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Abstract

This article describes an application of nonparametric regression to study

the spatial structure and identify persistent spatial patterns of the perennial

weed Convolvulus arvensis L. in four years of wheat-sunflower crop rotation

in Southern Spain. The annual spatial distributions of weed patches over the

study field are estimated using local linear regression. These are then used

to delimit areas whose infestation is above an economic threshold. In order

to identify the areas at the highest risk of weed infestation across years, a

multi-year index is developed and mapped. A parametric bootstrap is used

to quantify the variability of the multi-year map. In a precision agriculture

environment, such maps can be a useful component of a long-term weed man-

agement strategy.
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1 Introduction

This article describes an application of local linear regression, a popular nonpara-

metric regression method, to the problem of mapping the spatial distribution of

the perennial agricultural weed Convolvulus arvensis L. in a field over the course

of four growing seasons. Local linear regression has been broadly studied in the

context of univariate regression, and we refer to Wand and Jones (1995) for an

overview. For bivariate local linear regression, Ruppert and Wand (1994) provide

the relevant statistical theory for the case in which the errors are independently

distributed. In the spatial context, this assumption of independence is often not

appropriate, and accounting for possible correlation is required for both inference

and smoothing parameter selection. For a review of issues related to nonparametric

regression with correlated errors, see Hart (1996) and Opsomer et al. (2001). Re-

cently, Francisco-Fernández and Opsomer (2003) discussed spatial smoothing and

proposed a bandwidth selection method that allows for the presence of correlated

errors.

C. arvensis, the plant species of interest in the current article, is a very important

perennial weed that infests wheat (Triticum aestivum L.) and sunflower (Helianthus

annuus L.), the main crop rotation in Andalusia (southern Spain). Reduced and

no-tillage production has increased in Spain in the last 10 years and now accounts

for 2 million ha of annual crops (Anonymous, 1998). An important characteristic of

C. arvensis is that it produces few viable seeds when growing in competition with
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agricultural crops, and reproduces primarily vegetatively by underground rootstock.

The adventitious shoots arising from a network of rootstocks reduce crop yields and

interfere with the harvest. As many fields of wheat–sunflower rotations have been

converted into no-tillage or reduced tillage, perennial weeds like C. arvensis have

become more troublesome since they cannot be reduced in abundance by repeated

tillage or cultivation (Liebman et al. 2001).

It is well known that many weed populations have a patchy distribution (Johnson

et al. 1996), with aggregated weed patches of varying size and density interspersed

with areas with few or no weed seedlings. A weed patch is considered stable if it

is consistent in density and location over time (Wilson and Brain, 1991). Stabil-

ity is important from the perspective of patch management, since knowledge of the

location of patches with high weed density can be used to direct weed control in sub-

sequent years. This is especially true for perennial weeds in reduced tillage systems,

where ploughing and cultivation are no longer considered acceptable management

options and where farmers want to make informed decisions on the precise use of

herbicides (Webster et al. 2000).

Currently, herbicides are most often applied to the entire field even though spray-

ing might be unnecessary in some places. An important goal of site-specific weed

control is to apply herbicide only in areas where weed density exceeds an economic

threshold (ET) (Dammer et al. 1999). Such an approach has the potential for signif-

icantly reducing herbicide use, especially if the location of the weed patches could be

determined before the weed plants are fully established. The average reduction from
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site-specific weed control in cereals ranged from 47% to 80% (Heisel et al. 1996a).

In maize, Tian et al. (1999) realised savings of 42%; and Timmermann et al. (2001)

reported that with a site-specific weed control an average of 54% of the herbicides

could be saved in sugar beet. In sunflower, Jurado-Expósito et al. (2003) achieved

an average reduction in herbicide cost around 61% if a given herbicide were applied

just to the areas exceeding the ET. In order to implement a site-specific herbicide

application strategy, a weed patch distribution map is required.

Previous work on the mapping of weed patches includes linear triangulation (Ger-

hards et al. 1997), polynomial interpolation (Zanin et al. 1998), or kriging. Kriging

weighs the average of observed weed densities and is the only current estimator that

estimates the variance (Cressie 1993, pp.183-194; Isaaks and Srivastava 1989). The

adoption of this approach in weed research has been very recent, but has shown to be

useful in quantifying the spatial structure of weed populations (González-Andújar

et al. 2001, Heisel et al. 1996b, Jurado-Expósito et al. 2003). However, kriged esti-

mates used in this field assume a constant and known trend. When this assumption

is violated, model misspecification bias can result.

In this article, we develop maps for the spatial distribution of C. arvensis over

the course of the 1999-2002 growing seasons, for a sample of 261 locations at which

the number of plants of C. arvensis were counted. Using the concept of economic

thresholding discussed above, we identify the areas in each annual map where her-

bicide applications are warranted under a site-specific weed control strategy. In

addition to the individual year analyses, we will also use a bootstrap-based method
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to generate a map that shows the likelihood of being at high risk of infestation

across years. Such a map can be used in subsequent years to predict the places

that are most likely to be affected by C. arvensis. Such a multi-year map can be

useful to formulate and implement site-specific weed control strategies that take the

persistent nature of C. arvensis infestations into account.

The organization of the remainder of this article is as follows. Section 2 describes

the statistical model and reviews the nonparametric estimator. Section 3 provides

information on the study area and the sampling design used to obtain the data. In

Section 4, we describe the results of the data analysis.

2 Local linear regression for spatial data

We briefly describe the spatial nonparametric regression model to be used for the

C. arvensis data. Assume that a set of R
3-valued random vectors, {(X i, Yi)}

n

i=1
,

are observed, where the Yi are scalar responses variables and the X i are predictor

variables with a common density f and compact support Ω ⊆ R
2. In this article,

we will refer to the X i as the locations corresponding to the Yi. The relationship

between the locations and the responses variable is assumed to be of the form

Yi = m (X i) + εi, i = 1, 2, . . . , n, (1)

where

E(εi|X i) = 0, Var (εi|X i) = σ2,

Cov (εi, εj|X i, Xj) = σ2ρ(X i − Xj),
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with ρ(x) continuous, satisfying ρ(0) = 1, ρ(x) =ρ(−x), and |ρn(x)| ≤ 1, ∀x. The

presence of the function ρ implies that the observations are spatially correlated.

Francisco-Fernández and Opsomer (2003) discuss the asymptotic framework under

which a local linear regression estimator for this model is consistent.

The estimator for m(·) at the location x is the solution for α to the least squares

minimization problem

min
α,β

n∑

i=1

{
Yi − α − βT (X i − x)

}2

KH (X i − x),

where H is a 2 × 2 symmetric positive definite matrix; K is a bivariate ker-

nel and KH (u) = |H|−1 K(H−1u). The Epaneshnikov kernel function K(x) =

2

π
max

{(
1 − ‖x‖2

)
, 0

}
will be used throughout this article. The bandwidth matrix

H controls the shape and the size of the local neighborhood used for estimating

m(x). The local linear regression estimator can be written explicitly as

m̂(x; H) = eT
1

(
XT

x W xXx

)
−1

XT
x W xY ≡ sT

xY (2)

where e1 is a vector with 1 in the first entry and all other entries 0, Y = (Y1, . . . , Yn)
T ,

W x = diag
{
KH (X1 − x),. . . ,KH (Xn − x)

}
, and

Xx =




1 (X1 − x)T

...
...

1 (Xn − x)T




.

This estimator depends on the choice of the values used in the matrix bandwidth

H. We will base our choice of bandwidth values on the “correlation-corrected” gen-

eralized cross-validation method of Francisco-Fernández and Opsomer (2003), who
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showed both theoretically and through simulations that this method works well for

spatially correlated data, as long as the correlation can be reasonably approximated

by a smoothly decaying function of distance between locations.

3 Description of Data

The data were collected during the course of four growing seasons (1999–2002). The

four surveys were conducted in a field of about 1.6 ha located at Monclova (La

Luisiana, Seville), within one of the most important and technologically advanced

farming areas in Andalusia, southern Spain. The field site was farmer-managed us-

ing no-tillage production methods. Wheat (Triticum aestivum L.) was sown in 1999

and 2001, and sunflower (Helianthus annuus L.) in 2000 and 2002. Conventional

herbicides practices for weed control were used. Glyphosate was applied preemer-

gence at a rate of 2 L/ha for the control of annual weed seedlings in wheat and

sunflower. At these rates the herbicides had no significant activity on perennial

shoots of C. arvensis.

Weed density was sampled in early May before crop harvesting. An area measur-

ing 65 m wide by 250 m long was selected for the intensive survey in 1999, and the

same area was sampled again in subsequent years. The survey area was located in a

larger field of approximately 40 ha, and its borders were at least 50 m from the main

borders of the field. Crop rows were always oriented south-north across the study

area during the course of the study. C. arvensis density assessments were performed

following an approximate 7- by 7-m grid pattern, resulting in a total of 261 sampling
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units. The position of each grid point was georeferenced using a Differential Global

Positioning System (DGPS) and recorded in UTM coordinates. At each node, the

number of plants of C. arvensis were counted in a 2 by 2 m square. Figure 1 shows

the 261 locations where the number of plants were counted each year. A portion

of the data used in this study were previously studied by Jurado-Expósito et al.

(2003), where a more detailed description of the study design and measurements is

provided.

[Figure 1 about here.]

Based on previous research, the economic threshold (ET), i.e., the C. arvensis

density causing a reduction in net wheat or sunflower yield equal to the control

treatment cost, was estimated at 14 plants/m2 (Castro-Tendero and Garćıa-Torres,

1995). Hence, if site-specific herbicide application is to be used in this field every

year, the location of persistent patches of C. arvensis with density exceeding ET

should be located and treated. This cut-off value allows us to produce target her-

bicide application maps for each year. Moreover, the percentage of saved herbicide

compared to wall-to-wall application is readily estimated from these maps.

In the case of perennial weeds like C. arvensis, there is a clear interest not only

in locating the high density patches in any given year, but also to determine the

location of areas most at risk of multi-year infestations. If those areas in particular

can be targeted for treatment, it might be possible to further reduce the long-term

treatment needs for the overall field. Because the crop planted varies across years,
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the size and exact location of C. arvensis “clumps” change in character, so that a

multi-year map will need to be able to incorporate such heterogeneity.

4 Results

We begin by fitting the nonparametric regression model (1) to the data from each

year separately. In order to produce a map for the survey area of interest, the local

linear estimates were computed on a dense regular 200×200 grid overlaying the field.

Use of the “corrected GCV” method for bandwidth selection of Francisco-Fernández

and Opsomer (2003) requires the selection of a pilot model for the correlation. We

used the exponential model

ρ(x) = exp (−α ‖x‖) (3)

for this purpose, where α is an unknown parameter, and fitted that model to the

residuals of a pilot local linear regression fit. Visual inspection of the plots (not

shown) comparing observed and model predicted correlations at a range of distances

indicated that the exponential model fitted the data reasonably well. Note that this

model specification is used only in the selection of bandwidth values, and does not

determine the actual shape of the spatial distribution function m(·) in (1).

The bandwidth selection method was applied to each of the four years indi-

vidually, and resulted in bandwidth matrices that had similar but not identical

characteristics. In order to avoid introducing differences between the years due to

the fitting method, it was decided to use a single bandwidth matrix for all the years,
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by taking the average of the individual bandwidth matrices. Hence, the bandwidth

matrix used for all years was equal to

H =




44.8113 10.3409

10.3409 39.4077


 ,

corresponding to a moderate-to-large amount of smoothing.

[Figure 2 about here.]

Figure 2 shows the estimated weed densities for the four years obtained using this

bandwidth matrix. A visual assessment reveals distinct aggregation of infested areas

for all years. The C. arvensis populations are more highly aggregated in sunflowers

years (Fig. 2, 2000 and 2002) compared to the wheat years, and a higher amount of

surface area was free of C. arvensis plants in sunflower years. This implies that when

growing in competition with sunflower, C. arvensis patches were less and smaller

than in competition with wheat. However, crop rotation did not explain all of the

observed year-to-year variability, with significantly different patterns emerging for

the two pairs of years with the same crop.

If we want to apply annual location-specific herbicide treatments to this field

using the ET as a guide, Figure 3 displays which areas would need to be treated

at the threshold value of 14 plants/m2 mentioned in the previous section. As these

maps show, a large fraction of the field would have to be treated every year except

for the year 2000. Specifically, the fractions of the surface area that would have to

be treated annually according to this rule are 76.0% in 1999, 52.6% in 2000, 88.3%

in 2001 and 78.0% in 2002.
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[Figure 3 about here.]

[Figure 4 about here.]

While some parts of the field are included in the area to be treated each year,

others appear to need treatment during some years but not during others. Overall,

spatial stability of the main high-density focal points was observed for each C.

arvensis seedling patch map across the four years survey (Fig. 2). If the areas most

prone to weed infestation across all years could be identified, this knowledge could

guide weed scouting and weed management. This information could also be a key

component of a precision agriculture system. In order to develop a multi-year map

for the persistence of C. arvensis patches in the field, we implemented the following

simple rule after some experimentation with alternatives:

a field point is considered significantly at risk of infestation if its weed

density exceeds the ET in at least 3 of the 4 years.

Figure 4 displays the resulting spatial distribution map.

[Figure 5 about here.]

While the above analysis is useful in identifying portions of the field that are

most vulnerable to infestation by C. arvensis in individual years as well as across

years, so far there is no accompanying measure of variability. In particular, the

map in Figure 4 is sensitive to locations whose estimated weed densities are highly

variable, as is likely to happen on the boundaries of the study region, or to locations

11



whose weed densities are close to the ET in any given year. For instance, it is not

clear how to interpret the irregular boundary region seen in the South-East corner

of Figure 4, or the small area in the center top of the plot. In order to address

these problems, we decided to supplement the above analysis by a bootstrap-based

evaluation.

For each year, a bootstrap dataset is generated by taking the estimated mean

spatial distribution (as shown in Fig. 2), and adding bootstrap errors generated as

a spatially correlated set of errors with known distribution. The annual distribution

functions for generating these bootstrap errors are obtained by taking the residuals

from the original regression for that year and fitting the exponential model in (3).

Once the annual bootstrap datasets are obtained, the above annual nonparametric

regressions are repeated for each bootstrap sample using the same bandwidth H

as for the original analysis, and a bootstrap map of at-risk areas as in Figure 4 is

produced. This process is repeated 1000 times. The result is the map in Figure 5,

which displays the frequency, across bootstrap replicates, for each location of how

often that location is included in the at-risk area. This analysis shows that the

area of most concern is primarily the South-West quadrant of the field, while the

areas stretching in the North-East and South-East observed in Figure 4 have become

somewhat “fainter,” in the sense that their probability of being at risk are lower.

[Figure 6 about here.]

In order to evaluate the sensitivity of this procedure to the choice of ET, we
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repeated the complete analysis for higher values of the threshold, ET=16, 18 and

20. Figure 6 displays the results. The main difference is that the overall area of

concern shrinks, with the North-East and South-East components almost completely

disappearing for higher ET, while the South-West quadrant continues to be identified

as the main problem area.

5 Conclusion

In this article, we have developed a method for displaying the portion of a field

that is most at risk for infestation by perennial weeds, though a combination of

nonparametric regression and a parametric bootstrap. Our method used an eco-

nomic threshold on weed patch density to determine what constitutes an “at risk”

location as well as a heuristic rule to combine data from different years. Both of

these features of our method could easily be extended or customized for different

situation, for instance by having different threshold for different crops or by re-

placing the multi-year measure by a different type of thresholding altogether. The

overall approach of spatial smoothing and bootstrap-based density mapping is read-

ily implemented, and the resulting map should be particularly useful in a precision

agriculture environment as part of a long-term weed management strategy.
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Figure 1: Locations (in UTM East/North coordinates) of C. arvensis measure-
ments.
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Figure 2: Local linear regression of C. arvensis distribution in years 1999–2002
(plants/m2).
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Figure 3: Site-specific herbicide application maps obtained for ET ≥ 14 weeds/m2;
shaded areas are those needing herbicide treatment.
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Figure 4: Multi-year map of areas at risk (green) and not at risk (white) of persistent
C. arvensis infestation.
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Figure 6: Map with pointwise bootstrap probabilities of being considered at risk of
infestation, for different values of the economic threshold.
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