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Abstract
We present a closed-form solution to the problem of re-

covering the 3D shape of a non-rigid potentially stretchable
surface from 3D-to-2D correspondences. In other words,
we can reconstruct a surface from a single image without a
priori knowledge of its deformations in that image.

State-of-the-art solutions to non-rigid 3D shape recovery
rely on the fact that distances between neighboring surface
points must be preserved and are therefore limited to in-
elastic surfaces. Here, we show that replacing the inexten-
sibility constraints by shading ones removes this limitation
while still allowing 3D reconstruction in closed-form.

We demonstrate our method and compare it to an earlier
one using both synthetic and real data.

1. Introduction
Capturing the shape of deformable 3D surfaces from a

single image remains an open problem with an endless list
of potential applications in computer vision and graphics.
The main challenge comes from the fact that monocular
3D shape recovery is severely under-constrained. A com-
mon approach to overcoming this is to introduce deforma-
tion models. They can be either physically-based [1, 3, 11,
12, 13, 18] or learned from training data [2, 4, 10, 17]. In all
these methods, surface deformations are expressed in terms
of the model parameters, which are first initialized and then
refined by minimizing an image-based objective function.
Since this function typically has many local minima, good
initialization is both critical and difficult to achieve.

This problem has been addressed recently in [6, 14, 16].
These papers propose approaches to 3D shape recovery in
a single input image given a reference image in which the
shape is known, and correspondences between the input and
reference images. They do not require any knowledge of
the deformations other than the fact that the surface is inex-
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Figure 1. 3D Reconstruction of non-rigid inelastic (top) and elastic
(center and botton) surfaces in closed form. In addition to corre-
spondences, we use shading constraints and estimate the direction
of the main light source.

tensible and that the distances between neighboring surface
points must remain constant. This is a valid assumption for
inelastic materials such as paper or cardboard, but rules out
the reconstruction of elastic materials that can stretch.

In this paper, we show that replacing the constant-length
constraints by shading constraints removes this limitation
while allowing a closed-form solution to the 3D shape-
recovery problem, as in [16]. More specifically, we rely
on correspondences between the input and reference im-
ages and express the deformations as linear combinations of
modes. In addition, we constrain the intensities of selected
surface patches in the input and reference images to be re-
lated through a Lambertian reflectance model. This yields a
set of cubic equations in terms of the mode weights and of
the lighting parameters, which we solve through lineariza-
tion. As shown in Fig. 1, this lets us reconstruct both elastic
and inelastic objects in closed-form and simultaneously es-
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timate the light direction and intensity. Furthermore, using
two different sources of image information –keypoint loca-
tions and shading– increases the robustness in ambiguous
situations.

In the remainder of the paper, we first discuss related
work. We then introduce our formulation and derive our
systems of linear and cubic equations. Finally we compare
our method against [16] both on synthetic and real data.

2. Related Work
Recovering the 3D geometry of a non-rigid surface from

single images requires prior knowledge of its properties to
turn an under-constrained problem into a tractable one.

Traditional shape-from-shading [8] and shape-from-
texture [22] techniques do this by imposing surface smooth-
ness and assuming that the surface either is Lambertian with
known albedo or exhibits statistically homogeneous texture
patterns. There has been many attempts over the years at
relaxing these constraints but most state-of-the-art methods
still require very strong assumptions that can only rarely
be satisfied. [20, 23] are representative of current single-
image approaches that refine both shape and illumination
parameters. Even though these methods can return accurate
estimates of both, their iterative nature means that, unlike
our approach, they require good initial guesses. Further-
more, they are not designed to handle materials that can
stretch. The idea of overcoming ambiguous situations by
combining texture and shading cues was introduced in [21].
This approach, however, involves multiple iterative stages
and explicitly penalizes stretching, which precludes accu-
rate modeling of elastic surfaces.

Another approach to making the problem tractable is
to introduce surface deformation models. Physically-
based approaches introduce global models such as su-
perquadrics [12], triangulated surfaces [7] or thin-plate
splines [11]. Modal analysis [5, 13] has also been pro-
posed to reduce the dimensionality of the problem. How-
ever, while these methods have been successful for re-
trieving smoothly deforming objects, they cannot capture
the physics of complex deformations, which requires much
more sophisticated and difficult to handle non-linear mod-
els [1, 18]. This has been recently addressed in a data-driven
manner by using machine learning methods to build defor-
mation models from collections of deformed shapes [2, 4,
10], or, for relatively small deformations, directly from se-
quences of images [17, 19].

In any event, in all the approaches discussed above,
model parameters must first be initialized and then refined
by minimizing an image-based objective function, which
may have many local minima. In frame-to-frame track-
ing, the shape parameters found in a frame can serve as
initial values for the following one, but this kind of ap-
proach still requires parameters to be specified in the first

frame and cannot recover from a tracking failure. To avoid
this, one must be able to recover the 3D shape without an
initial estimate. This issue has been addressed in three re-
cent papers [6, 14, 16] that all rely on the fact that distances
between surface points must remain constant—a valid as-
sumption for inelastic materials but not stretchable ones.

In short, our approach differs from previous techniques
in that it can reconstruct a surface whether it stretches or
not. Furthermore, the shape is recovered in closed-form,
which implies that no initial estimate is needed.

3. Elastic and Inelastic Surface Reconstruction
in Closed Form

In this section, we first use the formalism of [16] to show
that the solution of our problem can be expressed as a lin-
ear combination of singular vectors corresponding to the
small eigenvalues of a matrix. This matrix is derived from
the point correspondences between the input and reference
image. We then show that shading constraints can be ex-
pressed in terms of cubic polynomials involving the coeffi-
cients of the linear combination and the shading parameters.
Finally, we solve the resulting system of cubic equations to
compute both the ones and the others.

3.1. Initial Assumptions
We represent the surface as a triangulated 3D mesh

whose shape is given by the vector x = [vT
1 , . . . ,vT

nv

]T

of its vertex coordinates, where vi = [xi, yi, zi]
T . In the

following, we assume that the mesh we use, like those of
Fig. 1, has a rectangular topology and therefore that all
mesh facets have one 90 degree angle. As will be discussed
below, we could also use hexagonal meshes made of equi-
lateral triangles, which can be used to model surfaces of
arbitrary topology.

We seek to retrieve x in an input image, assuming that
we are given

1. The shape of the mesh in a reference configuration,
and nc correspondences between a set of 3D points pi

on this mesh and 2D image locations ui.
2. An albedo value ρi for each point pi, which can be

taken as the intensity of the corresponding pixel in the
reference image if it was lit by a diffuse light source.

3. The internal calibration matrix A of the camera.
4. A mean shape x0 and a set of nm deformation modes

Q = [q1, . . . ,qnm
], representing the linear subspace

of feasible mesh deformations.
We also assume the surface to be Lambertian and illumi-
nated by a single point light source, whose direction and
intensity are unknown. In the results section we will show
that this assumption can be relaxed in practice and that our
algorithm still yields good results in the presence of an ex-
tended light source.
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3.2. Linear Geometric Constraints
As in [16], we start by showing that x can be expressed

as the solution to a linear system encoding the 3D-to-2D
correspondences equations. We express each point pi as a
function of the barycentric coordinates of the triangular face
it belongs to and write

∀i , pi =

3
∑

j=1

aijv
[i]
j , (1)

where the aij are the homogeneous barycentric coordinates
and {v

[i]
j }j={1,2,3} are the vertices of the face containing

the point pi. Without loss of generality, we express the 3D
points pi in the camera referential, and their 2D projections
ui = [ui, vi]

T as

∀i , wi

[

ui

vi

1

]

= Api =

[

fu 0 uc

0 fv vc

0 0 1

]

3
∑

j=1

aij





x
[i]
j

y
[i]
j

z
[i]
j



 (2)

where the wi are the scalar projective parameters,
[x

[i]
j , y

[i]
j , z

[i]
j ]T the 3D coordinates of each vertex v

[i]
j , and

fu, fv and (uc, vc) the focal lengths and principal point of
the calibration matrix A.

From the last row of Eq. 2, the projective parameters can
be written as wi =

∑3
j=1 aijz

[i]
j . When substituted back

into the first two rows we get for each 3D-to-2D correspon-
dence 3

∑

j=1

aijfux
[i]
j + aij(uc − ui)z

[i]
j = 0 , (3)

3
∑

j=1

aijfvy
[i]
j + aij(vc − vi)z

[i]
j = 0 . (4)

These equations can be jointly expressed for all the nc cor-
respondences as a linear system

Mx = 0 , (5)
where M is a 2nc × 3nv matrix, made of the known coeffi-
cients of Eqs. 3 and 4.

As observed by [15] the matrix M is rank deficient even
for a large number of correspondences nc, that is, a solu-
tion x yielding a correct reprojection is not guaranteed to
have a correct 3D shape. Fig. 2(a) illustrates this. One con-
sequence of this is that matrix M has a large number of
eigenvalues close to zero, as seen in Fig. 2(b). Therefore,
additional constraints have to be introduced to reduce these
ambiguities. This can be done by introducing deformation
modes and representing the surface as a linear combination
of nm << nv basis shapes, which can be written as

x = x0 +

nm
∑

i=1

αiqi = x0 + Qα , (6)

where α = [α1, . . . , αnm
]T are the unknown weights of

the basis shapes we want to recover. If we introduce this
expression into Eq. 5, the linear system becomes
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(a) View ambiguity (b) Eigenvalues of M (c) Eigenvalues of M̃

Figure 2. (a) View ambiguity. The two plots correspond to the
same configuration of the meshes seen from different viewpoints.
(b) Eigenvalues of the matrix M, for the black mesh of (a).(c)
Eigenvalues of M̃, after considering 40 deformation modes.

[

MQ Mx0

]

[

α

1

]

= 0 . (7)

A standard way of computing the deformation modes
is to apply Principal Component Analysis to a large set of
training shapes, and hence, each basis shape qi is associated
to a prior standard deviation value σi. We use this prior as
a regularization term on the weights α by minimizing Sα,
where S is an nm×nm diagonal matrix with elements σ−1

i .
The shape is then obtained by solving

M̃

[

α

1

]

=

[

MQ Mx0

S 0

] [

α

1

]

= 0 (8)

in the least-squares sense. Note from Fig. 2(b) that this lin-
ear system has much fewer eigenvalues that are close to zero
than the original one.

The solution of Eq. 8 belongs to the null space of M̃. We
take it to be [

α

1

]

=

N
∑

i=1

βimi , (9)

where mi are the right-singular vectors of M̃ corresponding
to its N smallest singular values. Picking the correct value
for N is non-trivial since it amounts to deciding which of
the singular values are small enough to be considered as be-
ing effectively zero. This is illustrated by Fig.2(c), where
the number of small eigenvalues is around 10 and it is dif-
ficult to decide on an exact number. In practice, we run the
algorithm for all N ≤ Nmax, where Nmax is intentionally
too large, and retain the result that yields the smallest aver-
age reprojection error. In all experimental results presented
in this paper, we use Nmax = 15. As will be discussed be-
low, we chose the βi by solving a set of cubic equations in
closed form. And, since this is only a fraction of the overall
computation, performing it several times only represents a
small computational overhead.

3.3. Cubic Shading Constraints
Solving our shape reconstruction problem therefore

amounts to picking the right βi coefficients for the linear
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combination of Eq. 9. In [16], this was done by choos-
ing them so as to preserve the length of the mesh edges,
which precludes the accurate modeling of a stretchable sur-
face. Here, we remove this limitation by replacing length
constraints by shading ones.

Let us first consider a single facet f with vertices {vi =
[xi, yi, zi]

T }i={1,2,3} lit by a distant point light source, with
unit direction l = [lx, ly, lz]

T and intensity L. Let I be the
observed intensity at a facet point of albedo ρ. Assuming a
Lambertian reflectance model, we have

I = ρL(l · n) , (10)

where n is the facet normal. In the following, we show that
Eq. 10 can be written as a cubic equation in the unknowns
βi, L, lx, ly , and lz . Since we can write such a constraint
for each of our nc correspondences, this yields a system of
nc cubic equations that we can solve using linearization.

3.3.1 Quadratic Representation of the Normal Vector

Let v12 = v1 − v2 and v13 = v1 − v3. The facet normal
n can be computed as

n =
v12 × v13

||v12 × v13||
=

1

2Area(f)
[ñx, ñy, ñz]

T (11)

where Area(f) is the area of the triangular facet f and
ñx = y2z3−y2z1−y1z3−z2y3+z2y1+z1y3 ,

ñy = z2x3−z2x1−z1x3−x2z3+x2z1+x1z3 , (12)
ñz = x2y3−x2y1−x1y3−y2x3+y2x1+y1x3 .

The system of Eq. 12 is quadratic in the vertex coordinates,
and therefore also in the βi. More specifically, from Eq. 9
we can write αi =

∑N

j=1 βjm
[i]
j , where m

[i]
j is the i − th

element of the vector mj . From Eq. 6 we then have

x = x0 +

nm
∑

i=1

N
∑

j=1

βjm
[i]
j qi , (13)

which lets us write

ñk = γ
[k]
0 +

N
∑

i=1

γ
[k]
i βi +

N
∑

i=1

N
∑

j=i

γ
[k]
ij βiβj

= (γdir,k)T ·

[

β

1

]

, (14)

where k = {x, y, z} and the coefficients γ
[k]
i and γ

[k]
ij are

generated by arranging the appropriate components of the
vectors x0, {qi}i=1,...,nm

and {mj}j=1,...,N , all of which
are known. In the right part of Eq. 14, ñk is written as the
dot product of two vectors, γdir,k which is made of known
coefficients and

β = [β1, .., βN , β1β1, .., β1βN , β2β2, .., β2βN , .., βNβN ]T , (15)
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Figure 3. Approximating the area of a right triangle. Left: In order
to be able to write the magnitude of the facets norm as a quadratic
function of the coefficients βi we have to approximate its area as
the mean area of two isosceles triangles. Of course, the approx-
imation is perfect for isosceles triangles and becomes poorer the
bigger is the difference between the sides||v12|| and ||v13|| of the
triangle. Right: Error in the estimation of the triangle area, as a
function of the ratio of the sides lengths.

which contains the unknown. In other words, the numerator
of Eq. 11 can be written as quadratic polynomials in the
βi. By contrast, exactly computing the denominator would
require evaluating square roots of 4-degree polynomials in
the βi coefficients, which would make it impossible to solve
the resulting system of equations by simple linearization.
We overcome this difficulty by replacing the exact value of
||v12 × v13|| by an approximate one that depends on the
fact that individual triangles have one 90 degree angle. This
allows us to replace Eq. 11 by a pair of equations expressed
in terms of a quadratic polynomial in the βi’s, as follows.

Without loss of generality, let us number the vertices of
the facet as v1, v2 and v3, with v1 being at the 90 degree
angle. We therefore have

||v12||
2 + ||v13||

2 = ||v23||
2 . (16)

Each ||vij ||
2 is quadratic in terms of the vertex coordi-

nates, and, given Eq. 13, also in the βi’s. Using the same
notation as in Eq. 14, constraining the angle of a single facet
to be 90 degrees can be written as

(γright)
T ·

[

β

1

]

= 0 , (17)

where γright is again computed by arranging specific
elements of the known vectors x0, {qi}i=1,...,nm

and
{mj}j=1,...,N , according to the quadratic monomials gen-
erated when expanding the terms ||vij ||

2.
Furthermore, the facet area of a right triangle is given by

Area(f) =
||v12|| · ||v13||

2
. (18)

Since directly using this would yield polynomials of degree
higher than 2, we approximate it by

Area(f) ≈
1

2

(

||v12||
2

2
+

||v13||
2

2

)

= (γarea)T ·

[

β

1

]

, (19)
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Figure 4. Left: Comparing the performance of our approach against the method of Salzmann et al. [16] in a synthetic experiment with
a stretchable surface. We plot as well the results of our method if the true facet areas were given. The graph represents the mean 3D
reconstruction error as a function of the surface extension. Right: Significance of the reconstruction error values. Black: true shapes.
Blue: Shapes reconstructed using one the three methods and their associated error values.

where γarea is known and computed as we did before for
γdir,k and γright. Fig. 3(left) illustrates the meaning of this
approximation: The area of the right triangle is approxi-
mated as the mean area of two isosceles right triangles, one
having two equal sides of length ||v12|| and the other two
equal sides of length ||v13||. Note that we could use the
same approximation for hexagonal meshes because equilat-
eral triangles may be split into two isosceles right triangles.
Fig. 3(right) shows the error produced by this approxima-
tion as a function of the ratio ||v12||/||v13||. Note that this
approximation is poorer if the stretching is produced just
along one direction. For instance, as observed in the fig-
ure if one side is stretched to twice its initial length and the
length of the other remains constant, the error of the approx-
imated area will be around 20%. By contrast, if both sides
are stretched more or less equally, the estimation error will
be negligible. In Section 4 we will validate our approxima-
tion on experimental data and we will see that it is in fact
very appropriate.

In short, imposing the constraints derived in Eqs. 14, 17,
and 19 forces the normal of a facet to be of unit norm.

3.3.2 Integrating Lighting Unknowns

We are now in a position to integrate the expressions derived
above for unit normals into the shading constraint of Eq. 10.
Let Ll = [Lx, Ly, Lz]

T be the lighting unknowns and Ĩ =
2I/ρ. Eq. 10 can be re-written as

Area(f)Ĩ = ([Lx, Ly, Lz] · [ñx, ñy, ñz]
T ) (20)

If we expand this equation by considering the expres-
sions of ñx, ñy , ñz , and Area(f) derived in the previous
section, we obtain

(γarea)T

»

β

1

–

Ĩ = (γdir,x)T ·

»

Lxβ

Lx

–

+ (γdir,y)T ·

»

Lyβ

Ly

–

+

(γdir,z)T ·

»

Lzβ

Lz

–

. (21)

Note that we have one such equation for each 3D-to-2D
correspondence. By grouping these equations for all nc cor-
respondences and introducing the right angle constraint of
Eq. 17 for each of the nf faces of the mesh, we obtain a
system of the form

[

D

R

]

b =

[

d

0

]

, (22)

where b = [β, Lx, Ly, Lz,βLx,βLy,βLz]
T is the vec-

tor of unknowns of size 2N(N + 3) + 3, made of lin-
ear, quadratic and cubic terms that simultaneously contains
the lighting and the geometric unknowns. D and d are
an nc × 2N(N + 3) + 3 matrix and an nc vector respec-
tively, built from the known parameters Ĩ , γdir,x, γdir,y ,
γdir,z and γarea, for each correspondence. Finally, R is an
nf × N(N + 1)/2 matrix—expanded with zero columns
to fit the dimension of D—that accounts for the right angle
constraints.

We use a simple linearization procedure to solve the sys-
tem of Eq. 22, which means solving it as if it were a lin-
ear system where the quadratic and cubic terms are con-
sidered as new linear variables. Finally, the unknowns
{β1, . . . , βN} and Lx, Ly and Lz are directly retrieved
from the elements of b which were originally linear. The
light intensity and direction are respectively computed as
L = ||[Lx, Ly, Lz]|| and lT = [Lx, Ly, Lz]/L.

4. Results
In this section, we use both synthetic and real data to

show that we can correctly retrieve the 3D shape of both in-
elastic and stretchable surfaces, which is in contrast to ear-
lier techniques.

In all our experiments, we used the same deformation
modes, automatically generated by performing Principal
Component Analysis on a database of synthetically de-
formed meshes. The only parameters that change from one
experiment to the next are the mesh sizes.
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Figure 5. Error in the estimation of the light power and direction. Left: Environment map used for the synthetic experiment, made of a
large number of point light sources with different intensity. Center and Right: Errors in the estimation of the light power and the mean
direction, as a function of the percentage of occluded light sources.

4.1. Results on synthetic data

We synthesized a 120-frame sequence of a deforming 3D
mesh with 14×14 vertices. Its initial configuration was
a 100×100mm rectangle, which we used as a reference
and progressively deformed according to a sinusoidal wave
with translating phase and increasing amplitude, as shown
in Fig. 4. Note that surface stretching increases with wave
amplitude and that the area in the last frame is about twice
that in the reference frame.

We then synthetically produced 100 random 3D-to-2D
correspondences per frame, in a 640 × 480 image acquired
using a virtual camera with focal length fu=fv = 800 and
principal point at (uc, vc)= (320, 240). A Gaussian noise
with a 5 pixels standard deviation was added to the 2D point
coordinates. We also computed the intensity of each image
point assuming a Lambertian reflectance model and illumi-
nating the surface using the lighting environment map of
Fig. 5(left), which was made of 90 point light sources of dif-
ferent intensities distributed on the upper hemisphere. The
effects of the cast and attached shadows were considered
when computing the intensity to show that our approach can
tolerate light sources that are not true point light sources.

The experiment was repeated 60 times per frame. Each
time, we computed the 3D shape using [16], our method as
described in Section 3, and a variant in which we use the
correct value for the facet area Area(f) in Eq. 19, known
for synthetic data. The purpose of introducing this vari-
ant is to gauge the error resulting from replacing the true
value of Area(f) by its approximation, as discussed in Sec-
tion 3.3.1. The graph of Fig. 4(left) summarizes the results
of these experiments. We plot the mean reconstruction er-
ror as a function of the surface extension, which is the ratio
between the true area of the surfaces and the area of the
initial planar mesh. Observe that our method clearly out-
performs [16], especially for large amounts of stretching.
Furthermore, the difference in reconstruction error between
the method using the true area, and our actual implementa-
tion is almost negligible. Fig. 4(right), shows a few frames

with the ground truth meshes in black and the mesh recon-
structed with one of the three methods in blue to help the
reader to visualize what these error numbers truly represent.

However, as shown in Fig. 5, using the approximate facet
areas instead of the true ones, has a more significant impact
on the recovered lighting parameters. This was to be ex-
pected since object pose –and hence reconstruction errors–
are always less affected by changes in the direction of the
facets normal. In any case, the lighting parameters we esti-
mate give a clear idea of what is the mean direction of the
light sources and their total intensity. Fig. 5(center) plots
the error in the estimation of the light intensity as a func-
tion of the percentage of occluded light sources not seen by
the facets. Of course, the error increases with the amount
of occlusion. Fig. 5(right) plots the error produced when
estimating the light direction, which is in all the situations
smaller than 25 degrees. This value is relatively small, espe-
cially if we consider that even for the most deformed shape,
a change of 25 degrees in the elevation angle of the environ-
ment map only produces a 2% change in the mean image
intensity.

4.2. Results on real data
We also show results on two real sequences, one involv-

ing bending an inelastic sheet of paper and the other stretch-
ing a hair ribbon. The images were acquired with a Basler
A601f firewire camera, that was geometrically calibrated,
and whose radiometric response was linearized. To estab-
lish the 3D-to-2D correspondences we followed a similar
strategy as in [16]: starting from the SIFT [9] matches be-
tween a reference frame and the input image, the surface
was detected in 2D. This 2D detection was then used to
compute dense correspondences based on normalized cross-
correlation in very small regions. To facilitate registration,
we use a reference image in which the surface was pla-
nar and seen under diffuse lighting, so that image intensity
could be directly used to estimate albedo. To obtain reliable
intensity estimates in both reference and input images, we
took it to be the mean over small image patches.
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frame #20 frame #50 frame #60 frame #105

Figure 6. 3D registration of a non-rigid inelastic piece of paper. Top row: Retrieved mesh projected onto the original image. Middle row:
3D mesh seen from a different viewpoint. The colored lines in each image represent the light directions retrieved for all the previous frames
in the sequence. Bottom row: Synthesized textured view of the retrieved shape.

frame #1 frame #17 frame #60 frame #80

Figure 7. 3D registration of a non-rigid elastic hair ribbon. Top and middle rows: Registration and 3D reconstruction results obtained
with the method presented in the paper. Despite the area extension, the shape is correctly retrieved. Bottom row: 3D reconstruction based
on [16], which makes use of inextensibility constraints. Observe that the increase in area size is not detected, and the size change in the
image plane is interpreted as a translation of the object towards the camera. The dot-and-dash line indicates the camera optical axis.

In the 120-frame video sequence depicted by Figure 6,
we show that our method can be successfully applied to de-
tect an inelastic deformable surface. Note the that the light
source is a window located behind the camera, and there-
fore an extended one as opposed to a point light source.
The top row depicts the recovered 19 × 19 meshes over-
laid on the original frames. In the middle row, the com-
puted meshes are seen from a different viewpoint. For each
frame the mean direction of the light sources computed in

all the previous frames is also shown as a random color
line. Note that all the estimated directions form a cone
with a relatively small apex angle, meaning that more or
less the same light direction is retrieved in all the frames
even though the computation is performed completely in-
dependently in all frames. This direction is roughly correct
because it coincides with the window direction from where
the light comes. The last row of Fig. 6 shows a synthetically
generated textured view. In Fig. 8, we plot the estimated
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Figure 8. Surface extension estimated by our algorithm for the re-
sults with real data. Note that in the case of the inelastic paper
our algorithm predicts very small extension values, while for the
stretching ribbon, extensions of about 150% are estimated.

surface extension –ratio between the area of the surfaces
at a given frame and the area of the initial mesh–, which
remains close to one, as it should, even though we do not
explicitly enforce this constraint.

Finally, we compare again our algorithm to [16] on an
80-frame sequence of a hair-ribbon being stretched and
bent. The first two images in the top row of Fig. 7 show the
configurations with minimal and maximal stretching, while
the other two images on the right show the ribbon being
bent backwards. Observe again in Fig. 8 that our algorithm
correctly sees the mesh as being stretched by about 150%.
This is in contrast to the results by applying [16], which
interprets the motion between frame #1 and #17 as if the
ribbon moved towards the camera.

5. Conclusion
In this paper we have presented a closed-form solution to

3D shape recovery of stretchable surfaces from point corre-
spondences between an input image and a reference config-
uration. Since state-of-the-art methods make use of inexten-
sibility contraints between neighboring points, they are lim-
ited to retrieving the shape of inelastic surfaces. We remove
this limitation by replacing the constant-length constraints
by shading ones, which still permit solving the problem in
closed form.

In future work we plan to use more complex shading
models and parameterizations of the lighting environment
map, such as those based on spherical harmonics. To this
end that we will have to consider additional unknowns and
introduce visibility constraints accounting for the visible
light directions for each facet. This will entail an iterative
optimization scheme. But, since the closed form approach
we have presented here can, in practice, handle somewhat
extended light sources, we believe that it will give us the
initial estimates we need to ensure convergence.
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