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a b s t r a c t

The expected increase of hydrogen fuel cell vehicles has motivated the emergence of a

significant number of studies on Hydrogen Refuelling Stations (HRS). Some of the main HRS

topics are sizing, location, design optimization, and optimal operation. On-site green HRS,

where hydrogen is produced locally from green renewable energy sources, have received

special attention due to their contribution to decarbonization. This kind of HRS are com-

plex systems whose hydraulic and electric linked topologies include renewable energy

sources, electrolyzers, buffer hydrogen tanks, compressors and batteries, among other

components. This paper develops a linear model of a real on-site green HRS that is set to be

built in Zaragoza, Spain. This plant can produce hydrogen either from solar energy or from

the utility grid and is designed for three different types of services: light-duty and heavy-

duty fuel cell vehicles and gas containers. In the literature, there is a lack of online con-

trol solutions developed for HRS, even more in the form of optimal online control. Hence,

for the HRS operation, a Model Predictive Controller (MPC) is designed to solve a weighted
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Solar power
Green hydrogen production
Acronyms:

HRS Hydrogen Refuelling Station

MPC Model Predictive Control

FCV Fuel Cell Vehicles

HDFV Heavy-Duty Fuel cell Vehicle

LDFV Light-Duty Fuel cell Vehicle

MEGC Multiple Element Gas Contain

MG Microgrid

PV Photovoltaic

EMBD_SP Embedded Solar Panels

GRD Utility Grid

P&ID Piping and Instrumentation D

Ti Compressed hydrogen gas tan

Ci Hydrogen compressor number

Di Dispenser number i

VDS Vehicle Demand Signal

SOC State of Charge

SOM Simulation-oriented Model

COM Control-oriented Model

BT Electrochemical Battery

CS Control Signal
multi-objective online optimization problem taking into account the plant dynamics and

constraints as well as the disturbances prediction. Performance is analysed throughout 210

individual month-long simulations and the effect of the multi-objective weighting, pre-

diction horizon, and hydrogen selling price is discussed. With the simulation results, this

work shows the suitability of MPC for HRS control and its significant economic advantage

compared to the rule-based control solution. In all simulations, the MPC operation fulfils all

required services. Moreover, results show that a seven-day prediction horizon can improve

profits by 57% relative to a one-day prediction horizon; that the battery is under-sized; or

that the MPC operation strategy is more resolutive for low hydrogen selling prices.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Due to the expected increase in hydrogen Fuel Cell Vehicles

(FCV) circulation, new Hydrogen Refuelling Stations (HRS)

have to be put into operation. Specifically, the International

Energy Agency (IEA) [1] states that hydrogen demand for road

transport has increased 60% since 2020 to a total of 30 kt

annually worldwide in 2021. Moreover, road transport

hydrogen demand is expected to increase due to the fore-

casted increase in FCV from over 59.000 vehicles worldwide in

2022 [1] to 3.3 M vehicles in 2030 [2], and between 100 M and

400 M vehicles by 2050 [2]. This could represent a 0.7 to 8 Mt of

hydrogen global demand for road transport according to the

Stated Policies Scenario and the Announced Pledges Scenario

to Net Zero Emissions, respectively, by 2030 [1].

In Spain, the Ebro Hydrogen Corridor is a clear example of

the decisive increasing trend in hydrogen energy and
hydrogen economy's importance. This project plans to ach-

ieve 250 kt of renewable hydrogen production with a capacity

of 400 MW of renewable generation by 2025, increasing to

1.5 GW of renewable hydrogen production by 2030 [3,4].

In correlation with FCV units and hydrogen production

increase, hydrogen delivery infrastructure must improve in

availability, performance, and cost. From 700 HRS in operation

globally in 2021, 975 HRS were in operation by the end of June

2022, which gives around 60 FCV units per each HRS [1]. In

Europe, by 2018, there were about 6.4 FCV units per HRS,

which can be compared with 4.8 battery electric vehicles per

electric charger [2]. This European ratio of FCV units per HRS is

the lowest ratio of all surveyed areas [1]. In Spain, the Ebro

Hydrogen Corridor project plans to increase the number of

HRS from the actual 6 to 20 by 2025 and 100 by 2030 [3,4].

In spite of the improvements needed, the research done on

HRS is rather little, being orders of magnitude lower in the

number of published articles than fuel cell or FCV articles,

according to Ref. [5].

Different types of HRS have been described in the litera-

ture. One first HRS classification criteria refers to hydrogen

production location, which gives off-site and on-site HRS.

On-site HRS include the hydrogen production locally at the

station. In this type of HRS, different hydrogen production

processes can be found, which are mainly steam methane

reforming and water electrolysis [2]. Moreover, since the

electrical energy consumption of an on-site HRS will be

significantly higher than that of an off-site HRS due to

hydrogen production and compression, it is crucial to specify

the type of HRS electrical energy sources. These energy sour-

ces can be renewable energy sources (generally solar or wind)

or come from the utility grid. If hydrogen is produced with

renewable energy sources, the HRS is called green HRS. If the

HRS is able to extract energy from the utility grid, it is called

grid-connected HRS and otherwise, stand-alone or self-

sustainable HRS. Renewable and utility grid energy sources

are not exclusive from each other, which means that HRS can

be also grid-connected renewable microgrids, as is the case of

study of this work. A grid-connected on-site renewable HRS

can bring hydrogen cost lower compared to a stand-alone HRS

[2] and improve the demand satisfaction guarantee.

Regarding the HRS target vehicles, HRS dispensing systems

are usually designed either to service heavy-duty fuel cell

http://creativecommons.org/licenses/by-nc-nd/4.0/
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vehicles at a pressure of 350 barg (35,000 kPa), or light-duty

fuel cell vehicles at a of pressure 700 barg (70,000) [2,5].

Moreover, some of the HRS described in the literature

integrate fuel cell systems. The fuel cells purpose is to recover

electrical energy from the hydrogen in case of need or for

performance optimization. This energymay be either injected

into the grid, used to feed HRS loads, or used to charge battery

electric vehicles. This is especially interesting in stand-alone

HRS where electrical energy storage or power may be a

constraint.

The first research article on HRS was published in 1982 [6]

but more comprehensivemodels do not appear until 2006 and

2009 [7e9]. The main topics of modelling, sizing, and control

are not treated until 2013 when an increase in the published

articles is seen. Nevertheless, it is quite recently that the in-

terest in HRS has importantly grown up andmore than half of

the articles referenced in this work have been published in the

2020-2022 period.

The main topics of on-site HRS studies have been location

[10e12], sizing and design optimization [13e18], and control,

that will be discussed later.

The HRS configuration and capabilities are very important

to differentiate between studies. General HRS subsystems/

stages are well-explained in Refs. [2,5]. In the following para-

graphs, different articles of the literature are grouped ac-

cording to their HRS configuration.

Grid-connected HRS layouts are studied in Refs.

[14,15,18,19] and stand-alone HRS deigns are studied in Refs.

[17,20,21].

Green HRS, either grid-connected or stand-alone, can have

solar photovoltaic energy source [17,18,21e23] or wind energy

source [24]. Both solar photovoltaic and wind energy sources

are considered in Refs. [20,25] and diesel generators are

considered as a power source in Refs. [13,26].

Water electrolysis is the hydrogen production process

considered in all studies except for [27,28], where steam

methane reforming and delivered hydrogen are considered,

respectively.

Furthermore, some of the works consider an electro-

chemical battery in the HRS layout [19,27,29].

Another important HRS feature found in several configu-

rations is multi-product capability, meaning the inclusion of

electric chargers for battery electric vehicles [13,21,23]. Inter-

estingly, battery-swapping is also modelled in Ref. [29].

Finally, fuel cell stacks are present in HRS layouts studied

in Refs. [20,21,30].

Of all the studies referenced in this work, only 4 are based

on real HRS plants [9,22,24,31].

Regarding HRS operational control, which is the topic of

this work, it has been solved mainly by offline optimal

scheduling [14,15,18,23,32e34], where stochasticity, different

algorithms or optimal sizing is generally tested.

Offline control methods are those in which the total

problem scenario (states and disturbances) is treated at once.

This method is usually the result of mathematical optimiza-

tion or iterative heuristic algorithms. If feasibility in the so-

lution is achieved, the resulting control actions are static, they

are scheduled to the stated scenario. This method is exploited

by the software HOMER which has been used for techno-
economic analysis in sizing and layout design of HRS

[18,25,34].

For any real control problem in which all plant's distur-

bances can not be perfectly predicted at once prior to starting

operation andwhose states' dynamics are time-dependent, an

online control strategy must be adopted. An online control

methodwill perform in real-time hence its control actionswill

adapt to the states, disturbances and events as they evolve in

a linear time manner. In the energy management field, these

methods are usually classic control methods, rule-based

control methods or optimal control methods.

Rule-based control strategies are implemented in Refs.

[7,20,28,31,35]. More specifically [7], applies a time band

schedule, justified by utility grid energy prices, for hydrogen

production in which the gas tank is filled just in time at 6 a.m.

starting at 9 p.m. of the previous day and, to supply the fore-

casted demand, hydrogen is also produced to drive the tank to

a required level by 5 p.m. starting at 10 a.m. Three rule-based

strategies are tested in Ref. [20]. These strategies differ in

terms of how renewable energy sources and the fuel cell are

utilized tomeet the electrolyzer or compressors electric power

load. The best results in terms of cost and efficiency are with a

strategy that feeds the electric load with renewable energy as

much as possible and only uses the fuel cell when renewables

are not available. In the case of [31], a variable power threshold

strategy is proposed with the intention of maximizing the

electrolyzer production in a solar photovoltaic grid-connected

HRS. When the threshold in input power is surpassed, green

hydrogen is produced and when renewable energy input is

under the threshold, power grid energy is consumed. For a

solar photovoltaic system sized at 150% of the electrolyzer

plant consumption of a grid-connected HRS, this power

levelling strategy shows in a small-scale experimental system

a 10% increase in electrolyzer utilization without increasing

carbon dioxide emissions in hydrogen production compared

to a not renewable HRS. In the case of [35], four strategies are

proposed, they differ in terms of how the photovoltaic energy

input, the utility grid and the electrochemical battery are

utilized to meet the demand of charging battery electric ve-

hicles and FCV hydrogen demand. These strategies define

different priorities on the fuel cell, electrolyzer, battery and

spare hydrogen usage. Attending to Ref. [28], a state machine

for the refuelling process is presented. This process decides

which of the three-cascaded tanks with different pressure

levels is emptied to supply hydrogen demand. This strategy

shows a 34% reduction in energy consumption compared to a

one-tank storage system.

If the authors are not wrong [24], is the only work found in

the literature with a scope similar to the present work, i.e. the

online optimal control of an on-site renewable HRS.

Carr .S,et al., [24] develops a nonlinear model of an on-site

renewable wind-based grid-connected light-duty vehicle HRS

based on a real plant. The HRS consists of one compressor and

one storage tank. The model presented is simplified to treat

the operational problem at a 30-min sampling time

(compressor, electrolyzer, and dispenser electrical consump-

tion are considered to vary synchronously at the sampling

time) and the hydrogen demand profile is considered based on

an hourly profile. The prediction horizon is fixed at two days.

Demand profile scaling effect in performance is analysed as

https://doi.org/10.1016/j.ijhydene.2023.01.191
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well as wind turbine sizing and electrolyzer available output

range in 30 days-long simulations. Results are analysed in

detail based on economical profit.

The main contributions of this article are:

� Presentation of a multi-compressor, multi-storage on-site

renewable solar-based and grid-connected HRS based on

electrolysis hydrogen production. This plant is set to be

built in Zaragoza, Spain. This work presents the first HRS

that considers delivering compressed hydrogen directly to

the end-user as well as heavy and light-duty vehicle

service.

� A linear Simulation-oriented Model (SOM) of the HRS is

presented.

� A linear MPC is developed as the online control solution.

� The MPC multi-objective function proposed is defined by

three perspectives: profit, regulation and softening.

� MPC performance is thoroughly analysed through 210

simulations.

� The effect of prediction horizon in the MPC performance is

analysed.

� Multi-objective weighting effect in the MPC performance is

analysed.

� Hydrogen price effect in the MPC performance is analysed.

� The MPC performance will be compared to a rule-based

control solution developed by the authors.

� To the authors' knowledge, this is the first study of a multi-

storage, multi-compressor HRS controlled by MPC in the

literature.
Table 1 e Tanks specifications @ 25�C.

Tank Capacity (kg) Pmax (barg) Pmax (kPa)

T1 11 2 200

T2 105 35 3500

T3 105 500 50,000

T4 15 900 90,000
Case study

This section will present the HRS layout, elements and spec-

ifications of the case of study, a real plant that is set to be built

in Zaragoza, Spain. With this aim, two diagrams will be

introduced and discussed in this section: the hydraulic dia-

gram and the electric diagram.

Hydraulic diagram

The hydraulic diagram is shown in Fig. 1, which is based on

the real P&ID diagram.

In Fig. 1, storage tanks (Ti) are presented as dark blue boxes,

compressors (Ci) as red triangles and dispensers (Di) as green
Fig. 1 e Hydraulic p
triangles. Blue arrows represent hydrogen paths and as can be

seen, there are no bidirectional paths. Since purification and

cooling stages are out of the scope of this work, they are not

considered. Tanksmass capacities andmaximumpressures@

25�C are resumed in Table 1.

Electrolysis is done by a grid of 22 interconnected electro-

lyzers, shown as blue rhombus in Fig. 1. Each electrolyzer will

consume water and electrical power to produce hydrogen.

This power can come from a common grid connection point

and/or a direct beam irradiance solar panel (EMBD_SP) where

each electrolyzer unit is embedded. These elements are

coupled for efficiency and simplicity reasons based on pro-

prietary technology. The two electrical power sources are

shown in Fig. 2.

Next in order in Fig. 1 we find T1, the first and lowest

pressure and mass capacity tank of the HRS. This tank's pur-

pose is to be a buffer element between the electrolyzers'
output and C1. It is mandatory to have such a tank to unify all

the electrolyzers' produced hydrogen as well as to prevent C1

output flow rate fluctuations from damaging any of the elec-

trolyzer units. Its maximum pressure is 2 barg, which is the

maximum electrolyzers' output pressure.
In Fig. 1, compressor C1 is responsible for bringing

hydrogen pressure from 2 barg to amaximumof 35 barg in T2.

The purpose of using multiple tanks in series is to be able to

use smaller compressors.

Compressor C2 is responsible for filling the three-tank

cascaded subsystem formed by T31, T32 and T33 at a

maximum pressure of 500 barg, as shown in Fig. 1. This sub-

system is called cascaded since its purpose is to be filled and

emptied in an ordered sequential manner that provides better

performance in direct tank-to-tank expansion processes tak-

ing advantage of the high pressure of the non-emptied tanks

[28]. A 12% reduction in compression energy demand and a

19% less high-pressure hydrogen mass is achieved in the

three-tank cascaded system of [36] compared to a one-tank
lant diagram.

https://doi.org/10.1016/j.ijhydene.2023.01.191
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Fig. 2 e Electric plant diagram.

Table 2 e Compressors and dispensers specifications @
25�C.

Element Maximum Output

kg/h Nm3/s

C1 10 0.031

C2 30 0.093

C3 2.1 0.006

D1 432 1.335

D2 432 1.335

D3 432 1.335
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solution. A 6% in energy savings with a three-tank cascaded

system in front of a one-tank solution is presented in Ref. [27].

From T31, T32 or T33 there are three hydrogen paths. In

Fig. 1 we see how after the cascaded subsystem we find two

dispensers, D1 and D3, and a compressor, C3. Dispensers D1

and D3 are designed to give service at the same maximum

pressure level of 350 barg. Nevertheless, they differ in terms of

the target client. D1 is designed to refuell Heavy Duty Fuel-cell

Vehicles (HDFV) and D3 will fill Multiple Element Gas Con-

tainers (MEGC) that will be sold to the end consumer and

replaced with empty ones.

Regarding compressor C3 in Fig. 1, it is a necessary

component to be able to refuell Light Duty Fuel-cell Vehicles

(LDFV) at a target maximum pressure of 700 barg through

dispenser D2. In between, T4 is placed as a buffer element that

can provide fast tank-to-tank service. Its mass capacity has

been set targeting a one full 7 kg LDFV service as buffer

capability.

Compressors and dispensers flow ranges @ 25�C are listed

in Table 2.

As can be appreciated, multi-stage compression and stor-

age is the approach taken in the HRS layout of this study. This

approach provides flexibility which can be used to optimize

the process. On the other hand, this approach requires a

higher complex control solution.
Electric diagram

The case study HRS is grid-connected. Therefore, the system

has two types of electrical energy sources, renewable sources

and the utility grid. Moreover, the HRS has the capability of

storing electrical energy thanks to the electrochemical battery

included in the layout.

From a design perspective, the main purpose of the battery

is to minimize load peaks in the utility grid. A battery inclu-

sion is interesting since the HRS electrical energy provider

will, most certainly, have an upper power constraint

depending on the type of contract or location. Costs increase

as higher power lines or contracts are required even if the

feasibility of a high power connection point at the HRS loca-

tion is assumed. From a control perspective, an electrical

battery brings one more degree of freedom that may

contribute to the global optimality of the HRS performance.

The electric system description of the HRS utility grid-

connected microgrid (MG) is shown in Fig. 2. It presents all

electrolyzers and all compressors as direct active loads. At the

electrolyzers block, we can appreciate the two possible sour-

ces for hydrogen production discussed before, direct beam

irradiance energy and grid energy.

The battery can be independently controlled to supply

energy to the MG (discharging) or act as a load (charging), thus

being the only MG's active bidirectional element. Battery

charging/discharging systemhas been designed to provide a ±
150 kW range.

Furthermore, the HRS studied integrates a grid-on photo-

voltaic system (GRD_PV). GRD_PV output depends mainly on

global irradiance, Gg.

Bidirectional energy paths present positive and negative

signs. For those cases, the positive sign is marked in the

electric diagram. Denoting the direction that is considered a

positive energy transfer.

Fig. 2 presents in purple the disturbances, which are the

direct beam irradiance, Gb, and Gg.

In Fig. 2, the power flow to the utility grid (P_GRD) is bidi-

rectional, hence the HRS can either consume or inject power

to the utility grid, buying or selling energy, respectively.

Electrical elements specifications are provided in Table 3.
Simulation-oriented model

This section will introduce the main assumptions that have

been considered to model the plant presented in Section Case

https://doi.org/10.1016/j.ijhydene.2023.01.191
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Table 3 e Electrical elements specifications.

Element Value Unit

GRD_PV 110 kW

1000 W=m2

Battery 600 kWh

C1 37 kW

C2 77 kW

C3 11 kW

Table 4 e Linear coefficients.

Coefficient Value Unit

bEL_IR2F 10.11 kg=h
1000W=m2

bPV_IR2P 0.11 kW
W=m2

aEL_F2P 60.29 kW
kg=h

aC1_F2P 3.70 kW
kg=h

aC2_F2P 2.57 kW
kg=h

aC3_F2P 5.24 kW
kg=h
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study. Furthermore, the discrete equations that model the

HRS dynamics will be given.

Model assumptions

In order to simplify the HRS model, the next list of assump-

tions has been made:

� Hydrogen is considered an ideal gas.

� Hydrogen compression and expansion are considered iso-

thermic processes. Hence, hydrogen cooling stages are not

considered.

� Hydrogen purity is considered ideal, compressors oil or

particles leakage is not considered. Hence, purification

stages are not considered.

� Pressure drops along the ducts are neglected.

� Dispensers D1 and D2 output maximum flow rate has been

fixed at the value that permits 100% service completion for

HDFV and LDFV in one time-step. This value is lower than

the real dispenser maximum output (indicated in Table 2).

� Dispenser D3 output maximum flow rate is assumed equal

to that of D1.

� Dispenser D1, D2, and D3 have been assumed controllable

in a 0e100% range by the control signals D1_CS, D2_CS and

D3_CS, respectively.

� Hydrogen flow rates are independent of tank pressures.

Desired compressors' output flow rate has been assumed

controllable in a 0e100% range of their specifications

shown in Table 2. C1, C2 and C3 will be controlled by

control signals C1_CS, C2_CS and C3_CS, respectively.

� Cascaded T31, T32 and T33 subsystem has been assumed as

one unique 105 kg, 500 barg tank, addressed as T3.

� Photovoltaic DC-AC inverters, battery bidirectional DC-AC

power converter, and ancillary power electronic systems

have been considered ideal and they do not add power

dynamics or energy losses to the system.

� Battery charging/discharging power has been assumed

controllable in a ± 100% range (±150 kW) by P_BT control

signal.

� Electrolyzers grid-connected and irradiation hydrogen

simultaneous production has been considered possible.

Total output is assumed upper limited to the value corre-

sponding to 1200 W/m2 irradiance-only hydrogen

production.

� Electrolyzers grid-connected hydrogen flow rate has been

assumed controlable in a 0e100% respective to a 0e6.55 kg/

h. Controlled by F_GRD.
The electrolyzers' manufacturer provides a linear rela-

tionship between the direct beam irradiance, Gb, and the

green hydrogen flow rate output. This irradiance-to-flow

relationship factor is bEL_IR2F. They also provide the electro-

lyzers’ energy consumption data for grid-connected hydrogen

flow rate production. This data has been linearized with the

aEL_F2P flow-to-power factor. Grid-connected hydrogen flow

rate output is limited to 6.55 kg/h and controlled by the F_GRD

signal.

Photovoltaic system GRD_PV model has been linearized

with the bPV_IR2P factor relating power output with global

irradiance input, Gg.

Compressors' consumption has been linearized, dividing

each compressor's nominal power by its nominal output flow

rate. As a result, aC1_F2P, aC2_F2P and aC3_F2P factors are defined

for C1, C2 and C3, respectively.

Model linear coefficients are given in Table 4.

Regarding demand modelling, it has been assumed that

HDFV, LDFV andMEGC demand are tanks always connected to

their respective dispenser. Since HDFV and LDFV services are

disturbances to the system, two independent vehicle demand

signals, VDS_HDFV and VDS_LDFV, have been used as distur-

bances that empty each of the two respective tanks, HDFV and

LDFV, to emulate the arrival of the vehicles. These signals will

be binary variables (0e1) where 1 indicates that the corre-

sponding vehicle has arrived and needs to be refuelled. For

MEGC service, it is implicitly assumed that when the tanks are

full, they are replaced with empty ones, hence infinite ca-

pacity is implied.

Model

This subsection will declare the discrete equations that define

the dynamics of the 8 states of the Simulation-oriented Model

(SOM), in a state-space representation:

xðkþ 1Þ ¼ xðkÞ þ BuðkÞ þ BdvðkÞ (1)

with the state vector x(k), controlled variable vector u(k) and

disturbance vector v(k) defined as:
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xðkÞ ¼

0
BBBBBBBBBBBBBBBBB@

x1ðkÞ
x2ðkÞ
x3ðkÞ
x4ðkÞ

xHDFVðkÞ
xLDFVðkÞ
xMEGCðkÞ
SOCBTðkÞ

1
CCCCCCCCCCCCCCCCCA

uðkÞ ¼

0
BBBBBBBBBBBBBBBBB@

F_GRDðkÞ
D1_CSðkÞ
D2_CSðkÞ
D3_CSðkÞ
C1_CSðkÞ
C2_CSðkÞ
C3_CSðkÞ
P_BTðkÞ

1
CCCCCCCCCCCCCCCCCA

vðkÞ ¼

0
BB@

GbðkÞ
VDS_HDFVðkÞ
VDS_LDFVðkÞ

1
CCA

(2)

where xi(k) states represent the hydrogen mass of each

tank at each time-step k. SOCBT represents the State of Charge

of the battery in %.

Matrix B represents the possible hydrogenmass flow paths

in Fig. 1 and how they depend on the control inputs u(k):

B¼

0
BBBBBBBBBBBBBBBBBBBBBB@

6:55 0 0 0 �10 0 0 0

0 0 0 0 10 �30 0 0

0 �180 0 �180 0 30 0 0

0 0 �42 0 0 0 0 0

0 180 0 0 0 0 0 0

0 0 42 0 0 0 0 0

0 0 0 180 0 0 0 0

0 0 0 0 0 0 0
150
600

1
CCCCCCCCCCCCCCCCCCCCCCA

Ts
3600$100

(3)

Disturbance vector v(k) elements are Gb in Wm�2 units,

VDS_HDFV(k) and VDS_HDFV(k).

Matrix Bd represents the effect of the disturbance vector

v(k) in each state. Gb disturbance is considered inWm�2 units.

Bd ¼

0
BBBBBBBBBBBBBBBBBBBB@

bEL_IR2F

1000
$

Ts
3600

0 0 0

0 0 0

0 0 0

0 �30 0

0 0 �7

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCA

(4)

As can be deduced from Bd and v(k), when the vehicle de-

mand signals are 1, there will be a subtraction of 30 kg from

the HDFV tank and 7 kg from the LDFV tank. This means that

all services considered are from an empty initial state since

we can ensure that the tanks are completely full at the new

vehicles’ arrival, as explained in Section Objective function.

Sampling time, Ts, has been fixed at 10 min.
The microgrid power balance, P_GRD(k), will be referenced

in the following sections. This balance dictates if energy is

being consumed from (positive sign) or injected to (negative

sign) the utility grid and is defined in Equation (5).

P_GRDðkÞ ¼ aEL_F2P$
F_GRDðkÞ

100
$6:55

þaC1_F2P$
C1_CSðkÞ

100
$11

þaC2_F2P$
C2_CSðkÞ

100
$30

þaC3_F2P$
C3_CSðkÞ

100
$11

þP_BTðkÞ
100

$150

�bPV_IR2P$GgðkÞ

(5)

MPC formulation

In this section, the Model Predictive Control (MPC) applied to

the Simulation-oriented Model (SOM) of the HRS studied will

be explained.

An MPC is an interesting control solution for an HRS since

they are constrained systems with slow dynamics whose

performance can be defined by different perspectives. There-

fore, multi-objective functions can be formulated and be

highly optimized if state dynamics and disturbances predic-

tion is taken in to account.

For any MPC formulation, a Control-oriented Model (COM),

an objective function (J) and a set of constraints must be

defined. The COM will be internally simulated along an entire

defined prediction horizon (Hp), starting from measured initial

conditions (states and disturbances) of the real plant, in our

case, a SOM. At every time-step, a solver will judge a set of

control strategies (solver decided control inputs along Hp) per-

formance in terms of constraints' violation and the objective

function, and it will continue to iterate control strategies until a

minimum in the objective function is found without any

constraint violation along Hp. Once this global or local mini-

mum is located, the first control input of the overall strategy

that guarantees the minimum will be sent to the real plant, in

our case, a SOM. This process is repeatedly executed at each

real time-step, but with updated plant and prediction data.

Since in MPC practices the prediction data is unveiled at the

same rate as the system evolves in real-time and theHp is fixed,

we refer to Hp as a rolling prediction horizon.

The number of iterations and thus each optimization

elapsed time can be highly influenced by the type of solver,

the model complexity and, of course, the Hp length.

As COM we'll take the same model as the SOM introduced

in the last section. Thismeans that the system's dynamicswill

be perfectly predicted by the MPC. Moreover, the same dis-

turbanceswill be applied to the COMand the SOM. Thismeans

that disturbance uncertainty is not considered.

In the following subsections, the set of constraints and the

objective function definition will be assessed.
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Constraints definition

Constraint declaration is a must in MPC practices. If this type

of control has been selected above others, is mostly due to the

plant physical states and control inputs constraints.

Following the plant's specifications, the state vector con-

straints are the ones in Equation (6).

0
BBBBBBBBBB@

0
0
0
0
0
0
0
20

1
CCCCCCCCCCA

�

0
BBBBBBBBBB@

x1ðkÞ
x2ðkÞ
x3ðkÞ
x4ðkÞ

xHDFVðkÞ
xLDFVðkÞ
xMEGCðkÞ
SOCBTðkÞ

1
CCCCCCCCCCA

�

0
BBBBBBBBBB@

11
105
105
15
30
7

5000
100

1
CCCCCCCCCCA

(6)

The authors have assumed that MEGC are instantly

replaced when they are full. For this reason, the constraint

defined to xMEGC in Equation (6) is large enough to emulate this

assumption.

Furthermore, control decision variables constraints are

listed in Equation (7).

0
BBBBBBBB@

0
0
0
0
0
0
0�100

1
CCCCCCCCA

�

0
BBBBBBBBBB@

F_GRDðkÞ
D1_CSðkÞ
D2_CSðkÞ
D3_CSðkÞ
C1_CSðkÞ
C2_CSðkÞ
C3_CSðkÞ
P_BTðkÞ

1
CCCCCCCCCCA

�

0
BBBBBBBBBB@

100
100
100
100
100
100
100
100

1
CCCCCCCCCCA

(7)

On the other hand, all disturbances have been left

unconstrained.

Finally, the total electrolyzers hydrogen production upper

limit assumption is defined in Equation (8).

F_GRDðkÞ
100

$6:55þ GbðkÞ$bEL_IR2F

1000
� 1200$

bEL_IR2F

1000
(8)

Objective function

In this work, the system's performance has been defined from

three different perspectives: economical profit, regulation,

and control softening. For this reason, this work presents a

multi-objective function. Therefore, scaling and weighting of

the independent objectives will be necessary. This sectionwill

present the multi-objective function and its scaling.

Let's start with the definition of the profit objective, JP,

which is the result of the balance between operational cost

expenses and energy or hydrogen selling income. Our plant

has three types of service, so three income streams would be

expected from hydrogen selling, one for each service. Never-

theless, as it will be explainedwhen the regulation objective is

addressed, HDFV and LDFV service fulfilment, hence its in-

come, is demanded through the tracking of vehicles' tank
setpoints. For this reason, hydrogen selling incomes from

HDFV and LDFV services are not considered in JP. Energy

surplus supplied to the utility grid (P_GRD(k) with negative

sign) will be assumed to be sold at the same hourly price, ep, in

V/kWh units, as the energy bought from the grid. P_GRD(k)

with positive sign will represent the operational MG
expenditure. Finally, JP is introduced in Equation (9), whereH2p

is the hydrogen selling price in V/kg.

JPðkÞ ¼ P_GRDðkÞ$epðkÞ$ Ts
3600

�ðxMEGCðkÞ � xMEGCðk� 1ÞÞ$H2p

(9)

The regulation objective, JR, is defined as the regulation

error of xHDFV and xLDFV respective to a full mass level, at 30 kg

and 7 kg, respectively. The refuelling fulfilment of HDFV or

LDFV before the next vehicle's arrival is guaranteed by the

MPC operation, otherwise, a constraint violation would

appear since when VDS_HDFV or VDS_LDFV signals are set to

1, 30 and 7 kg are subtracted from the respective vehicles'
tanks whose levels are restricted to positive values. Accord-

ingly, JR is defined in Equation (10).

JRðkÞ ¼ ð30� xHDFVðkÞÞ

þð7� xLDFVðkÞÞ$307
(10)

Finally, a softening objective, JS, of the control variables is

introduced. This is very common in MPC practices. Therefore,

JS tries to avoid strong variation of control input's values since
a switching effect could appear and high and fast actuator

variation is, in most cases, a reason for great degradation. JS is

defined in Equation (11),

JSðkÞ ¼ ðuðkÞ � uðk� 1ÞÞu
$Qsft_ind$ðuðkÞ � uðk� 1ÞÞ (11)

where Qsft_ind is a softening weighting matrix. Precisely, it

is an 8-element square positive semi-definite diagonal matrix

that gives us the freedom to differentiate each control variable

softening effect in the overall objective JS. Since degradation

effects are out of this work's scope, all but dispenser control

variables are given the same maximum assumed weight, set

at a 1, and 0.5 in case of PBT since it has double range. Dis-

penser's control variables (D1_CS, D2_CS and D3_CS) weights

are set to 0 because dispensers output is wanted as fast as

possible when it is feasible, so their actuator variation should

not have any penalization. Thus, Qsft_ind matrix is defined in

Equation (12).

Qsft_ind ¼ diagð1; 0;0;0;1; 1; 1;0:5Þ (12)

To be able to address the overall performance result from

all three perspectives, one unique objective function JPRS has

been formulated, which is the weighted sum of JP, JR and JS
with QP, QR and QS as their respective weights. Weighting a

multi-objective function is not a trivial task, usually a trial and

error process. It is a good practice to first apply normalization

between all individual objectives. Normalization allows us to

correctly compare objectives and thus better affine their

weighting.

In this study, a 0 to 1 static adimensional normalization

has been applied, being 0 as the best expected individual

objective value. Each normalized objective will be referenced

with the added ”n” subscript.

Since JP can have positive or negative values for economic

losses or profits, its JnP is described as shown in Equation (13).
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JnPðkÞ ¼ JPðkÞ � JPmin

JPmax � JPmin

(13)

JPmax is obtainedwith all involved control inputs in Equation

(5) set at 100 andGg at 0 aswell asDxMEGC. In the case of JPmin
, all

control inputs are set to their minimum value indicated in

Equation (7) and Gg at 1747.9 W/m2, which is the maximum

hourly global irradiation at Zaragoza, Spain, from a 2005 to

2016 dataset [37]. The maximum DxMEGC depends on the

maximum D3_CS value and Ts, which in our case leads to a

30 kg maximum value. Furthermore, epmax is set at 0.48491

V/kWh for both JPmax and JPmin
factors, being the 2021

maximum in Spain [38]. Finally, these two factors depend on

H2p which in our case will be set at 10 V/kg or 2 V/kg. As a

result, JPmax and JPmin
are defined in Table 5.

JnR scaling is seen in Equation (14).

JnRðkÞ ¼ JRðkÞ
60

(14)

Finally, JnS is easily scaled as shown in Equation (15).

JnSðkÞ ¼ JSðkÞ
JSmax

(15)

where JSmax is set at 60,000, which has been obtained solving

Equation (11) for a full range u variation in one time-step.

Therefore, the multi-objective cost function JPRS is defined

in Equation (16).

JPRSðkÞ ¼ JnPðkÞ$QP

þJnRðkÞ$QR

þJnSðkÞ$QS

(16)

The total number of time-steps, Np, of the Hp in days unit is

defined in Equation (17).

Np ¼ Hp$
86400
Ts

(17)

The control strategy obtained by the MPC is defined in

Equation (18) [39].

uðkÞb�
uð0jkÞ;…;u

�
Np �1

��k�� (18)

min
u2RmNp

JPRSðx0;uðkÞÞ (19)

MPC open-loop optimization problem is defined in Equa-

tion (19) subject to.

$ COM defined in Equation (1),

� states constraints over Np defined in Equation (6),

� control inputs constraints over Np defined in Equation (7),

where the cost function domain is defined as

JPRSð�Þ : Rm
�0 � R

mNp

½�w;w�1R and m ¼ 8 since there are eight states

as well as eight control inputs and w ¼ 100. Moreover, x0 are
Table 5 e JPmax and JPmin
values.

Factor H2p ¼ 10V/kg H2p ¼ 2V/kg Unit

JPmax 54.16 54.16 V

JPmin
�327.66 �87.66
the initial state condition from which the COM evolves.

Assuming feasibility in the optimization problem, the first

control input set of the optimal control strategy solution, u*(0|

k), is applied to the SOM and the process is repeated at the

next time instant k.
Rule-based control formulation

As is common in control development for energy manage-

ment problems, the first control solution approach of the au-

thors was to develop a rule-based control. This section

presents a rule-based control solution developed for the HRS

studied. This formulation is the fruit of the authors’ experi-

ence. This control solutionwill be faced as a point of reference

to the MPC solution results.

Themain advantage of designing and implementing a rule-

based control in front of an MPC is simplicity. Moreover, the

computational load can be drastically less expensive.

On the other hand, the main disadvantage is that the

control actions are not optimal and, to approach the optimal

solution a significantlymore complex set of rules is necessary.

In our case, the problem has been divided into two inde-

pendent sections: the day-ahead predictive algorithm and the

operational state machine.
Day-ahead predictive algorithm

The purpose of this algorithm is to schedule the future hours

in which the electrolyzers will produce hydrogen with elec-

trical energy from the grid. This scheduling will have a length

of 24h and will be updated each day at 00:00 a.m. This means

that the only output of the algorithm is the hydrogen flow

produced by the electrolyzers with energy from themicrogrid,

F_GRD, discretized to a sampling time of 1h with a length of 24

values, updated once a day.

The algorithm takes 4 inputs each day at 00:00 a.m.

� The sum of mass of T1, T2, T3 and T4.

� The next 24h of hourly Gb profile prediction data.

� The next 24h of hourly ep profile prediction data.

� The next 24h total HDFV and LDFV hydrogenmass demand

prediction.

Themain logic of the algorithm is to calculate the next-day

deficit of irradiance hydrogen production in terms of the de-

mand, taking into account the state of the plant at the time of

calculus. This deficit is calculated through Equations A.1 to A.3

in Appendix section A.

In the case of a positive next-day deficit of hydrogen, its

value will be equalled by the equivalent minimum necessary

hours of F_GRD at a constant 100% (6.55 kg/h).

The algorithmwill choose which are the appropriate hours

to maximize F_GRD based on the criteria of choosing first the

lowest irradiance and lowest grid energy price hours possible.

This criterion is reasonable if the goal is to maximize green

hydrogen and minimize economic cost. Moreover, the two

principles are normally correlated with night hours being the

cheapest energy hours.
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Since this presents a multi-criteria selection, normaliza-

tion and weights have been applied, both in a scale of 0e1.

Normalization is linearly applied by dividing each hourlyGb(k)

and ep(k) prediction of the next 24h by the maximum of the

respective profiles in that time band.

Two weights whose sum equals 1 are multiplied indepen-

dently to each normalized hourly value. Oneweightmultiplies

Gb(k) and the other ep(k) normalized prediction of the next 24h

each day at 00:00 a.m. Then, the two normalized andweighted

vectors are hourly summed up giving as a result a value of 0e1

that values the criteria explained.

Finally, a loop iteratively assigns F_GRD at its maximum

value asmany hours as necessary to cover a positive next-day

deficit of hydrogen, choosing from the lowest to the highest

normalized and weighted hour.

This algorithm's prediction horizon has been set at a one-

day length to facilitate demand satisfaction since F_GRD will

cover the daily demand deficit. A longer prediction horizon

heuristic algorithm could be developed. Nevertheless, a more

complex multi-criteria in the scheduling should be applied.

The current criteria would be potentially less robust as the

length of the prediction horizon is increased. This is because

the current scheduling criteria could potentially result in

F_GRD scheduled to be activated at the end of the prediction

horizon if the lowest energy price and irradiance are found

during that time band. As the prediction horizon increases,

this potential effect could bring the system to not be able to

supply the early demand events.

Operational state machine

A finite-state machine has been developed to control dis-

pensers, compressors, and the charging/discharging task of

the battery. Hence, the state machine controls all inputs

described in Equation (7) except for F_GRD. As inputs, all states

and F_GRD are necessary.

Dispensers (D1_CS and D2_CS) are set to 100% for one time-

step whenever VDS_HDFV(k) or VDS_LDFV(k) are 1,

respectively.

The MEGC dispenser (D3_CS) will be set to a 25% when T3

mass is greater than 70 kg and T4 mass is greater than 7 kg. It

will be put back to 0% when T3 mass is lower than 60 kg (two

HDFV services) or T4 is less than 7 kg (one LDFV service).

Compressor are enabled whenever C1_CS, C2_CS or C3_CS

are greater than 0. This will happenwhen the respective input

tank hydrogen mass is higher than a minimum level and the

respective output tank hydrogen mass is lower than its

maximum. Each respective signal will be 0 whenever one of

the two mentioned conditions are not met.

When compressors are enabled, their control signal will be

defined by a function developed. This function takes a relative

state of the input tankmass and output tank mass in terms of

the maximum negative increment of both tanks in one time-

step. This function has been designed to fill the respective

output tank as much as possible, it is defined in Equation B.1

of Appendix Section B.

In the case of C1, three states are proposed, two are the

same as C2 and C3 and the last state depends on F_GRD. This is

justified by trial and error because when F_GRD is put to 100%
by the day-ahead predictive algorithm, higher C1 flow is

required if T1 is a near-full state.

Finally, the control logic applied to P_BT is to charge the

battery whenever a surplus of energy happens and the battery

is not fully charged, limited to 150 kW charge power. The

battery will be discharged if SOCBT is greater than 20% at the

excess of electric load respective to a 100 kW threshold,

limited to �150 kW of discharging power.

The operational state machine diagram is presented in

Figure B1 of Appendix Section B.
Simulation setup

This work analyses theMPC performance as a control solution

for the operation of the proposed HRS and its dependency on

Hp, the multi-objective weighting configuration, and H2p . For

this reason, 210 simulations have been executed using SOM

along which Hp, QP, QR, QS and H2p are iterated all together in

the following manner.

� Hp has been iterated from 1 to 7 days of prediction data

length.

� Hydrogen selling price, H2p , has been iterated over a 2V/kg

and 10V/kg value.

� QP and QR values have been iterated over a 10, 20, 40, 60 and

80% value.

� QS has been left to the possible set of values that the sum of

all three weights under a 100% value leads to. That solves

for an iteration over a 10, 20, 40, 50, 70, and 80% value.

Then, 2 simulations with the rule-based control applied to

the SOM have been executed. One with H2p set at 2V/kg and

the other with H2p set at 10V/kg. This two 10V/kg. This two

simulations will function as a point of reference for any MPC

results.

All simulations have been done with the same set of

conditions.

� Hourly direct and global irradiance Gb and Gg time series

from January 2016 in Zaragoza, Spain [37]. Gb profile is

shown in Fig. 11.

� Hourly energy price ep time series from January 2021 in

Spain [38]. The profile is shown in Fig. 11.

� VDS_HDFV(k) signal value equal to one every 12h starting at

8 a.m.

� VDS_LDFV(k) signal value equal to one once a day at 14 p.m.

� Simulation length: 31 days.

� Prediction data length: 31 days þ Hp[days].

� Simulation disturbance profiles are assumed equal to the

predicted disturbance profiles introduced to theMPC or the

day-ahead predictive algorithm.

� All states' initial conditions are set at their maximum value

except for xMEGC that starts from an empty state.

As can be appreciated, target HDFV and LDFV service is set

at a total of 67 kg/day, corresponding to two 30 kg HDFV and

one 7 kg LDFV per day.
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January has been selected since Spain's winter perfor-

mance is expected to be lower.

In the case of the rule-based control, the day-ahead pre-

dictive algorithm will take a 40% of the maximum 235 kg of

hydrogen that the HRS can store as the minimum threshold

hydrogen mass that the HRS should store at the moment of

calculus, referenced as l in Equation A.3 of the Appendix

Section A. Moreover, the day-ahead predictive algorithm has

weighted low-irradiance hours with a 0.8 value.

Simulation has been done with Matlab®,MPC formulation

developed using Yalmip [40] environment with Gurobi [41] as

the selected solver. The rule-based solution has been devel-

oped using Simulink and the Stateflow toolbox. The PC main

specs are an Intel® Core™ i7-10700 CPU and 32 GB of RAM.
Fig. 4 e Average simulation state value (xHDFV, xLDFV, xMEGC

and SOCBT) in terms of Hp and weight configuration as x-

axis, in QP,QR,QS [%] format, H2p ¼ 2V/kg.
Results and discussion

This section will present the most important results obtained

from the simulations. Figs. 3e8 analysis corresponds toH2p set

at 2V/kg. Figs. 9 and 10 will discuss the effect of H2p variation.

Firstly, the question that arises is how Hp and weighting

affect the HRS states. For all Hp settings, the averaged effect

analysis can be extracted from Figs. 3e5.

In Fig. 3, we can see how Hp affects the 31 days of simula-

tion average value of the states. For x1, x2, x3 and x4 we see that

the average mass generally increases along with Hp for all

weighting configurations. This difference is reduced as Hp

increases, denoting a convergence value for long Hp settings.

There appears that a profit-seeking objective (high QP) results

in a highermass average in states x1 and x2. On the contrary, x4
decreases with a high QP.

In Fig. 4 we can appreciate how demand has been serviced

from the xHDFV and xLDFV behaviour. Having a practically

constant average at the upper limit of 30 kg and 7 kg,

respectively, means that all services have been completed in

one sample time.When we appreciate values under the upper
Fig. 3 e Average simulation state value (x1, x2, x3 and x4) in

terms of Hp and weight configuration as x-axis, in QP,QR,QS

[%] format, H2p ¼ 2V/kg.
limits means that in some cases refuelling completion has

been acquired in more than 10 min. We can see low weighted

QR cases, in both tanks, where this happens. It is also true that

the difference is insignificant which leads us to the conclusion

that QR has been weighted highly enough to achieve complete

service fulfilment in one time-step.

In Fig. 4, the total xMEGC dispensed decreases with longer

Hp. Again, the effect is reduced while Hp acquires high values,

bringing the average to a relative convergence value. In most

Hp sets it is particularly interesting how the most profit-

seeking weighting configuration results in slightly less

hydrogenmass sold toMEGC, this seems contradictory since it

is a direct sell. This could be explained since a longer predic-

tion unveils more critical situations to be overcome so a more
Fig. 5 e Average simulation HRS mass (x1 þ x2 þ x3 þ x4) in

terms of Hp and weight configuration as x-axis, in QP,QR,QS

[%] format, H2p ¼ 2V/kg.
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Fig. 6 e All weighting configuration average of the final JPRS
value and best final levelized profit in terms of Hp as x-axis,

H2p ¼ 2V/kg.

Fig. 7 e JP, JR and JS graphic for Hp set at seven days,

H2p ¼ 2V/kg.

Fig. 8 e x1, x2, x3 and x4 evolution along the month of

simulation with Hp set at seven days and 80,10,10[%]

weight configuration, x-axis in hour time units, H2p ¼ 2V/

kg.

Fig. 9 e xMEGC, Economic balance and SOCBT evolution along

the month of simulation with Hp set at seven days and

80,10,10[%] weight configuration, x-axis in hour time units,

H2p ¼ 2V/kg and H2p ¼ 10V/kg.
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conservative hydrogen selling control strategy should be

taken if a longer prediction is available, which is the case. This

result is very interesting because it shows that the optimal

hydrogenmass to be dispensed to MEGC is around 100e150 kg

of hydrogen.

Finally, an absolute lack of Hp effect on the SOCBT state 31-

days long average is appreciated in Fig. 4. This could be

explained due to the control variable PBT being capable of

discharging/charging the battery in only 3.2 h and its de-

pendency on ep, that for all cases it is the same time series.

This price profile presents peak and off-peak time bands in the

range of hours, as shown in Fig. 11, which are directly

responsible for the charging/discharging phase of the battery.

This could be the reasonwhy results using longer prediction ep
data are not affected in short-term decisions (one day at

minimum).

In Fig. 5 we can see that the effect ofHp on the total mass is

clearly accentuated and we can appreciate how increasing
this parameter brings the total mass to a certain convergence

value. It is also worth mentioning how a profit-seeking

objective leads to more mass in the system for high Hp

values.

Moreover, the HRS has remained on average under

approximately 42% of its 235 kg of hydrogen capacity. This

could be a hint to apply component sizing optimization in

further research.

Error bars in Fig. 5 are set with a confidence level of 0.1.

To further understand and analyse the results, a bar graph

is presented in Fig. 6. This graph is the performance indicator

judged in terms of the multi-objective function defined, JPRS.

This graph also displays which would be the expected lev-

elized profits at the end of the month of simulation.
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Fig. 10 e F_GRD evolution along the month of simulation

with Hp set at seven days and 80,10,10[%] weight

configuration, x-axis in hour time units, H2p ¼ 2V/kg and

H2p ¼ 10V/kg.

Fig. 11 e Gb, ep, PGRD and P_BT evolution along the month of

simulation with Hp set at seven days and 80,10,10[%]

weight configuration, x-axis in hour time units, H2p ¼ 2V/

kg.
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Levelization has been done in order to compare the net profit

value of the system considering themass stored at the system

at end of the simulation. Levelized profits have been formu-

lated under the assumption that all mass in tanks 1, 2, 3 and 4

final values would be sold at a H2p ¼ 2 V/kg. Moreover, the

67 kg/day of HDFV and LDFV services have been all acquainted

as profits at a H2p ¼ 2 V/kg.

From Fig. 6, we can note that longer Hp have permitted the

solver to find better optimal solutions, for all weighting con-

figurations, since lower JPRS and higher profits are acquired as

a result of increasing Hp. As explained, lower JPRS mean higher

profits at the end of themonth. There exists an approximately
57% profit increase (800V) between a one-day or seven-day

long Hp.

From a performance standpoint, a seven-day-longHp brings

the best results. For this reason, this value has been chosen to

analyse howweighting would affect performance andwhich of

the tested configuration would lead to the best overall perfor-

mance. That analysis is shown in Fig. 7, where the colourmap is

related to the JPRS value and red stars mark the discrete result

value for a specific weighting configuration (QP, QR, QS). Line-

arization between the discrete values has been done to mesh

the result. The best weighting configuration corresponds to

80,10,10[%] and it ismarkedwith a bigger red starmark in Fig. 7.

The best configuration being at a weighting configuration

of 80,10,10[%] can be somewhat expected since, from all

simulations data, JP has shown to be the most variant indi-

vidual objective, as well as almost never being zero. This can

be also noted since the JP axis of Fig. 7 is orders of magnitude

higher than the JR or JS axis. For this reason, it seems logic that

the most significant addend in JPRS is the higher weighted

objective since minimization of JPRS is the MPC purpose. This

realization is an indication that scaling has helped to correctly

add meaning to the weighting configuration and their effect.

Finally, Figs. 8e11 show the 31-days long simulation results

of the 80,10,10[%] weight configuration for a Hp set at seven

days.

Fig. 8 shows x1, x2, x3 and x4 evolution. It can be noted how

x4 seems to present a pattern in which it is filled just before an

LDFV arrival, an event that rapidly brings down the state's
value, as expected. It is also interesting to note that these four

tanks have been completely emptied or filled during short

periods of time. In addition, x2 paced evolution contrasts with

the highly variant behaviour of x1. A common trend between

x2, x3 and x4 can be appreciated. They are all at their lowest

values from the 200he500h period, approximately. This could

be due to high energy prices, as can be seen in the ep time

series of Fig. 11.

Fig. 9 compares results obtained with different hydrogen

prices. It brings us to the conclusion that hydrogen selling

through MEGC has not been profitable for almost all the

month-long simulation with H2p at 2V/kg. xMEGC has been

stable from the first hours until the time 720h, where the

strategy has changed drastically. This is easily relatable to the

ep increase during that final time period, as shown in shown in

Fig. 11. With H2p at 10V/kg we see a completely different

behaviour fromwhichwe can conclude that MEGC service has

been profitable all month long almost independently of ep.

The Economic Balance shown in Fig. 9 is the result of

Equation (9) integration. The data-tips show the final Eco-

nomic Balance value, which being positive means economical

losses and negative means profit. It is important to remember

that Equation (9), hence the Economical Balance does not take

to account HDFV and LDFV services. These two profit inputs

are considered in Fig. 6 for the H2p at 2V/kg case, where total

positive profits are achieved. As expected the economical

result is drastically dependent on H2p . In the case of H2p set at

10V/kg, we see that profits are achieved even accounting only

MEGC service.

In addition, sudden positive increments in the Economic

Balance of Fig. 9 with H2p at 2V/kg can be related to high HRS

power consumption periods, as PGRD shows in Fig. 11.
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In Fig. 9 a daily full charge and discharge of the battery can

be seen. Data-tips along SOCBT evolution show how the

optimal solution is to have the battery charging at night and

discharging during daylight. This battery behaviour is ex-

pected since ep is lower at night. Nevertheless, it is surprising

to see how this behaviour is almost invariant even with a

different H2p value. This observation in conjunction with the

results shown in Fig. 4 brings us to the conclusion that the

battery capacity is undersized.

Fig. 10 results, with H2p at 2V/kg, mean that grid-connected

hydrogen production has been generally not convenient since

F_GRD is 0 for long time periods. On the contrary, the result for

H2p at 10V/kg is expected since the xMEGC mass difference dis-

cussed in Fig. 9 must be certainly hydrogen mass produced

using energy from the grid. This is certainly owing to irradiation

hydrogen production being the same and not controlled for

both H2p cases. The high F_GRD rate with H2p at 10V/kg means

that the HRS can be practicallymodelled as an electrolyzer that

is always producing hydrogen with grid energy since opera-

tional expenses do not compromise profitability at any point.

In Fig. 11 the considered Gb and ep profiles are presented in

conjunction with PGRD, from Equation (5) for H2p at 2V/kg. From

these results, we can confirm that the MPC has charged the

battery during the night and discharged it during daylight,

behaviour that can be now correlated to off-peak and peak time

bands in ep. In a similar manner, the optimal total grid con-

sumption, PGRD, is greatly lower during peak ep values. PGRD
having negative values means that energy injection/selling to

theutility gridhasbeenconsidered theoptimal strategy insome

cases. It is also important to note that there are complete days

with close tonodirect beamdirect beamirradiance,Gb, so green

hydrogenproduction isnotpossible.This canbeconfirmedwith

F_GRD being set at high rates during those time periods.

Fig. 11 results show amore comprehensive behaviour than

the evolution of the states, in which it can be seen how the

MPC has intelligently optimized consumption in terms of the

predicted data.
Fig. 12 e Levelized final profit of the month of simulation in

terms of the control strategy, H2p , and, in the case of MPC,

Hp and weight configuration as x-axis, in QP,QR,QS [%]

format.
Finally, it is important to note that for a H2p at 10V/kg,

the Hp, in the one to seven-day range, has not shown clear

trends, as Fig. 6 presents. This can be explained since the

HRS optimal behaviour for this setting is to service mass to

MEGC as fast as possible if it is feasible, as discussed in

Fig. 10. Hence, prediction data longer than one day has

shown no alteration in the final JPRS nor the Economic Bal-

ance. The insignificant differences can be due to the

rounding error of the solver.

In the case of the rule-based control method, results forH2p

at 2V/kg show a final economic result of 4034V in losses and

for H2p at 10 V/kg, 14,872V in profits are achieved. All the

configurations of the MPC tested show a significant advantage

in economic performance in front of the rule-based control.

This advantage is clearly shown for every weighting configu-

ration and prediction horizon in Fig. 12. All the results

mentioned in this paragraph are the result of the same leve-

lization applied in Fig. 6.
Conclusions

This work has introduced a general HRS layout, its modelling,

MPC formulation, and performance analysis. Therefore, this

study creates a framework from which each of the four

mentioned topics can be exploited in future work. Further-

more, a case study is specified and analysed in detail to show

the capabilities of the presented model and associated MPC.

The HRS layout and model presented in this work offers

high flexibility in its operation since it presentsmultiple buffer

states, active elements, parameters, and disturbances that

directly affect performance based on a real plant that is set to

be built in Zaragoza, Spain.

The MPC presented in this work has correctly serviced all

vehicles’ demand and has feasibly controlled all 210 simula-

tions of one-month length, showing the potential that a pre-

dictive optimal control can provide to the future of HRS

systems. The weighting of the presented multi-objective

function has been studied, as well as the prediction horizon

length and the hydrogen selling price effects.

The results analysis provided in this work has shown some

dependencies and tendencies such as a significant difference

between a prediction horizon of one day or seven days, the

former showing an average 57% increase in profits for all

weighting configurations. MPC has been able to achieve eco-

nomic profits with a low hydrogen price compared to the

losses of the rule-based control method.

Important conclusions have been argued such as the bat-

tery capacity needs to be higher to significantly affect pre-

dictive control strategies performance. Additionally, how

predictive control comes to be really resolutive with a low

hydrogen selling price.

The main contribution of this work is that it presents a

flexible framework for HRS systems design and optimal online

control. As future work, the presented linear model should

evolve into a hybrid model, where unit-commitment models

can be introduced and some assumptions can be removed.

Moreover, the layout flexibility and component sizing could be

tested with optimization-based solutions, taking a techno-

economic analysis approach.
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The MPC could be improved if uncertainty in states or

disturbances prediction is considered since uncertainty will

most certainly exist in a real-life application and can heavily

affect either feasibility or performance. Hence, Stochastic

MPC would be the next step. In addition, a time-band variable

scaling of JP could better address QP significance since all dis-

turbances involved in JP can be short-term predicted with

respectable accuracy. Additionally, weighting configuration

could be variable. Finally, based on degradation effects or

other reasons, softening weights could be a result of a

grounded scaling of each individual softening desired levels or

even some constraints in control inputs variation could be

introduced based on actuator data.
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