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Mesopelagic fishes are an important element of marine food webs, a huge, still
mostly untapped food resource and great contributors to the biological carbon
pump, whose future under climate change scenarios is unknown. The shrink-
ing of commercial fishes within decades has been an alarming observation,
but its causes remain contended. Here, we investigate the effect of warming
climate on mesopelagic fish size in the eastern Mediterranean Sea during a
glacial–interglacial–glacial transition of the Middle Pleistocene (marine iso-
tope stages 20–18; 814–712 kyr B.P.), which included a 4°C increase in
global seawater temperature. Our results based on fossil otoliths show that
the median size of lanternfishes, one of the most abundant groups of mesope-
lagic fishes in fossil and modern assemblages, declined by approximately 35%
with climate warming at the community level. However, individual mesope-
lagic species showed different and often opposing trends in size across the
studied time interval, suggesting that climate warming in the interglacial
resulted in an ecological shift toward increased relative abundance of smaller
sized mesopelagic fishes due to geographical and/or bathymetric distribution
range shifts, and the size-dependent effects of warming.
1. Introduction
Climate change affects fish size, fitness, abundance and distribution [1–3] with
devastating anticipated socioeconomic impacts [4]. Within the euphotic zone,
where most human activities take place and seawater temperature is directly
regulated by local climatic conditions, average fish size has been predicted to
decrease by 14–24% by the year 2050 [5]. Climate change is expected to have a
significant impact on the mesopelagic zone as well (i.e. the part of the water
column in the world’s oceans between 200 and 1000 m), by rapidly displacing
isotherms [6]: models predict a resulting expansion and shallowing of the deep
scattering layers of the ocean water column, where most mesopelagic organisms
live, leading to homogenization of their community composition and changes in
mesopelagic biomass [7], and these predictions are so far confirmed by obser-
vations [8]. Fishes are a dominant component of the mesopelagic communities
with an estimated biomass of 2–19.5 Gt, approximately 100 times greater than
that of the total global annual fishery catches [9,10]. Mesopelagic fishes are an
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important component of the ecosystem today and in the past
[11–15], having a significant contribution to the biological
carbon pump [16] through their light-controlled diel vertical
migrations [17]. They usually occupy the mesopelagic realm
during daytime and migrate to surface waters at night to
feed, functioning as a trophic link between primary consumers
and megafauna [18,19]. In fact, they help maintain ecosystem
stability under environmental change [20], and their night-
time movement upwards into surface waters in order to feed
while avoiding predators leads to a downward flux of organic
carbon from the productive euphotic zone into the deeper
parts of the ocean [21–23]. Due to this function, any adverse
effects of climate warming on mesopelagic fishes directly
impacts the oceans’ ability to sequester carbon from the atmos-
phere to the deeper parts of the ocean. Moreover, due to the
current state of global food security, they are an important
potential food resource [9,24,25]. Indeed, mesopelagic fishes
are a rich, targeted food resource, with 2.68 Mt of reported
catches between 1950 and 2018 globally, even without
proper exploitation efforts [24], and much higher estimated
total biomass [26].

Body size is a key biological trait, which plays a significant
role in controlling the structure and functioning of marine eco-
systems [27], and it is strongly affected by ambient water
temperature [28,29]. Evaluating and predicting the long-term
effects of climate change on the size structure of modern fish
assemblages is challenging, because these effects are difficult
to disentangle from the impacts of other anthropogenic stres-
sors like size-selective harvesting [30,31]. Moreover, fishery
and scientific survey data rarely encompass more than a few
decades and are often biased towards commercially important
species. The fossil record provides a rich archive of major
environmental perturbations of the geological past and their
palaeoecological consequences, allowing us to track biotic
responses to natural climatic shifts on timescales well beyond
the limits of ecological monitoring [32]. Here, we quantify
the effect of the Pleistocene climatic variability on the size
structure of the eastern Mediterranean mesopelagic fish assem-
blages across the time interval 814–712 kyr B.P. corresponding
to the marine isotope stages (MIS) 20–18: MIS 20 glacial (814–
761 kyr B.P.), MIS 19 interglacial (761–757 kyr B.P.) and MIS 18
glacial (757–712 kyr B.P.; [33,34]). Our study is based on fossil
otoliths from a unique hemipelagic sedimentary succession of
this age exposed on the island of Rhodes in the eastern
Mediterranean.

By contrast to present-day ecosystems, Pleistocene marine
ecosystems were affected by the severe climatic oscillations of
the glacial and interglacial periods, which can be used as ana-
logues of current and forecasted climate warming situations
without the confounding effects of the multiple anthropo-
genic stressors impacting present-day ecosystems. The
Early–Middle Pleistocene Transition encompasses our target
time interval MIS 20–18 and was characterized by important
changes in Earth’s climate, when the duration of climate
oscillations increased, leading to the growth of the Northern
Hemisphere ice-sheets during glacial periods and a shift to
the modern climatic regime with stronger climatic fluctu-
ations [33,35]. The interval MIS 20–18 involved a global sea
surface temperature increase of about 4°C [36,37], also
expressed in the Mediterranean [38,39], which took place
over a few thousand years (MIS 20–19 deglaciation 786–
789 kyr B.P.; [40,41]) and is in line with the IPCC-predicted
mean surface temperature increase under the high
greenhouse gas emissions scenario that is expected to disrupt
the marine food-web structure irreversibly [1,42–44]. In the
eastern Mediterranean, previous studies have shown that
the mesopelagic fish fauna was indeed affected by the Pleis-
tocene climatic perturbations: North Atlantic and Arctic fish
species, whose geographical distribution included the eastern
Mediterranean during glacial periods after 1.5 Ma B.P.,
became extirpated by the subsequent interglacials [11].
Although the timescale over which the MIS 20–19 Pleistocene
deglaciation took place was longer than the modern unprece-
dented climate change by one order of magnitude [40,41], the
MIS 20–18 interval allows the potential long-term impact of a
climate change on marine ecosystems to be evaluated and
thus constrains the range of the possible future biotic
responses on the ongoing warming.

We reconstructed changes in body size and composition of
Pleistocene mesopelagic fish assemblages using fossil otoliths.
Fish otoliths are aragonitic incremental biomineralizates with
species-specific morphology [45] that are commonly preserved
as fossils in marine sediments, and whose assemblages faith-
fully record past fish faunas [14,46,47]. Otolith size correlates
with fish size through species-specific functions [48]. In rare
cases, during periods of starvation and negative somatic
growth, otolith growth may continue and then become
decoupled from fish growth: for this reason, otolith growth is
considered to represent the average fish growth [49]. Here,
we used otolith length–fish length or otolith width–fish
length, and fish length–weight functions derived from pre-
sent-day fishes to estimate Pleistocene fish sizes during MIS
20, 19 and 18. Changes in average size at the scale of entire
assemblages can result from processes occurring at different
levels of biological organization: from the individual to the
community [28,29]. We consider decoupling between otolith
growth and somatic growth [49] to be either: (a) significant
enough to cause the local extinction of the fish, (b) insignificant
at our timescale, or (c) significant to cause a change in the taxon
abundance but not extinction. In the case of (a) and (b), body
size changes would not be observable in our assemblages. In
order to consider case (c), in addition to body size changes,
we also tracked changes in the relative abundances of the
taxa in our assemblages to evaluate the relative importance of
size shifts within the population and of changes in community
composition in driving the observed body size patterns.
2. Material and methods
The samples were obtained on the island of Rhodes in the south-
eastern Aegean Sea, in the eastern Mediterranean (figure 1).
Rhodes is part of the Hellenic forearc and has experienced
intense vertical tectonic movements during the past 2 Myr, lead-
ing to the deposition at bathyal depths and recent uplift of Early
and Middle Pleistocene hemipelagic sediments, now exposed
onshore along its eastern coast [50–53]. The occurrence of such
Pleistocene deep-water sediments accessible on land is unique
for the eastern Mediterranean, providing a reference point for
studying the Early and Middle Pleistocene climates in this
region [50]: there are no other deep-sea sediments covering this
time interval cropping out across the region [52,54–56]. We
sampled three marl levels, LR15–19, LR19–27, and LR > 27, of
the Lindos Bay Formation in the lower part of Lardos section
on Rhodes (N 37°17’4800, E 27°8’400) corresponding to MIS 20,
MIS 19 and MIS 18, respectively [57]. These sediments had
been deposited continuously with an average sedimentation
rate of 1.9 cm kyr−1 [57] and show uniform lithologies. The
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Figure 1. Sampling location. (a) Map of the Mediterranean Sea; (b) simplified geologic map of Rhodes, showing the location of the studied Lardos section (modified
after [50]; (c) lithological column of the Lardos section, indicating the studied MIS 20–18 interval; and (d ) photograph of the sampled part of the outcrop. (Online
version in colour.)
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palaeodepth in the study area exceeded 200 m for both MIS 20
and MIS 19, but became slightly shallower during MIS 18, as
indicated by the greater abundance of goby otoliths [11]. The
sediment samples were diluted in water, sieved with a 250-µm
mesh sieve and then dried in an oven. The sagittal otoliths (hen-
ceforth referred to simply as ‘otoliths’) were handpicked from the
residues and identified based on the morphological character-
istics [45] and through comparison with modern and fossil
material from the Mediterranean [11,12,58,59].

Each otolith was photographed, and its length and width
were measured (electronic supplementary material, figure S1;
[60]) using the microscope ZEISS SteREO Discovery V20 and
the software ZEN (ZEISS Efficient Navigation). Since most of
the identified species are extant, we estimated their weight
using modern empirical otolith length/width–fish length (elec-
tronic supplementary material, table S1; [60]) and the fish
length–weight functions developed based on fish shape [61,62].
The climatic-zone affinity and the habitat (pelagic or demersal)
of the identified species were obtained from AquaMaps [63]
and Fishbase [64], respectively (electronic supplementary
material, table S2; [60]). Climatic affinities were assigned based
on the biome classification scheme of Sarmiento et al. [65]:
warm-affinity taxa presently occupy the permanently stratified
subtropical gyre biome and upwelling biomes, and cold-affinity
taxa are distributed in the seasonally mixed subtropical gyre
biome and the subpolar biome.

We examined changes in the frequency distributions of the
otolith length, and fish lengths and weights across the three
time intervals for the entire assemblages. To depict the main dri-
vers of these patterns, we traced shifts in median fish weight and
relative abundances within the most abundance species, individ-
ual families and climatic-affinity groups. As the size-frequency
distributions were strongly right-skewed, all analyses were
performed on log-transformed data.

In order to test whether any differences in the body size of
the fishes between the glacials and the interglacial were statisti-
cally significant, we used a non-parametric Kruskal–Wallis test,
followed by a pairwise Wilcoxon test with a-posteriori Bonfer-
roni correction to compare median weight between the three
assemblages and estimate 95% confidence intervals around this
parameter using a bootstrap procedure with 10 000 iterations.
To test for differences in otolith preservation that could affect
the interpretation of our results, we quantified and statistically
compared the otolith preservation state following a previously
presented approach [66]. Specimens that could not be identified
at least to family level were included in the otolith preservation
analysis, but excluded from size calculations. All analyses were
performed in R (v. 4.1.2) [67].
3. Results
We identified and estimated the fish length and weight from
the length or width of 1960 otoliths from the three time inter-
vals: 655 otoliths (97.05% of the assemblage) from MIS 20,
1022 otoliths (98.46%) from MIS 19 and 283 otoliths
(93.40%) from MIS 18 (electronic supplementary material,
table S3; [60]). The otolith length ranges from 0.38 to
8.69 mm (median of 1.40 mm), and the otolith width ranges
from 0.41 to 4.68 mm (median of 1.34 mm).

Overall, the fish in the three assemblages are small, with a
median length of 3.22 cm (ranging from 0.82 to 10.07 cm) and
a median weight of 0.27 g (ranging from 0.002 to 106.13 g)
(figure 2 and electronic supplementary material, figure S3;
electronic supplementary material, table S3; [60]). The small
size of the fish is expected, given the nature of the otolith
fossil record and the sampling method [68]. The transition
from the MIS 20 glacial to the MIS 19 interglacial is associated
with 36% decrease in the assemblage-level median fish
weight (from 0.36 g to 0.23 g), followed by 73% increase in
the subsequent MIS 18 glacial period (to 0.40 g), and these
changes are statistically significant: Kruskal–Wallis test χ2 =
65.104, d.f. = 2, p < 0.001; pairwise Wilcoxon test: p < 0.001
for both MIS 20–MIS 19 and MIS 19–MIS 18 (figure 2;
electronic supplementary material, table S3; [60]).

At the genus and species level, lanternfishes’ sizes show
contrasting trends (figure 3; electronic supplementary material,
table S4; [60]). Considering the most abundant myctophid taxa
in the assemblages (electronic supplementary material, figure
S2; [60]), the subtropical Lobianchia dofleini, the only representa-
tive of its genus, has similar median size throughout the
studied interval with only a slight increase during MIS 19, as
does the temperate Hygophum benoiti. However, the abundance
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of L. dofleini increases relative to H. benoiti in the interglacial
(electronic supplementary material, figure S2; electronic sup-
plementary material, table S4; [60]). On the other hand, the
temperate Ceratoscopelus maderensis shows a general increase
in size from MIS 20 to MIS 18, whereas the sizes of the
warm-water Diaphus spp. decrease.

The assemblages are clearly dominated by lanternfishes
(Myctophidae constitute 89%, 96%, and 78% of the assem-
blages in MIS 20, MIS 19 and MIS 18, respectively;
electronic supplementary material, table S4; [60]), whose
median weight decreases by approximately 35% from 0.34 g
in MIS 20 glacial to 0.22 g in MIS 19 interglacial and increase
again to 0.35 g in MIS18 glacial (Kruskal–Wallis test χ2 =
51.905, d.f. = 2, p < 0.001; pairwise Wilcoxon test: p < 0.001
for both MIS 20–19 and MIS 19–18; electronic supplementary
material, figure S4; [60]). By contrast, cods (Gadidae) may
show the opposite trend, with their median weight having
higher median value (2.24 g) in the interglacial, but lower
in the glacials (Kruskal–Wallis test χ2 = 6.626, d.f. = 2, p <
0.04; pairwise Wilcoxon test: p < 0.33 for MIS 20–19, p < 0.33
for MIS 20–18 and p < 0.04 for MIS 19–18). However, we
cannot reach a robust conclusion about this family given



0

20

40

60

80

100

2

1

0

–1

–2

–3

re
la

tiv
e 

ab
un

da
nc

e 
(%

)

lo
g 10

 w
ei

gh
t (

g)

MIS 20 MIS 19 MIS 18 MIS 20 MIS 19 MIS 18 MIS 20 MIS 19 MIS 18

warm-water

warm-water

cold-water

cold-water

median median
281145N = 348

0.51g 0.30g

343 122 102

0.26g 0.25g0.53g 0.51g

(b)(a)

Figure 4. Changes in relative abundance and size of fish species belonging to the three climatic-affinity groups in MIS 20, MIS 19 and MIS 18. (a) Relative
abundance of cold- and warm-water species. Cold-water species contribution decreases during the MIS 19 interglacial. (b) Log-transformed weight of cold-
and warm-water species in each interval. The dashed line indicates the median weight in the entire dataset. The median weight among cold-water species
does not significantly differ between the three stages (Kruskal–Wallis test χ2 = 4.065, d.f. = 2, p = 0.13; electronic supplementary material, figure S54; [60]).
The weight of warm-water species decreases from MIS 20 to MIS 19 (Kruskal–Wallis test χ2 = 16.843, d.f. = 2, p < 0.001; pairwise Wilcoxon test p < 0.001
for MIS 20–19, p = 0.05 for MIS 20–18 and p = 0.42 for MIS 19–18). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20221994

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 F

eb
ru

ar
y 

20
23

 

the small sample sizes (9, 17 and 8 otoliths in MIS 20, 19 and
18, respectively). Other families identified in the dataset have
too few specimens to identify any significant trends
(electronic supplementary material, figure S4; [60]).

The median weight among cold-water species does not sig-
nificantly differ between the three stages (Kruskal–Wallis test
χ2 = 4.065, d.f. = 2, p = 0.13; figure 4), while the weight of
warm-water species decreases from MIS 20 to MIS 19 (Krus-
kal–Wallis test χ2 = 16.843, d.f. = 2, p < 0.001; pairwise
Wilcoxon test p < 0.001 for MIS 20–19, p = 0.05 for MIS 20–18
and p = 0.42 for MIS 19–18). The relative abundance of cold-
water (temperate and a few subpolar species) clearly drops
during the MIS 19 interglacial, whereas warm-water species
have a higher contribution to the MIS 19 assemblage (figure 4).

Change in assemblage composition through the studied
glacial–interglacial–glacial transitions is mostly driven by
cold-water mesopelagic fishes (figure 3 and electronic
supplementary material, figure S5; [60]). Ceratoscopelus mader-
ensis and Hygophum benoiti abundances clearly drop during
the MIS 20–19 deglaciation, the latter increasing again signifi-
cantly in MIS 18 along with Vinciguerria poweriae, despite the
shallowing of the study area.

The observed shifts in size and assemblage composition
cannot be explained by a variation in the otolith preservation,
because the average taphonomic score of the otoliths from the
three studied intervals is not significantly different (electronic
supplementary material, figures S6 and S7; electronic
supplementary material, table S5; [60]).
4. Discussion
The effect of past climate changes on mesopelagic fishes
manifests through shifts in assemblage composition [11,12]
and fish size [69]. Our results show an overall drop in meso-
pelagic fish median length and weight from the MIS 20
glacial to the MIS 19 interglacial in the eastern Mediterranean
(figure 2), which is driven by lanternfishes that dominate the
assemblages (figures 3 and 4 and electronic supplementary
material, figure S2; [60]). This decrease follows the expected
effects of increasing temperature on body size of aquatic
ectotherms [28,29,70], which have been observed for euphotic
zone fishes today [5]. The MIS 20–19 deglaciation took place
within approximately 3000 yr [40,41], much longer than the
scale of decades of the modern climate change. Present-day
anthropogenic climate change is unprecedented, and there-
fore its effects are not directly comparable to those of past
climate change. Nevertheless, the past can guide our under-
standing of the natural variability of marine ecosystems and
the response of organisms to extreme environmental
change. A negative relationship between climate warming
and mesopelagic fish size has been observed in other areas
today [71], although some studies have also shown increase
in size or no relationship at all [8], and small individuals
have generally been overlooked in studies of climate change
impact on fish growth [72]. Our results suggest that at long-
term timescales, natural climate warming may lead to an
overall decrease in median fish size at the community level,
at least in mid-latitude regions.

Despite this overall shift, the individual myctophid
genera and species in the Middle Pleistocene assemblages
of the eastern Mediterranean do not follow the within-species
size reduction observed in epipelagic fishes [5,31], but exhibit
different and often opposing trends (figure 3), which indi-
cates that patterns at the assemblage level are not primarily
driven by common trends in average body size of individual
species. The known shifts in the fish community composition
(changes in the relative abundances of species) [11] between
glacials and interglacials are observed again in our study.
Cold-water (temperate and subpolar) mesopelagic species
show a higher relative abundance in the glacial than in the
interglacial assemblages. In the Early–Middle Pleistocene
Transition, North Atlantic subsurface waters experienced
warming phases during glacials after MIS 24 due to pulses
of increased outflow of Mediterranean waters [73], which
would enhance water mixing and facilitate the functional
connectivity between the mesopelagic fish populations of
the two regions. This pattern may explain the establishment
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of subpolar species in the Mediterranean during Middle and
Late Pleistocene glacials [11,12,58,59] and the higher relative
abundance of cold-water species in MIS 20 and MIS 18
observed in this study.

Moreover, the mesopelagic species may have shifted their
ranges to greater, cooler depths, following their preferred
temperatures, as a response to climate warming, while main-
taining their body size. A case in point is Ceratoscopelus
maderensis, whose high resilience may be explained by its
large depth range, particularly in the modern Mediterranean
Sea (up to 2500 m in the Ionian Sea [74]. By contrast to eupho-
tic zone fishes, mesopelagic fishes commonly change their
depth distribution. They move hundreds of metres within
the water column to adapt to changing water conditions
[13] and show different bathymetric distributions in different
seas [18,19,75]. This would explain size changes in individual
species that may contradict expectations based on the climatic
conditions (figure 3). However, the part of the Lindos Bay
Formation sedimentary sequence that was sampled here is
regressive, meaning that the palaeodepth decreased upwards
in the section, from MIS 20 to MIS 18 [11,57]. Therefore, we
cannot expect shifts to greater (and colder) depths from
MIS 20 to MIS 19 as an adaptation to warming climate,
which would explain why the size of Ceratoscopelus maderen-
sis indeed decreases in the interglacial.

In addition, temperature effects on metabolism are size-
specific [76,77]. Accordingly, it is possible for fish to maintain
(or even increase) their size during warming, when the
increased growth (over)compensates for higher mortality in
the warmer ecosystem [78–80]. Size-specific impacts of tempera-
ture have been recorded in short- and long-term records, at least
at the decadal scale [81]. This size-specific body size responses
to warming climate could be another mechanism to explain the
observed unchanged median body sizes of L. dofleini and H.
benoiti, and the increased size of C. maderensis during the Pleis-
tocene interglacial in the eastern Mediterranean, although
further studies would be required to support this.

Finally, both direct and indirect effects of elevated temp-
erature on fishes should be taken into account to explain
the divergent patterns shown by the different mesopelagic
fishes. The higher temperature expedites fish growth by
increasing metabolism, but at the same time may limit food
availability through bottom-up effects, resulting in a decrease
in growth [82]. Although palaeoproductivity data for the
eastern Mediterranean during MIS 20–18 are not available,
data from the Western Mediterranean [83] indicate increase,
rather than decrease, of primary productivity during the
interglacial MIS 19, thus rejecting a negative feedback of
warming on fish growth at that time.
5. Conclusion
Although the eastern Mediterranean mesopelagic fish assem-
blages seem to follow the predicted size reduction with
increasing temperature during the Middle Pleistocene MIS
19 interglacial, our results demonstrate that this was due to
changes in species relative abundances coupled with size-
dependent temperature effects rather than on individual
species body size. Within-species, synchronous reductions
in size across multiple mesopelagic species were not observed
in the studied assemblages, suggesting that an increase in
relative abundance of small mesopelagic fishes took place
in the eastern Mediterranean during MIS 19 interglacial.
Even though our study refers to a climate warming taking
place over a few thousand years in the Pleistocene, rather
than within decades as is predicted for the modern climate
change, our results are consistent with the few available
observations on mesopelagic fishes today. Therefore, accurate
predictions of mesopelagic fish responses under future cli-
mate change scenarios may require an ecosystem-based and
multispecies rather than a single-species approach. Consider-
ing the important function of mesopelagic fishes in energy
and carbon transfer through marine ecosystems, the observed
community-level decrease in size of mesopelagic fishes may
suggest downgrading of the marine food-web structure and
a reduction in carbon sequestration during the interglacial.
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