides to the learning agent'. At one end of this 
continuos spectrum (closer to the manual programming) 
we find the supervised learning approaches in which the 
designer informs the agent about which are the adequate 
actions (with respect to the current task) to be executed 
in some specific situations and the objective of the 
learning algorithm consists in generalizing ,the given 
information to find out the correct actions in all the 
possible situations. At the other end of the learning 
paradigms, there are the reinforcement learning systems 
[8]. In these systems, the designer only informs the 
agent when the task has been successfully completed. 
Between the two extremes of the classification, there is 
a variety of learning systems that the programmer can 
use depending on her knowledge of the task and on how 
easy is it to transfer this knowledge from the designer's 
point of view to the robot's point of view. In many 
problems concerning autonomous robots the 
reinforcement learning paradigm is the only adequate 
one. 

Reinforcement learning has been extensively studied 
since the origins of Artificial Intelligence and even 
before. However, as it happened with the traditional 
Artificial Intelligence architectures, learning paradigms 
must be adapted to be successfully applied to 
autonomous robots. Since now, existent reinforcement 
learning algorithms have been mainly focused on how 
to find the correct links between perception and action 
without paying much attention on how perception and 
action must be pre-processed so that relevant mappings 
between them can be established. In general, current 
reinforcement learning algorithms depart from the basis 

' There exits also unsupervised learning approaches in which 
no information is given to the learning agent but they are not 
t.ask-purposive. 
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that states for solving the task can be identified and that 
adequate actions to go from one state to another are 
available to the agent (see [14] page 61 for a good 
explanation on this assumption). The definition of these 
states and actions is a type of categorization. This 
process is in charge of the programmer and is often 
implicit in the application of the reinforcement learning 
algorithms. The categorization process can be the most 
difficult stage of the solution of a task (the proper 
interpretation of the sensor readings can transform an 
apparently complex task in a simple one) so, if it is done 
by the programmer, we could be systematically 
confronting our reinforcement learning algorithms with 
the easiest part of the problem. This is specially true 
when facing difficult tasks or environments with 
complex agents (such as autonomous robots). In this 
case, determining the state from the sensor readings and 
the appropriate combinations of elementary actions 
becomes so difficult ' that the application of 
reinforcement learning algorithms is limited to simple 
problems. 

In the next section we analyze in more detail the special 
properties of the sensor and action categories required 
for ~ the correct application of classical reinforcement 
learning algorithms. We also show how such properties 
become a problem when these algorithms want to be 
applied to complex agents such as autonomous robots. 
In section 3, we sketch an extended reinforcement 
learning algorithm able to deal with a less restrictive 
form of sensory categorization than that required by the 
available algorithms, and in section 4 we describe how 
this categorization can be automatically improved using 
the' information given by the reinforcement signal. 
Finally, in section 5 we extract some conclusions of our 
work and outline future ways in which our system 
should be extended to cope with more general learning 
problems. 

2. THE REINFORCEMENT LEARNING 
ASSUMPTIONS 

The reinforcement learning paradigm has been 
extensively studied in areas such as Ethology, 
Automatic Control, and more recently Artificial 
Intelligence. A general description of a reinforcement 
learning situation includes the following elements: 

A definition of the task: The only strictly needed 
information about the task is a signal, called the 
reinforcement signal, that becomes active when the 
task is achieved. If more information about the task 
is available (as for instance, correct or incorrect 
actions in some situations, or necessary 
preconditions for achieving the task), it can be 
added to the reinforcement signal to help the 
learner. 
An environment in which to accomplish the task. 
Depending on the kind of environment (.static, 

dynamic, ...) the resolution of the task can be less or 
more difficult. 
An agent that must complete the task. This agent 
can perceive the environment and execute actions. 
The solution of a task consists in determining 
actions for each situation so that the agent collects 
as much reward as possible. 

The first attempts to formalize this framework were at a 
high level of abstraction, and the resulting formalization 
was not as general as the previous description. The main 
hypothesis on which this formalization relies is to 
consider the environment as a state machine controlled 
by the agent; so that the interaction between the 
environment and the agent is arranged in a two step 
loop: In the first step, the agent perceives the state of the 
environment and, in the second one, it performs an 
action that produces an immediate change in this state 
according to a well defined transition probability. This 
hypothesis was quickly accepted by the Artificial 
Intelligence researchers coming from fields such as 
automated reasoning or planning, because they also 
used to tackle problems at a high abstraction level, in 
which states and actions to move from one state to 
another were easy to define (if not directly present in the 
definition of the problem). So, the reinforcement 
learning algorithms developed in Artificial Intelligence 
heavily rely on the above hypothesis and as far as it is 
not fulfilled, they do not work properly. However, 
considered from the robotics point of view, the above 
hypothesis is not realistic at all since in a dynamic 
environment it is not reasonable to suppose that the 
global state of the environment is controlled by the 
robot actions. At most we can assume that part of the 
state is controlled by the robot but obviously there are 
thousands of events that occur absolutely out of the 
robot control. This disagreement between the usual 
reinforcement learning hypothesis and robotics reality 
makes existing reinforcement learning algorithms very 
difficult to be used in robotic environments. 

In the following subsections, different aspects of the 
reinforcement learning formalization hypothesis are 
analyzed in detail from the point of view of the 
application of reinforcement learning in a robotic task. 
This revision will help us to settle the basis on which to 
describe new algorithms more useful for being applied 
to robots than the existing ones. 

2.1 Global State Identification 

The reinforcement learning hypothesis of considering 
the environment as a state machine controlled by the 
agent, is usually accompanied by the assumption that 
the agent has direct knowledge of the state of this 
machine. In a robotics application this supposes that the 
robot must be able to identify the global state of the 
environment. But this objective can hardly be achieved 
by an agent able to perceive only part of its 
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surroundings. Despite this limitation in robot 
perception, the current sensor readings are often taken 
as the present state of the environment. The robot is 
supposed to change this state using the elementary 
actions it is able to execute. Unfortunately, this simple 
solution does not work properly in most autonomous 
robot applications. The reason is that sensor readings 
and elementary actions conform a too large search space 
[15], and that, in a complex autonomous robot, it is 
almost impossible to consistently predict the next sensor 
readings after the execution of an elementary action. 
This is in contrast with the assumptions underlying the 
reinforcement learning algorithms, so that, with this 
definition of states and actions, they can hardly 
accomplish even the simplest tasks when applied to 
autonomous robots. 

A usual attempt to solve this problem consists in 
defining feature detectors. A feature detector can be 
devised as process that identifies special combinations 
of sensor readings. Feature detectors are usually defined 
by the programmer attending to special characteristics 
of the environment that the robot is able to perceive. 
Departing from a set of feature detectors, the state of the 
system is usually defined as the current combination of 
active and non-active feature detectors. The high level 
of abstraction of the feature detectors makes the 
transitions between states based on them more 
predictable than when states are defined from 
elementary sensor readings. For this reason it is more 
reasonable to apply the traditional reinforcement 
learning algorithms using states defined in this way. 

The definition of feature detectors from sensor readings 
is usual in robotics. For instance, in [ 1 11 sensor readings 
are conveniently grouped prior to the definition of states 
both manually and through an automatic process (thus, 
infrared sensor readings are clustered in two classes 
using programmer defined criteria, so that only two 
situations for detected objects can be distinguished: near 
and far). 

However, what is important to be stressed is that the 
concept of “global state of the system” is something 
that has little sense to be defined in the real world. The 
only thing we need in this environment is to get enough 
information to determine the agent actions and this do 
not necessarily imply to observe the “global state of the 
system”. But even this partial perception of the world is 
very difficult to be achieved by an agent with a limited 
sensorial apparatus and the definition of feature 
detectors is nothing but an approximation to the 
necessary information to act correctly. 

2.2 Independent States 

The states of the system (that, as explained in the 
previous section, are supposed to be accessible to the 
agent) are usually thought as being absolutely 
independent between them. So, the information gathered 
about the effects of an action in one state can not be 
transferred to other states. This is a really general 
assumption that makes reinforcement learning 
algorithms completely independent of the environments 
on which they are applied. But the drawback of this 
assumption is that the algorithms do not work efficiently 
in large spaces of states since they have to discover the 
information concerning each one of the states 
independently. In a robotics application this assumption 
is unnecessary since in general states are related 
between them because they correspond to a physical 
reality with a great degree of continuity. For example, 
the actions to be executed when a robot is close to a 
wall could be quite similar to those to be executed when 
it is very close to the wall. So in a robotics learning 
application it is sensible to use the information about 
state relations to accelerate the learning process. 

One way to transfer information between states is to 
make the reinforcement learning algorithms to work at 
the feature detector level instead of at the state level. 
The reason is that if we discover information about the 
effects of an action when a feature detector is active, 
this information will be useful for all the states that 
include this feature detector. Observe that if we use 
feature detectors to define a state and we apply a 
standard reinforcement algorithm on this state definition 
(which is the usual solution taken in reinforcement 
learning) we are not associating information to each 
feature detector and so we are not transferring 
information between states. 

The feature detector framework is nothing else than a 
form of sensory categorization alternative to that 
consisting in defining state identifiers. We have shown 
that in a robotic task, it  is more reasonable to work with 
a more basic categorization than that demanded by the 
classical reinforcement learning algorithms. So, even 
though the concept of state is useful when defining an 
abstract model of the reinforcement learning, when it is 
applied to robots it is more useful to work at the level of 
the basic state constituents. 

In section 3 we define a new reinforcement learning 
algorithm that works at the feature detector level and 
that can be more naturally applied to robots than 
available algorithms. 

The definition of feature detectors is the result of a 
categorization process and, as sated before, it could be 

2.3 Independent Actions 

the part Of the Of a task so an 
process ‘9 define them (as the One we present 

The model of reinforcement learning presented above 
devises actions as a list of options from which the agent 
picks the most appropriate for each state. At each in section 4) would be helpful. 
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moment the agent only performs one action from the 
list. In an autonomous robot with many degrees of 
freedom this usually implies the definition of a large set 
of complex actions that in many cases is drasticall 
reduced by the programmer for efficiency reasons . 
However, in general, these complex actions are defined 
combining independent simpler actions that involve 
only a subset of the motor apparatus of the robot. 

Y 

As in the case of states, when confronting a robotic task 
it  seems more sensible to work at the level of the 
constituents of the global actions. Working at this more 
basic level allows us to get information about the effect 
of each basic action. The drawback of working at this 
more basic level is that we have to deal with the 
execution of many actions in parallel. This implies the 
definition of a mechanism for discerning which actions 
can (or even should) be executed.at the same time. 

If we decide to work at the elementary action level, then 
we are changing the action categorization from what the 
traditional reinforcement learning algorithm demands to 
one that is more natural when working with robots. 

2.4 Environment Controlled by the Agent 

In the reinforcement learning formalization, it is 
assumed that the environment in only modified by the 
robot actions. This means that the agent only needs to 
observe the state of the environment when the action in 
execution is completed. 

Obviously, this assumption does not hold any more if 
the state of the environment is not completely controlled 
by the acting agent. In this case the state can change at 
any moment for reasons not related with the agent 
actions and this could perfectly occur in the middle of 
an action execution. For this reason, when applying 
reinforcement learning to robots, it seems reasonable to 
observe the state of the system continuously since it can 
change at any time. 

' 

This can be seen as another change in the typical action 
categorization of reinforcement learning. Robot 
environments demand the learning algorithms to be able 
to deal with actions that last more than one step 
considering the time unit to be the period at which the 
state is observed (that can depend on the sensor 
updating frequency). 

2.5 The Immediate Effect of Actions 

Another assumption present in the reinforcement 
learning algorithms concerns the moment at which the 
agent observes the effect of its own actions. 

* For example, in [ 111, only five actions (forward, small turn 
lefthight, and large turn lefdright) are considered despite the 
fact that the robot could perform many other movements. 

Traditionally it is assumed that the effect of an action is 
perceived immediately after its execution. But when 
working with a robot in the real world, this assumption 
is not valid. In this case, the robot actions can start 
processes whose effects are not evident for the robot 
itself just after the action execution. The action effects 
can be arbitrarily delayed from the moment at which the 
action was performed. Observe that the delay in the 
effect of the actions is possible even if the state of the 
system is only modified by the agent actions (what was 
the assumption analyzed in the previous section). If we 
are trying to solve a problem using actions with possibly 
delayed effects (which is a usual case in robotics), then 
we should use an algorithm that can cope with this 
feature. The available reinforcement learning algorithms 
are not adequate for these cases. 

3. AN EXTENDED REINFORCEMENT 
LEARNING ALGORITHM 

In this section we present a reinforcement-based 
algorithm in which some of the requirements imposed 
by the traditional reinforcement learning algorithms on 
the initial categorization of the problem are eliminated. 

From all the assumptions present in the classical 
reinforcement learning framework commented in the 
previous section, we start relaxing the seqsory 
categorization: our algorithm works with a sensory 
categorization based on feature detectors instead of 
using a state identification function. As explained before 
this will make our algorithm more suitable to be applied 
to robot tasks in which feature detectors are more e d d y  
defined than state identification functions. Additionally 
if we extract information about the effects of actions 
when a specific feature is active, then this information 
will be used in all those states that include this feature. 
In this way it is reasonable to expect our algorithm to 
work more efficiently than existing algorithms. 

How the feature detectors are implemented, and the 
characteristics of the special event they signal is 
something that does not matter for the algorithm we 
describe now (it will be important for the algorithm 
described in the next section). Now the only thing that is 
relevant is that we can test whether or not a feature 
detector is active. 

We keep all the restrictions imposed by the existing 
algorithms on action categorization, so the programmer 
should provide our algorithm with a list of actions that 
are supposed to be sufficient to accomplish the task. 
These actions will be considered to be the only font of 
variation in the environment and to have immediate 
effects. 

The objective of the algorithm is to determine a policy 
that consists in finding the best action to be executed 
given a set of active feature detectors. 
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As described before, lots of feature detectors can be 
active simultaneously denoting interpretations of 
different subsets of the perception of the robot, or even 
of the same subset of the perception but with alternative 
criteria or goals. Each active feature detector assigns a 
different utility to the execution of each action. The 
action to be actually executed must be chosen from all 
these individual proposals attending to criteria related 
with the accumulated utility per action and the 
confidence in this utility measure. The process in charge 
of this selection task is called the action selection 
mechanism3 and is supposed to be provided by the 
programmer. Different action selection mechanism will 
produce different behaviors of the algorithm. 

The estimated utility of executing and action 6 )  when a 
certain feature detector (i) is active is stored in a table 
(Q(i,j)). A subset of this table (that corresponding to the 
active feature detectors) is the information provided by 
our algorithm to the action selection mechanism. Each 
entry to this table is updated when appropriate using a 
rule similar to that used in other reinforcement learning 
algorithms. When all the values stored in the table are 
stable, our algorithm has converged to a solution for the 
task at hand. 

The main loop of our algorithm consists in: 

1.- For each feature detector i and action j 

2.- Do forever 
Initialize Q( i, j )  = 0 

X = current set of active feature detectors - 
- a = Action Selection(X,Q) 
- Executea 
- Update the utility of action a for  all the 

feature detectors in X 

The update of the utility works as follows: 

R = reward received afrer the execution of a 
Y = set of active feature detectors after a 
b = Action Selection( Y, Q) 

V = CQ(i,b> 
ie Y 

V i €  X 
Q(i,a)=Qti,a)+MpitR+ yVI)-Q(i,a)) 

is X 

where c1 (learning rate) and y (utility discount) are the 
commonly used parameters in the reinforcement 
learning algorithms [8]. 

Observe that if only one feature detector is active at a 
time and the action selection mechanism always picks 
the action with maximum expected utility then, the 
above algorithm is completely equivalent to the well 
known Q-Learning [16]. 

4. A CATEGORIZATION IMPROVEMENT 
ALGORITHM 

In the previous section we have described a 
reinforcement based algorithm that can cope with a 
form of sensory categorization less restrictive than that 
required for other reinforcement learning algorithms. 
Obviously, as occurs with many algorithms, the 
efficiently of the presented algorithm clearly depends on 
the quality of its inputs (the feature detectors set). An 
implicit assumption of the presented algorithm is that 
the feature detectors are independent between them so 
that the best action to be performed can be determined 
(at least some times) attending to only one (or a few) 
features. If at every moment all the active features have 
to be taken into account to determine the optimal action, 
then our algorithm looses its advantage over existent 
algorithms because this means that each state is 
completely independent of the other states and that no 
information can be transmitted between them. 
Fortunately, as noted before, in robotics applications it 
is usually possible to define feature detectors as those 
needed by our algorithm. What can happen is that even 
if it is possible to define the proper feature detectors, the 
user can not do it because it is too difficult for her to 
correctly describe the adequate concepts for achieving 
the task in terms of the robot sensorial apparatus (the so 
called frame of reference problem [ 131). In this cases 
the programmer can only provide the algorithm with a 
set of approximately correct feature detectors. For this 
reason, we introduce a mechanism so that the initial 
categorization provided by the programmer can be 
improved to facilitate the workings of the reinforcement 
learning algorithm. 

The automatic categorization improvement mechanism 
embeds the algorithm presented in the previous section 
in the following way: 

1.- Set up an initial set offeature detectors 
2.- Run the algorithm of section 3 until it 
converges to a policy. 
3.- Improve the set of feature detectors. 
4.- If this set has changed, go to 2. 

The search for the adequate feature detectors is done in 
step number 3 using a genetic algorithm. To describe its 
workings we first describe its search space (or the space 
of syntactically correct chromosomes) and in second 
place we concentrate in the criteria for selecting optimal 
feature detectors (the fitness function). 

This mechanism is implicit in other reinforcement learning 
algorithms but it has been explicitly studied in the field of 
autonomous robot architectures. 
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4.1 The Search Space 

Feature detectors can be devised as processes that 
identify special combinations of sensor readings. From 
the different possible ways to identify combinations of 
sensor readings (clustering is one of the most typical) 
we choose a general method that consists in defining 
binary functions (or predicates) over sensor readings. 
For instance, the category "light in front of the robot" 
can be defined based on the readings of the front light 
sensors of the robot as: 

(left light sensor+right light sensor)n>THRESHOLD 

This predicate represents a feature detector that will 
become active if the robot approaches a light. 

The search space of the genetic algorithm includes all 
the syntactically correct predicates definable over 
constant values, sensors or previously defined 
predicates. Those predicates can be represented as 
function trees with sensors or constants in thier leaves 
and basic operations (from a set provided by the 
programmer) in their nodes. In the above example, the 
feature detector is defined using two sensors (left and 
right light sensors), two constants (2 and THESHOLD) 
and the '+I, 7' and '>' operations. The function tree that 
represents this predicate is: 

> 

/ \  
/ THRESHOLD 

+ / \ 2 

/\ 
le8 light right light 
sensor sensor 

In other cases other sensors and operations can be used 
to define the function that represents the feature 
detector. If some knowledge is available about the 
environment or the task, the user can reduce the 
generality of the system by selecting those sensors that 
can be combined, or restricting the set of applicable 
operations. This will alleviate the work of the automatic 
categorization. 

This feature detector definition mechanism is very 
general since almost all the categorizations performed 
up to this moment in reinforcement learning, either by 
the programmer or automatically, fit in this framework 
(the differences between the existent approaches are the 
functions used to combine the sensors). 

New functions that represent new feature detectors can 
be created using various mechanisms typical of the 
genetic algorithms: 

0 Crossover: Part of the function tree of a feature 
detector is changed with a subtree from another 
feature detector. 
Mutation: A new function is obtained changing at 
random one of the parameters of an existing 
function. 

The search space just outlined is unbounded since it is 
possible to define an infinite number of syntactically 
different binary functions. Fortunately, it is reasonable 
to bias the search toward testing first simple functions 
and use those that seem useful in various cases to build 
more complex functions. At the beginning only sensors 
are used to create simple feature detectors but, as good 
feature detectors are found, more elaborated ones can be 
built using the previous ones. It is like trying to find the 
'atoms' of the correct environment interpretation to build 
more and more complex 'molecules' using them and 
other simpler 'molecules'. 

4.2 The Fitness Function 

The fitness function used by the genetic algorithm to 
select the best feature detectors for the reinforcement 
learning algorithm described in section 3 is based on 
three criteria: environment regularities, robot- 
environment interaction, and relation with the 
reinforcement signal: 

Environment Regularities 

Feature detectors must identify objects or situations 
interesting for the current task. In the absence of 
reinforcement related information, however, it is not 
possible to know whether or not a feature is useful for 
the current task. What seems sensible to do is to identify 
objects and situations characteristic of the environment 
so that, when the reward becomes active, it can be 
accounted for in terms of these already identified 
objects which provide information at a higher level than 
the basic sensor readings. This process of discovering 
environment related features can be based on the 
analysis of the activation frequency of different 
detectors: only those features that become active not too 
frequently are interesting since when active, they 
indicate special events. This criterion is based on the 
assumption that the reward is a special event so only the 
feature detectors that signal rare events will be useful to 
identify reward situations. 

Robot-Environment Interaction 

Those environment regularities detected with the 
previous criterion that are somehow controllable by the 
agent actions are more suitable to be used by the 
reinforcement learning algorithm to choose actions in 
order to actively get reward. So, it is interesting to stress 
those couples of feature detectors (fi, fj) related by any 
action. If after the execution of action 'a' when fi is 
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active, feature 4 becomes consistently active, both fi and 
f j  should be favored. 

Relation with the reinforcement signal 

Observe that using the two previously described criteria, 
we are finding feature detectors independently of the 
information given by the reinforcement signal. The 
advantage of finding task independent features is that 
they can be useful for many similar tasks and 
environments. Additionally, it is interesting to be able to 
refine the categorization while no reward is obtained 
since, in this way, when the reward is obtained the 
reinforcement learning algorithm will use it more 
efficiently because the utility will be assigned to feature 
detectors with less probability of being eliminated in 
future iterations of the categorization improvement 
process. 

The problem of the task independent features is that 
there are too many of them since there exist lots of 
possibly interesting objects in the environment to be 
identified and thousands of ways to do it. So the 
information provided by the reinforcement signal must 
be used to filter them. We prefer feature detectors that 
identify situations in which the execution of a given 
action produces a high utility either because of the 
immediate reward received or because the utility of the 
new situation produced by the action. This utility 
measure is precisely the one stored in the Q table 
described in section 3. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we have analyzed the assumptions hiden 
behind the classical formalization of reinforcement 
learning. This formalization supposes that the 
environment can be seen as a state machine controlled 
by the learning agent. This hypothesis implies a set of 
derived assumptions: 

The learning agent can identify the global state of 
the environment. 
States are independent and no information can be 
transmitted between them 
Actions are also independent and no conclusion 
can be drawn from the execution of an action on 
the possible effects of other actions. 

0 Only the agent actions produce effects in the 
environment. 

0 The effect of an action is observed immediately 
after its execution. 

These assumptions, when analyzed from the point of 
view of a robot, become a hard limitation to the 
application of reinforcement learning since fulfilling all 
the assumptions is not always possible without changing 
in important ways the problem to be solved. 

To overcome these limitations, we have proposed a new 
reinforcement-based learning algorithm. Our algorithm 
can cope with a form of sensory categorization less 
restrictive than that used by existing algorithms. The 
kind of categoritzation we use is based on feature 
detectors (that can be thought as functions that identify 
special events or objects). Having the information stored 
separately for each feature detector allows the 
transmission of information between related states: the 
information of a feature will be useful in all those states 
in which the feature is active. Additionally, we have 
introduced a mechanism based on genetic algorithms to 
automatically improve the set of feature detectors that 
the programmer provides to the algorithm. With the 
combined action of the two algorithms the set of 
attainable problems using reinforcement learning has 
been enlarged. 

Our system is related with many other disciplines: 

0 

165 

Behavior based controllers: Our algorithms are 
intended to be used to facilitate the programming 
of robots. The proposed algorithm based on feature 
detectors, generates a policy that can be easily 
translated into a set behavior as those described in 
[2]. Note that the resulting controller will be 
reactive only if the operations over the sensor 
inputs to define feature detectors are reactive. In 
our intent of extending the limits of the 
reinforcement learning paradigm we have shown 
the necessity of introducing an action selection 
mechanism in this paradigm. As noted before, this 
is a mechanism already existing in autonomous 
robot architectures, especially in the reactive ones. 
This makes us suspect that the parallelism between 
extended reinforcement learning algorithms and 
behavior based controllers will be an interesting 
subject to study. Indeed many authors have tried to 
analize the relation between the two paradigms. 
What we are starting to show is that, with the 
appropriate extension, the two paradigms could be 
merged. 
Genetic programming: Some authors have used 
genetic algorithms to evolve programs that perform 
a task [9]. We also use genetic search techniques 
by they are only part of our system. 
Multitask learning: The algorithm can generate 
feature detectors derived from environment 
regularities and not directly related with the task to 
be accomplished. These detectors are potentially 
useful for many tasks in similar environments. This 
reuse of the experience is also present in an 
approach to machine learning called multitask 
learning [4]. 
Classifier Systems: Classifier systems [6 ] ,  [7] aim 
to develop a correct controller for a given task 
combining ideas from genetic algorithms and 
reinforcement learning but they are based on 
evolving a production system’ while our algorithm 
is not. 
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Taking into account the history of reinforcement 
learning we can say that our system goes a step further 
than the usual reinforcement learning algorithms. The 
first algorithms to learn through reinforcement were 
developed in the process optimization area and assumed 
the knowledge of the complete model (probability 
transitions between states and actions) of the system to 
optimize. The next generation of reinforcement learning 
algorithms relaxed this hypothesis in the sense that they 
do not require the knowledge of the model of the 
process but as we have noted in this paper, they heavily 
rely in the correct definition of states and actions. The 
algorithm we have proposed relaxes some of the 
assumptions still present in the reinforcement learning 
framework. Our algorithm can work in cases in which 
the definition of states is not available at the beginning 
of the learning process and only feature detectors are 
available, so we will be able to solve problems not 
solvable up to now. This set of new attainable problems 
includes interesting cases such as those posed when 
trying to learn a complex task with an autonomous 
robot. Additionally, our algorithm is able to generalize 
situations and this increases its efficiency compared 
with existent algorithms. 

The algorithms presented in this paper relax only one of 
the assumptions present in the reinforcement learning 
formalization. Obviously other algorithms (or extension 
to the presented one) could be devised so that more 
assumptions are eliminated. These new algorithms will 
be even more applicable to robots enlarging the 
potential uses of the reinforcement learning framework. 

Our final objective is that of learning an autonomous 
robot controller to accomplish a complex task in a real 
environment without any previous pre-process of 
neither sensors nor actions. This, as [3] said, is the most 
complex thing one can attack in the area of learning 
within the field of autonomous robots and probably we 
are still far from solving it. However, it is an objective 
that must be faced if we want to accomplish 
increasingly difficult tasks using increasingly 
sophisticated robots. To confront this challenge, new 
reinforcement learning algorithms and automatic 
categorization mechanisms like the ones proposed in 
this paper will be indispensable. 
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