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Abstract

Environmental variability and site productivity relationships, estimated by means of soil-site equations, are considered
a milestone in decision making of forest management. The adequacy of silvicultural systems is related to tree response
to environmental conditions. The objectives of this paper are to study climatic and edaphic variability in Mediterranean
Maritime pine (Pinus pinaster) forests in Spain, and the practical use of such variability in determining forest
productivity by means of site index estimation. Principal component analysis was used to describe environmental
conditions and patterns. Site index predictive models were fitted using partial least squares and parsimoniously by
ordinary least square. Climatic variables along with parent material defined an ecological regionalization from warm
and humid to cold and dry sites. Results showed that temperature and precipitation in autumn and winter, along with
longitudinal gradient define extreme site qualities. The best qualities are located in warm and humid sites whereas the
poorest ones are found in cold and dry regions. Site index values are poorly explained by soil properties. However,
clay content in the first mineral horizon improved the soil-site model considerably. Climate is the main driver of
productivity of Mediterranean Maritime pine in a broad scale. Site index differences within a homogenous climatic
region are associated to soil properties.
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Resumen

Variabilidad ambiental de las masas de pino negral y su relacion con el indice de sitio

La relacion entre variabilidad ambiental y la productividad de estacidn, estimada mediante el indice de sitio, es
clave en la toma de decisiones en la gestion forestal sostenible, ya que su conocimiento permite adecuar la practi-
ca selvicola a la respuesta de la masa a dicha variabilidad ambiental. Los objetivos de este trabajo son estudiar la
variabilidad climdtica y edafica de Pinus pinaster en su distribucién mediterranea en Espafia y el uso practico de
dicha variabilidad en la determinacidn de la productividad de la estaciéon mediante la estimacion del indice de si-
tio. Para la descripcion de la variabilidad ambiental se realizé un analisis de componentes principales y para la pre-
diccién del indice de sitio se optd por una regresion por minimos cuadrados parciales, y de forma mas parsimo-
niosa, mediante minimos cuadrados ordinarios. Las variables climaticas, junto al material parental definieron
regiones que comprendian estaciones que van de calidas y humedas hasta frias y secas. Los resultados mostraron
como la temperatura media anual, la precipitacion en otofio e invierno, junto con un gradiente longitudinal define
calidades de estacion extremas. Las mejores calidades se encuentran en estaciones calidas y himedas mientras que
las peores estan en estaciones frias y secas. Las variables edaficas explican poca variacion del indice de sitio, aun-
que la inclusidn del contenido en arcilla mejora notablemente el modelo. El clima es el precursor de la calidad de
estacion mientras que diferencias en el indice de sitio en zonas climaticamente homogéneas se asocian a variables
edaficas.

Palabras clave: indice de sitio; material parental; Pinus pinaster, region mediterranea.
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Introduction

Mediterranean environmental conditions, such as
water stress, limit forest growth. However, there is a
high environmental variability in the Mediterranean
region and mesic forest ecosystems such as those found
in Central Europe can also exist (Scarascia-Mugnozza
et al.,2000). The great variability in climate, soil and
physiographic conditions leads to a great variability
of tree species, growth response and productivity, as
it is the case of Maritime pine (Pinus pinaster Ait.). In
this species the environmental variability has derived
into two groups in the Iberian Peninsula with great
differences in growth performance; the Atlantic Mari-
time pine (AMP), which is more productive and found
mainly in areas with an Atlantic climate, and the Medi-
terranean Maritime pine (MMP), which grows under
pure and mesic Mediterranean climate conditions with
an irregular precipitation regime and diverse soil origin
which, along with stand isolation, has lead to geogra-
phic differentiation of tree attributes such as tree height,
stem straightness or productivity (Alia et al., 1997,
Rio et al., 2004; Bravo-Oviedo et al., 2007).

Stand forest dynamics is related to site properties
and the application of silvicultural systems must be
based on the knowledge of current environmental
conditions. These properties are often considered to
be the foundations of silviculture (Toumey and
Korstain, 1947). Autoecology, or the study of environ-
mental factors and their effects on plants (SAF, 2008),
has a long tradition in forestry studies in Spain. The
first study on applied autoecology in Spain was
conducted for Pinus pinaster within an important
research program started in the early sixties. These
studies first aimed to establish the autoecology of
species of genus Pinus, as they were systematically
used in restoration programs. Regarding Medi-
terranean Pinus pinaster (MMP) this study was carried
out according to six natural regions (Nicolas and
Gandullo, 1967) and the authors finally presented 5
ecotypes according to physical-soil properties. Re-
cently, several works have increased the knowledge on
tree-environment relation on forestry application for
other species (Diaz-Maroto ef al., 2007; Sanchez-
Palomares et al., 2007, 2008; Alonso et al., 2010).

Sustainable Forest Management must consider the
environmental variability as an important factor in
forest stand dynamics. The study of cause-effect rela-
tionships is essential in furthering scientific knowledge
and understanding of biological processes. However,

standard management requires simple tools to aid deci-
sion-making. One example of these are models which
include indirect measures, like those used for evalua-
ting forest quality and yield through site index (Curt
etal.,2001).

Forest site quality studies have the aim of describing,
classifying and predicting the potential of a site to
sustain biomass productivity. Forest site evaluation in
even-aged forests is usually expressed as a function of
intrinsic stand properties, such as tree height and age
(Hégglund, 1981), i.e. site index. Forest site index, des-
cribed as the dominant height attained at a reference
age, is an indirect and partial measure of site quality.
It is devoted to the tree bole production of aboveground
biomass and it is related to mean annual volume incre-
ment, which is a basic unit of forest management. Con-
sequently, a careful selection of appropriate dominant
trees must be made. In some cases such trees are rare
or even absent, e.g. marginal agricultural lands subjected
to forestation, high graded or very sparse stands, etc.
Where this situation exists, forest productivity can be
assessed in one of two ways (Curt et al., 2001): the first
is known as the synoptic approach and correlates site
index to site attribute classes, such as regional classifi-
cation according to a composite of ecological features
(Wang and Klinka, 1996; Curt ef al., 2001; Romanya
and Vallejo, 2004). The second method is analytical
and consists of measuring site variables and relating
site index to them (Chen et al., 2002; Klinka and Chen,
2003). The latter method is known as a soil-site study
and has been widely used in forest productivity studies
(Carmean, 1975; Monserud et al., 1990; Hollingsworth
et al., 1996; Dunbar et al., 2002; Fontes et al., 2003;
Nigh, 2006).

In the course of a study on dominant height growth
for MMP (Bravo-Oviedo ef al., 2007), some regional
and local differences in growth performance were
detected using base-age invariant (BAI) equations,
along with ecological regions defined by Costa et al.
(2005). BAI is considered to be superior to base age
specific equations, like previous existing curves for
the species (Pita, 1968), in terms of site index model
applicability and statistical validity (Krumland and
Eng, 2004). The use of BAI species-specific equations
may indicate relationships among site conditions, i.e.
climate and soil, and forest growth. Thus, a revision
of soil-site relationships is needed for the species in
order to estimate forest productivity.

The main objective of this paper is to analyze the
statistical variability in climate, soil and physiography
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and its relationship to site index in the distribution area
of Mediterranean maritime pine in Spain. The specific
objectives were to a) analyze the environmental varia-
bility and define homogeneous environmental regions,
b) analyze the relationship between environmental
variability and productivity values, estimated by means
of site index, c) to develop a model for site index pre-
diction from environmental variables. We hypothesized
that climatic and edaphic variability explains differen-
ces in site productivity.

Material and methods
Stand selection and Site Index

This study deals with most of the distribution of
Mediterranean Maritime pine in Spain, which accounts
for around 724,000 ha in Spain (DGCN, 1998). Within
the institutional framework of the Sustainable Forest
Management Research Institute (SFMRI; www.
research4forestry.org), 191 plots were selected in the
study area (Fig. 1). Ninety three of them belong to the
CIFOR-INIA network of experimental plots installed
in 1964 to study the growth and yield of Pinus pinaster,
in which measurements have been taken periodically
until 2004. In addition, 20 complementary plots were
established in 2004 for stem analysis in order to com-

plete the data from the first source. Finally, 78 plots
belonging to the network installed by the University
of Valladolid to study Pinus pinaster growth dynamics
in the Iberian Mountain Range were incorporated into
our database. In each plot, dominant height was calcu-
lated according to the mean value of the 100 thickest
stems per hectare and the age was determined from
cores of a sample (4 to 15) of dominant trees. Site index
values were calculated according to the dominant
height model developed by Bravo-Oviedo et al. (2007)
using dominant height at the age of 70 years. We used
a general model which is common to all regions, be-
cause we intend to find environmental variables that
drive forest productive irrespective to regions. Ave-
rage site index is 14.8 m (standard deviation 4.3 m),
maximum site index is 26.1 m and the minimum is
4.7 m.

Environmental attributes
Climatic and physiographic data

Climatic data for every plot were retrieved from the
GENPT and COMPLET programs (Fernandez-Cancio
and Manrique, 2001; Manrique and Fernandez-Cancio,
2005). Monthly climatic values for each plot were cal-
culated according to regression models or mean values

Figure 1. Plot location in Pinus pinaster Ait. stands in Spain.
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from the ancillary nearest climatic stations. The program
requirements are: longitude, latitude and altitude. The
reference period 1961-1990 was used to calculate ave-
rage climatic conditions for each plot. Physiographic
data were obtained from a digital terrain model with a
pixel size of 25 x 25 m. Climate-related variables such
as drought length, intensity of drought, evapotranspi-
ration, physiological drought, surplus, deficit, annual
hydric index and surface drainage were also calculated
(Table 1).

Soil data

Soil data were obtained in a subsample of 65 plots
in the SFMRI database, according to elevation and soil
parental material. A sample of every soil horizon was
extracted for analysis in the laboratory. The soil attri-
butes measured were: water-pH, conductivity, organic
matter (oxidizable organic carbon via Walkley-Black’s
method), total organic matter according to loss-on-
ignition method, carbonates and active calcium (using

Table 1. Description of physiographic, climatic and climate-realted variables

Variables type?* Units Mean Std. Dev. Min. Max.
Physiographic
Longitude (XUTM) m (zone 30) 503,317 126,534 187,386.0  702,502.0
Latitude (YUTM) m (zone 30) 4,479,273 106,935  4,226,960.0 4,631,322.0
Elevation (ELV) m 1,021 224.8 377.0 1437.0
Slope (SLP) % 16.7 12.4 0 63.7
Aspect (ASP) ° 70.9 111.9 0.0 356.8
Insolation' (INS) 1 0.2 0.4 1.3
Climatic
Annual rainfall (P) mm 576 81 420.0 792.0
Spring rainfall (SGP) mm 164.9 18.2 118.6 204.5
Summer rainfall (SMP) mm 79.7 17.7 50.8 121.1
Autumn rainfall (AUP) mm 175.5 36.3 121.0 297.5
Winter rainfall (WP) mm 156.5 47.6 82.7 307.1
Mean annual Temperature (T) °C 114 1.6 8.9 15.9
Lowest Monthly mean temperature (TMF) °C 33 1.4 0.6 7.2
Highest Monthly mean temperature (TMC) °C 21.4 1.8 18.0 26.1
Mean value of minima temperature in the coldest month (TMMF) °C -1.3 1.5 —4.6 22
Mean value of maxima temperature in the warmest month (TMMC) °C 29.7 1.8 26.5 354
Climate-related
Drought lenght? (DSQ) Months 2.6 0.7 1.6 4.5
Intensity of drought? (ISQ) 0.1 0.1 0.0 0.3
Annual Evapotanspiration (ET) mm 678.6 53.5 597.9 851.3
Winter ET mm 30.7 6.9 17.2 46.8
Spring ET mm 137.3 11.3 112.4 169.4
Summer ET mm 358.4 26.7 3153 449.7
Autumn ET mm 153.2 12.8 1353 187.2
Potential Evapotranspiration (PET) mm 4447 333 358.7 538.0
Annual physiological drought* (APD) mm 234.0 72.1 78.3 426.3
Surplus® (SUP) mm 224.9 81.7 70.6 413.0
Deficit® (DEF) mm 326.9 62 225.7 500.6
Annual Hydric Index” (AHI) 43 11.2 -17.6 34.7
Drainage® (D) mm 131.9 93.1 0.0 380.1

 In parenthesis acronym used in the analysis. ! According to Gandullo (1974). 2 Number of months where precipitation curve is
under temperature curve in the Walter-Lieth climodiagram. * Quotient between dry area (temperature curve is above precipitation
curve) and humid area (temperature curve is under precipitation curve) in the Walter-Lieth climodiagram. # Sum of monthly va-
lues where evapotranspiration is higher than potential evapotranspiration. 3> Sum of monthly values where precipitation is higher
than evapotranspiration. ® Sum of monthly values where precipitation is lower than evapotranspiration. 7 AHI=(100xS-60xD)/ET.
8 Estimated soil drainage according to Thornthwaite (1957) and Gandullo (1985).
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Bernard’s calcimeter), phosphorus (according to Olsen’s
Method), exchangeable calcium, magnesium, potasium
and sodium (according to the ammonium acetate me-
thod), Cation-Exchange Capacity (determined according
to Bascomb’s procedure), and nitrogen (according to
Kjeldahl’s method). Physical properties and variables
for nutrient availability were averaged for the whole
pit. The topmost organic horizon Ay, was discarded in
the sampling because of little differentiation of needles
that would not have any influence in past growth of the
stand, the rest of A horizons (A, A; and A,), if pre-
sented, were bulked together to form the first horizon
sample. Nutrient variables, bulk density calculated
according to the method proposed by Honeysett and
Ratkowsky (1989) and the depth and percentage of
roots were also recorded. Table 2 presents a description
of soil attributes.

Statistical analysis

Multivariate analysis was performed in three ways:
descriptive, explanatory and predictive. The first one
was used to describe the environmental variability and
to identify the most influential variables and homo-
geneous regions; the explanatory analysis was carried
out to identify and select the environmental variables
that better explain the site index variation. Finally, the
predictive approach was done to develop a site index
model depending on environmental variables.

Descriptive multivariate techniques identify the
tendencies and latent variables influencing the relation-
ship of the explanatory variables under analysis and
they serve to identify observations that share the same
region in a multivariate space. Factor analysis, according
to the principal component extraction method (PCA),
was used to identify likely environmental gradients.
The analysis was performed firstly using climatic and
physiographic variables (191 plots) and secondly adding
soil data (65 plots). Those variables which were found
to have a measure of sampling adequacy (Kaiser’s
MSA) below 0.5 were rejected (Hair et al., 1999) and the
analysis repeated until variables had an adequate Kaiser’s
MSA (above 0.7). Principal components analysis will
serve as a tool to delineate environmental classes or
groups in order to define homogenous climatic regions
that will be coded and treated as synoptic variables.
Synoptic variables were introduced into a one-way ana-
lysis of variance to test differences in site index through
climatic classes. Normality and independence of resi-

duals within each group were also tested. Tukey-
Kramer’s test for unequal sample size was applied to
compare group means (SAS, 2004).

As a second method, we used partial least squares
regression, PLS (Abdi, 2003) to find a model capable
of explaining site index from a large set of potential
variables. The PLS regression is a powerful analysis
tool and one of the least restrictive options in multiva-
riate analysis. This technique is appropriate when the
number of predictors is equal or higher than the num-
ber of observations or when there exists high correla-
tion among predictors (Carrascal ef al., 2009), which
is the most common case in ecological based studies.
It can be used as an exploratory analysis tool to select
suitable predictor variables and to identify outliers be-
fore applying classical linear regression. It can be also
used as a predictive analysis when predictors are many
and collinear (Tobias, 1995). We applied the former
case to analyse the relationship between site index and
the matrix of environmental variables that loaded most
heavily in the factor analysis for the sub-sampling
containing soil and climate information.

Multiple regression analysis was used to obtain par-
simonious predictive models. This technique applies
on large databases and it is usually performed with
stepwise regression as selection method. Stepwise se-
lection method often depends on the pool of variables
that are included in the first stage, to the extent that by
dropping one variable in the first stage the result could
be different. Besides, the use of a sequential variable
selection method may not be biologically sound (Fontes
et al., 2003a) and there might exist a big uncertainty
that the truly best model is not produced (Myers, 1990).
Consequently, a direct selection of candidate variables
was performed on the basis of the results found in the
PLS analysis.

Visual inspection of Q-Q plots and formal statisti-
cal tests were performed for normality assumption.
Multicollinearity was assessed using the condition
number index (Myers, 1990). Homogeneity of va-
riance was evaluated according to visual inspection of
ordinary and studentized residuals over predicted
values.

Model validation requires an independent data set
that it is not used in the fitting phase. This requirement
is often omitted as data gathering is expensive. In addi-
tion, splitting the sample may lead to differences in the
results depending on the method chosen to split the
sample. We select the one leave-one out approximation
where one observation is deleted at a time and the model
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Table 2. Average soil attributes description

Variables type Units Mean Std. Dev. Min. Max.
Physical properties for the whole pit
Fine fraction (%F) % 60.3 26.7 16.9 100
Coarse fraction (%C) % 39.7 26.7 0 83.1
Sand % 65 21.2 20.5 93.3
Clay % 11.5 10.8 2 49.7
Silt % 23.5 14.2 1.6 61.9
CCC 0.2 0.4 0 2.5
CIL 0.1 0.1 0 0.5
Permeability 4 1.3 1 5
Chemical properties for the whole pit
Water Holding Capacity (WHC) mm 104.3 74.7 12.8 367.8
Equivalent humidity (EH) mm 16.7 7.6 7 35.4
pH 6.6 0.9 5.1 8.7
Organic matter (OM) % 1.3 1.3 0.1 8.5
Total organic matter (TOM) % 1.8 1.7 0.2 11.3
Calcium (Ca*™) ppm 1,071.7 1,231.3 100.1 5,496
Sodium (Na*) ppm 22.5 16.3 2.4 64.2
Potasium (K) ppm 84.7 99.1 15.9 498.9
Phosporus (P) ppm 0.8 2.7 0 14.6
Magnesium (Mg*") ppm 253.3 561.7 14.1 3,201.4
Nitrogen (N) % 0.1 0 0 0.3
Carbonates (CB) % 4.1 8.8 0 38.5
Active carbonates (ACB) % 0.4 1.1 0 6.3
Conductivity (CVY) mmhos cm™! 0.1 0.1 0 0.4
Cationic Exchange Capacity (CEC) meq 10 g 10.8 5.8 3.9 32
Base sum (S) meq 100 g™! 7.8 9.8 1 43.6
Saturation Rate (TSAT) % 57.6 38.8 6.9 186.3
Chemical and physical properties for the first horizon
Water Holding Capacity (WHC1h) mm 97.2 66.9 11.4 383
Organic matter (OM1h) % oxidable 1.9 2 0.1 10.5
Calcium (Calh) meq 100 g™! 5.6 7.1 0.5 27.6
Sodium (Nalh) meq 100 g! 0.1 0.1 0 0.6
Potassium (K1h) meq 100 g! 0.3 0.4 0 2
Magnesium (Mglh) meq 100 g! 2.3 5.1 0.1 26.4
Nitrogen (N1h) % 0.1 0.1 0 0.4
Carbonates (CB1h) meq 100 g™! 3.7 9.2 0 46.4
Cationic Exchange Capacity (CEC1h) meq 100 g! 11.6 6.8 4.1 30.6
Saturation Rate (TSAT1h) % 56.9 42.3 6.8 198.4
Carbon-Nitrogen rate (CN1h) % 30.6 16 33 73.5
Bulk density (BD1h) gcm 1.4 0.4 0.6 2.3
Depth (D1h) cm 25.2 10.7 10 70
Roots (R1h) % 84.7 15.8 10 100

In parenthesis, the abbreviation used in the text. CCC: compactness capacity coefficient. CIL: silt impermeability coefficient.

is fitting to the remaining n-/ data (Vanclay, 1994).
Finally, model performance was evaluated according
to biological sense and statistical properties (Soares et
al., 1995). The statistical validity of the model was eva-
luated computing bias and precision values (Huang et
al., 2003). The selected prediction statistics for bias

was the mean residual without current observation [é_;,
eq. 1] and its percentage error [éy, €q. 2]. The mean
squared error of prediction without current observation
[RMSEP, eq. 3] ant the relative error in prediction
[RE,, eq. 4] was computed to evaluate the precision
of the multiple linear model.
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where y;, is the i site index observation, y,_, prediction
without current i observation, k is the number of
observations and p is the number of parameters.

RMSE =

Results
Descriptive analysis
Principal components analysis

The variance explained by the two first climatic fac-
tors in PCA is 82% (Table 3). Climatic factor analysis

Table 3. PCA’s factor loadings for climate attributes

Variable Factor 1 Factor 2 Factor 3 Factor 4
YUTM -0.28 -0.20 0.87 0.27
ELV -0.87 -0.03 -0.40 —0.11
DSQ 0.86 0.19 0.07 -0.20
P 0.13 0.98 —0.13 —0.01
T 0.95 0.17 -0.22 —0.11
TMF 0.94 0.21 -0.19 -0.10
T™C 0.85 0.18 -0.41 -0.20
TMMF 0.90 0.23 -0.18 -0.12
TMMC 0.87 0.15 -0.29 -0.16
WP 0.47 0.85 -0.02 -0.08
AUP 0.35 0.87 -0.12 -0.09
Winter ET 0.91 0.21 -0.05 -0.07
Spring ET 0.97 0.04 0.09 -0.01
Summer ET 0.86 0.19 —0.38 —0.15
Autumn ET 0.89 0.30 -0.24 —0.08
ET 0.95 0.18 -0.20 -0.10
PET -0.19 -0.10 0.21 0.95
APD 0.79 0.18 -0.25 -0.51
SUP 0.22 0.96 -0.09 -0.10
AHI -0.29 0.95 -0.01 0.00
ISQ 0.84 -0.15 0.02 -0.26
Eigenvalue 11.72 4.78 1.69 1.52
% Variance 0.58 0.24 0.08 0.08

Cumulative %
variance explained  0.58 0.82 0.90 0.98

Bold indicate loadings greater than 0.7.

showed that the temperature regime, drought length,
elevation and evapotranspiration accounted for the
maximum amount of variance in the first factor (58%).
The second factor can be labelled as precipitation regime,
as long as annual precipitation, seasonal rainfall in
autumn and winter, water surplus and annual hydric
index loaded most in this factor.

The inclusion of site index in the analysis as supple-
mentary variable did not show any discernable pattern
in the PCA. However, the incorporation of rock type
and elevation in the climatic PCA, showed a pattern of
aggregation. Figure 2 depicts regions with common
rock type origin when axis 1 and 2 of climatic PCA are
displayed, while Table 4 shows the main physiographic,
climatic variables and parental material type, as well
as site index values of each group. Those groups were
incorporated into a one-way analysis of variance to de-
tect statistical differences in mean site index. Groups
were only entered into the analysis if at least 5 observa-
tions were available.

The first region (A in Fig. 2) holds acidic conglome-
rate rock under humid and cold conditions. The plots
belonging to this region are included in Soria-Burgos
Mountains and are located in the northern part of the
study area.

Dolomite origin stands are located in two latitude
bands and differ in temperature values. The warmest
band (mean annual temperature of 13.1°C, Table 4) is
located in Segura-Alcaraz area (Factorial region B).
The second group is formed by three sampled stands
located in the colder Iberian Mountains. This last group
is underrepresented in our study and it was not used in
the following analysis.

The acidic warm sites, which include slate and schist
origin, are located next to each other in the western
part of the study area (D and E group, respectively).
Granite origin is separated into two open subgroups
according to temperature and elevation. The stands
below 900 m of altitude (group C) grow within the Tiétar
river basin (the same area where stands on schist origin
grow, group E) with mean annual temperature above
12°C and annual rainfall above 640 mm. The stands
growing on granite over 900 m of altitude (group F)
are located within the Tagus river basin and the mean
temperature is under 12°C.

Soils developed on gravels (G group) and sand drifts
origin (H group) are located in the same Castilian
Plateau. However, gravels are found in the eastern part
of the region, whereas sand drifts are spread within the
whole region following an elevation gradient.



Stands located on Buntsandstein’s sandstone and
quartizite bedrock are embedded in a broad factorial
domain (Group I). Finally, the stands located in creta-
ceous’ sandstone (J region) in the eastern part of the
study area are characterized by cold temperature and
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Climatic PCA and parental material
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W Bunt’s sandstone and quartzites  + Createceous sandstone

Figure 2. Principal component analysis and groups defined using parental material information.

low precipitation.

When climatic and edaphic variables are analysed
together in the PCA, 91% of variance is explained by
four axes (Table 5). The first factor is related to the
temperature regime and elevation, the second to soil
reaction, the third to nutrient status and the fourth to
soil texture type, whereas precipitation is relegated to

Table 4. Main climatic and physiographic features and site index values found in the regions defined in PCA

. . . Annual Annual o
Factorial Parenteral Longitude Latitude (N) Elevation temperature precipitation Site index
domain material
Mean Min/Max Mean Min/Max Mean Min/Max Mean Min/Max Mean Min/Max Mean Min/Max
A Conglomerate 11 0577 00570058 41°49.0"  41°49741°50 1204 1,181/1,026 9.0 8.99.2 704 090714 159 139185
B Dolomite 25 SP3LY - AT0 4T 380243 381138038 1,099 844/1,286 131 9.9/142 051 603/739 148 731198
C Granite <900 m 1T 49137 02074240 400 144" 40°10741°32" 735 605/895 132 11.9/15.9 610 439/699 19.4 34/236
D Slate §  -6°230 6"8’/ 6°40" 40°16.6' 40°12V40°24" 483 3771607 150 1461154 756 088.9/792 19.8 16.6121.
E Schists §  -5°68 505508 40011 d0C1rdecrr 652 4651927 138 123151 048 594/692 29 197/261
F Granite > 900 m 14 —4.l°159‘ (]/ 025 40°32.9" 40°1740°39" 1,138 914/1,339 112 104/12.9 594 500/690 15 12119.1
G Gravel 12 20416 2°33/2°56‘ 41°328" 41°20'41°36" 1,010 949/1,100 10 9.8/10.6 585 556/607 15.6 11.5/19.7
H Miocene’s sand drifts 38 -2.9°394" 4°19-2°59" 41°264" 41°10741°36" 873 097/1,024 111 10.1/12.1 501 420/589 16.4 820024
[ Bunt’s sandstone
and quartzite 58 -13°19.7 -2°0U-1°59" 39.6°41.9" 39°00741°59" 1,193 045/1,437 104 9/12.2 545 501/606 115 4719.1
] (reateceous
sandstone 8 0°423" 0°3700°46"  40°12.8'  40°10740° 16" 1,066 976/1,127 114 10912 489 4711496 9.1 6.5/10.6
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Table 5. PCA’s factor loadings for climate and soil attributes

Variable Factor1  Factor 2 Factor3  Factor4  Factor 5
Elevation -0.74 0.26 0.33 0.10 0.16
Annual rainfall 0.19 0.24 0.36 0.15 0.85
Summer rainfall -0.72 -0.31 0.13 —-0.09 -0.32
Autumn rainfall 0.47 0.24 0.28 0.14 0.77
Winter rainfall 0.49 0.28 0.19 0.13 0.78
Mean annual temperature 0.96 0.14 0.10 0.10 0.12
Lowest monthly mean temperature 0.94 0.21 0.06 0.07 0.10
Highest monthly mean temperature 0.85 0.17 0.27 0.17 0.17
Mean value of minima temperature in the coldest month 0.86 0.35 0.04 0.04 0.16
Mean value of maxima temperatrue in the warmest month 0.90 0.08 0.16 0.16 0.18
Drought length 0.88 0.23 -0.12 0.07 0.20
Intensiy of drought 0.85 0.18 -0.22 0.03 -0.12
Annual evapotranspiration 0.96 0.10 0.10 0.10 0.14
Spring evapotranspiration 0.95 —-0.02 —-0.15 —-0.01 —-0.01
Summer evapotranspiration 0.86 0.09 0.24 0.15 0.22
Autumn evapotranspiration 0.88 0.22 0.09 0.18 0.22
Winter evapotranspiration 0.85 0.28 -0.02 0.00 0.01
Annual physiological drought 0.78 0.19 0.31 -0.14 0.18
Surplus 0.30 0.29 0.27 0.15 0.85
Fine fraction 0.17 —-0.01 -0.61 -0.23 0.00
Sand -0.11 -0.13 -0.36 —0.85 -0.14
Clay 0.09 0.40 0.02 0.87 0.05
CCC 0.06 0.38 0.09 0.77 0.13
Permeability —-0.07 -0.22 —-0.09 -0.93 —-0.05
Equivalent humidity 0.12 0.24 0.37 0.85 0.13
Organic matter 0.06 0.26 0.91 0.08 0.12
Total organic matter 0.04 0.32 0.90 0.09 0.11
pH 0.25 0.81 —0.04 0.01 0.10
Calcium 0.12 0.79 0.29 0.42 0.04
Potasium 0.21 0.74 0.25 0.34 0.20
Conductivity 0.21 0.80 0.25 0.23 0.20
Carbonates 0.22 0.70 0.01 0.34 0.21
Active carbonates 0.16 0.63 0.01 0.40 0.22
Nitrogen 0.16 0.41 0.76 0.27 0.13
Magnesium 0.21 0.78 0.11 0.04 0.09
Cationic exchange capacity 0.23 0.73 0.35 0.29 0.01
Saturation rate 0.11 0.79 0.24 0.34 0.01
Base sum 1* horizon 0.13 0.83 0.41 0.25 0.15
Saturation rate 1% horizon —-0.02 0.67 0.39 0.36 0.15
Bulk density 1% horizon 0.05 -0.14 —-0.85 —-0.08 -0.25
Organic matter 1% horizon 0.03 0.16 0.91 -0.03 0.13
Calcium 1* horizon 0.04 0.66 0.47 0.36 0.13
Magnesium 1% horizon 0.20 0.78 0.21 0.03 0.11
Cationic exchange capacity 1% horizon 0.25 0.67 0.53 0.14 0.10
Nitrogen 1% horizon 0.13 0.30 0.82 0.04 0.15
Clay horizon B 0.07 0.33 —0.08 0.88 0.01
Eigenvalue 12.45 9.68 7.18 6.01 3.55
% Variance explained 0.32 0.25 0.18 0.15 0.09
Cumulative % variance explained 0.32 0.57 0.75 0.91 1.00

the fifth axis. Again, when plotting factorial axis using
site index as a supplementary variable no clear distinc-
tion is detected in the pattern of dispersion. Dolomite

stands are clearly grouped together according to the
second axis. Little information is gained with this ana-
lysis comparing when only climatic variables are consi-
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Figure 3. One-way analysis of variance of climatic groups according to parental material
information, where black bars indicate warm and humid sites, grey bars are climate inter-
mediate sites and white bars are cold and dry sites. The letter in brackets indicates the same

code used in Figure 2.

dered. Thus, we put aside soil profile information in the
formation of environmental groups to evaluate differen-
ces among mean site index, but taking into account that
this information will be useful for predicting purposes.

One-way analysis of variance

The overall analysis of variance of climatic regions
led to the rejection of the null hypothesis of equal site
index values among regions. Figure 3 shows the multi-
ple mean comparison results of the analysis of variance
using defined groups.

The higher site indices are found in humid and warm
sites (C, D, E, located in the western area) with the ex-
ception of stands growing on dolomites (B), which
show statistically significant lower site indices (Fig. 3).
Another group is formed by a broad set of stands that
follows an altitudinal gradient (dashed line in Fig. 2).
These can be considered of medium productivity on
average. They include several parental materials such
as conglomerate (A), dolomite (B), granite over 900 m
of altitude (F), gravels (G) and sand drifts (H).

Finally, stands with the lowest productivity are lo-
cated at the coldest sites in the Iberian Mountain Range
on Bunt sandstone and quartzite (I) and cretaceous
sandstone (J), in the east of the study area. According
to these results, stands may be ordered from those with
the highest productivity in the western part of the study
area to the lowest productivity in the eastern part.

Explanatory analysis: Partial Least Squares
Regression

One of the aims of PLS is to identify the number of
components that account as much Y variation as X va-
riation. Figure 4 shows the variance explained (y-axis)
against the number of components (x-axis) for the
response variables and for predictors. The point where
both curves crosses indicate the number of components
beyond which there is little information gained by in-
creasing the number of selected components. The site
index variation explained by the model is 56.2% using
41.5% of the original information from the predictors’
matrix. The first component is associated to elevation,
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Figure 4. Variance explained of Y and X’s by PLS components.
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Figure 5. Percentage of variation explained by each variable in two PLS components.

mean annual temperature, drought length and the sum
of rainfall in winter and autumn (Fig. 5). Component 1
only uses 10.5% of information from predictors but it
is able to predict 53.1% of site index variability. The
second component can be associated to annual water
availability (annual rainfall), soil water storage (sand
and fine percentage, water holding capacity), and clay
content. Nutrient status represented by carbon nitrogen
ration and magnesium content in the first horizon have
some influence in site index variation The gain of
explanation of site index variability is very poor (3%)
comparing the large percentage of predictor variability
gained (31%).

Predictive analysis: multiple linear regression

A multiple linear regression was fitted to data in
order to achieve a parsimonious model that helps in
making decisions to classify stands according to site
index classes, in the case of absence of dominant trees.
In the course of the preceding PCA analysis, we have
seen how site index values follow a positive longitu-
dinal gradient from east to west. Longitude is highly
correlated with elevation (correlation coefficient 0.76).
Temperature and seasonal precipitation are another
important factor in site index variation as indicated by
PLS analysis. Soil properties account little for site
index variation but, comparatively, they increased the
predictor variability in the analysis. The variables that
loaded most in the second component are related to
soil water storage or impediment for root depth such
as fine percentage, water holding capacity or clay con-
tent. Consequently, we tested to fit linear models that

include some of the following variables: elevation,
temperature, precipitation, fine percentage, clay con-
tent in the B horizon and carbon nitrogen ratio.

The best fit was achieved using two equations. The
first equation explained 55.2% of site index variation.
Predictors were seasonal precipitation in winter and
autumn, squared elevation and squared temperature.
When soil clay content was included as predictor, tem-
perature was not significant and this lead to its ex-
clusion in a second equation that explained 56.6% of
site index variation (Table 6). This exchange between
clay and temperature as predictors deserved a deeper
insight according to regions defined in PCA analysis.
Results indicated that site index of stands growing in
warm and wet conditions is better predicted using the
linear model that includes clay content whereas predic-
tions in the rest of regions are better achieved by the
temperature-based model. The superiority of the tem-
perature linear model is higher in the intermediate
climate where the site index value is also intermediate
(Table 6).

Discussion

This work confirms the great variability of soil and
climatic conditions in the southwest Europe distribu-
tion area of MMP and the relationship between this en-
vironmental variability and site index. This is an ex-
pected result as our data lay within the auto-ecological
parameters defined by Gandullo and Sanchez-Palomares
(1994). These authors also built a soil-site predictive
model based on observations and discrete site quality
classes according to a base age specific site index mo-
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Table 6. Multivariate linear regression analysis and evaluation by PCA regions

Fitting phase
Model Adj-R? RMSE Bias
SI;=17.6-0.0000079ELV?>+0.0353PR-0.0435T" 0.552 2.88 -0.0016"*
SIciey=12.5-0.0000057ELV?*+0.0285PR-0.0945Clay 0.567 2.83 —-0.0081™*
Evaluation phase
Bias Accuracy
Regions Model
MPRESS %MPRESS RMSEp RMSEp%
Vi SIr 0.87 n.s. 4.55 3.26 17.12
ST iy 0.20 n.s. 1.05 3.10 16.24
V2 SIT 0.03 n.s. 0.20 3.25 19.89
ST iy 0.84 n.s. 5.15 3.18 19.46
V3 SIT —0.37 n.s. —2.48 3.80 25.52
Sy —0.54 n.s. -3.60 3.29 22.13
V4 SIT —0.13 n.s. -1.23 3.33 30.32
Slcrgy —0.33 n.s. -2.97 3.46 31.51

V1: warm and wet cliamte. V'2: intermediate cliamte. V3. dolomite. V'4: cold and dry climate (see

caption on Fig. 3).

del using mean height instead of dominant height.
Unfortunately, the stand variables that they used in
their study are not available and we cannot calculate
the site index value according to Bravo-Oviedo et al.
(2007) base age invariant model in order to contrast
both results.

Climatic PCA defines homogenous regions in terms
of temperature and precipitation. Within each of these
climatic regions there exists variability in site index
values leading to a not so clear relationship between
site index value and climatic regions. However, there
is a patent longitudinal gradient from the poorest site
indices, which are located in the east on cold and dry
sites, to the best site indices on warm and wetter clima-
te in the west. The intermediate stands are located in
the central part of Spain and northwards, mean site
index is around 15-16 m and although there are also
cold sites, like those located on conglomerate rock
type, the precipitation is higher than in the eastern
stands. Other exception to the longitudinal gradient is
the dolomite stands. They have a warm and humid cli-
mate like the group with the best site index values;
however they have a lower site index than expected
according to climate.

Precipitation and temperature seem to be the most
important environmental factors explaining extreme
site index qualities. However, the variability in some

of'them indicates that site index variability is therefore
partly due to other environmental characteristics. Dolo-
mite rock increases magnesium content that can block
the adsorption of other cations leading to nutrient defi-
ciencies. In addition, precipitation is relegated to the
fifth axis when climatic and edaphic variables are ana-
lyzed jointly in PCA, explaining only 4% of variation
(results not shown). The second component is then de-
voted to chemical properties, such as pH, that differen-
tiates dolomite stands.

The components of principal component analysis
do not show any discernable relationship with site index
values. This is due to the fact that PCA searches for
latent variables or factors which explain the variability
of independent variables (X) and, as a result, the use
of these factors in an ordinary regression analysis (i.e.
Y =f(F,F,...), where F; is a linear combination of X
variables) often leads to poor results. As a generaliza-
tion of PCA, the partial least square regression is
capable of finding factors to explain X variables that
are also important for Y variables (Abdi, 2003). As a
drawback, the PLS model still needs many independent
variables.

Studies undertaken in temperate and boreal areas
indicate that high temperature is related to high site
index values (Fries et al., 2000). However, in warmer
areas, such as the Mediterranean basin, this effect is
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positive if precipitation is also high. If this is not the
case, the temperature would increase water deficit and
site index values may be lower than expected. Seynave
et al. (2005) described a parabolic relationship between
site index and elevation. This relationship is positive
up to a maximum elevation after which it decreases.
Our predictive model shows the decreasing part of this
relationship whereas the positive, increasing part is
reflected by other variables such as precipitation, since
a positive relationship exists between elevation and
rainfall. However, the stands located at low elevation
sites are the most productive in the entire study area.
This may be explained by the orientation of the moun-
tains. Rain clouds come from the southwest and west
component. They reach the western part of the central
mountain range orthogonally and leave precipitation
in this region firstly (Nicolas and Gandullo, 1967). This
means that precipitation decreases from west to east,
so does site index.

Chen et al. (2002) found that climatic variables and
local soil conditions are good predictors for large geo-
graphic areas, whereas soil and foliar nutrient concen-
trations lead to excellent predictive site index models
in smaller areas (Sanchez-Rodriguez et al., 2002). We
can only corroborate this fact if we divide the study
area in four groups, for example, in the western part
of the study area (V' 1, see Table 6) where the tempera-
ture model showed higher bias than the clay content
model. Contrary, in V3 region temperature plays a
major role in site index estimation even if clay content
is higher in these stands than in the V1 region. In cold and
dry regions (V2 and V4) temperature is a main driver
of site index estimation because of the lack of precipi-
tation which indicates that a rising in temperature lead
to a decreasing trend in productivity being more intense
in sandy soils. This may be explained by a high soil tem-
perature when air temperature is also high in this area.

We are aware that soil-site studies are designed to
evaluate potential productivity in terms of site index
when proper trees are not available. The predictive
models presented here are unbiased and their precision
is high enough to be considered for management pur-
poses until proper trees are available and site index
assessment using base age invariant site index curves
can be performed. If a forest manager needs to use one
of the models proposed here we suggest that the tempe-
rature-based model is the best option. However, when
predicting site index in stands located in the western
part of the species distribution a larger error is expec-
ted. Consequently, the forest manager should consider

if the cost associated to soil profile analysis outper-
forms the cost of committing a larger error when applying
the temperature-based model.

The wide use of multiple linear regressions to estimate
forest productivity, in spite of its lack of accuracy, is
due to its simplicity and utility when no other informa-
tion exists. Conceptually, the linear relationship between
dendrometric values and environmental features might
be untenable because many of the relationships in natu-
re are non-linear because of interactions, compen-
sations or facilitation processes. Some empirical efforts
have been done (Romanya and Vallejo, 2004) to model
nonlinear soil-site relationships, and other promising
approach to overcome the linear limitation is the use
of neural networks (Lek et al., 1996), although the need
of large databases to train the net and the «black-box»
assumption, which lay underneath, makes its use less
general than expected.

The attempts to have multiple linear models to pre-
dict site index values in broad areas are always poor
comparing to another approaches, such those that use
synoptic variables. The reasons for such low predicted
availability according to Monserud et al. (1990) are
the number of factors that can exceed the sample size,
and the failure to measure the true causes of site pro-
ductivity. Another likely cause is the nonlinearity of
soil-site index relationship and the interactions that we
were unable to detect by using a linear approximation.
In a parallel study published earlier (Bravo-Oviedo et
al. 2008) a nonlinear model parameterized according
to the generalized algebraic approach (GADA) showed
how the inclusion of precipitation in winter and autumn,
mean annual temperature, drought length and rock type
(dolomite versus non dolomite) increase the predictive
ability of this type of models. The model was plot-based
and consequently the site index estimation was consi-
dered local. Here, we present a region-based linear
approximation to be used in case of lack of appropriate
dominant trees where Bravo-Oviedo et al. (2008) model
cannot be applied.

Conclusions

Three main broad site index groups according to cli-
matic characteristics may be defined in the distribution
area of Mediterranean maritime pine in Spain accor-
ding to the mean annual temperature, precipitation
during autumn and winter, and elevation. These climatic
attributes, along with soil features such as clay content,
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satisfactorily explained site index for the intended
purpose. Partial least squares regression provides a
useful tool for selecting environmental predictor varia-
bles in soil-site models, avoiding the necessity to apply
any variable selection method in stepwise multiple
linear regressions.
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