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Abstract: A controlled access to 1-aryl 2,3-diiodo-
carbazoles involving iodine transposition has been
accomplished directly from acyclic precursors. The
2,3-diiodo-carbazole core was prone to further
chemoselective decoration at C3� I or double di-
functionalization.

Keywords: carbazole; cascade reactions; cyclization;
iodine translocation; metal-free

The classical and widespread cross-coupling reactions
of organic compounds bearing a C� X (X=halogen)
bond proceed through an oxidative addition of the
organohalide to the metal and imply X loss.[1] Taking
into account the interest in organohalides and chiefly
iodinated arenes,[2] the transfer of the halogen atom
into the newly prepared molecule is appealing but
difficult. In this context, the reintegration of the X
atom of halogenated molecules through metal-cata-
lyzed carbohalogenations via reductive elimination is
an emerging strategy (Scheme 1A).[3] A less explored
methodology is the gold-catalyzed iodine recycling
during 1-iodoalkyne carbocyclization (Scheme 1B).[4]
Recently, we reported the iodine transfer across an
indole nucleus under gold- and palladium-catalyzed
conditions (Scheme 1C).[5] As only metal-catalyzed
halogen translocation is available in literature, we were
curious to explore the metal-free unexplored path. It
should be mentioned that although halogenation of C3

position is attainable, the halogenation at C2 is intrinsi-
cally difficult because of the steric and electronic
properties of carbazoles.[6] Besides, simultaneous halo-

Scheme 1. Prior art and current strategy.
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genation of C3 and C2 positions has not yet been
developed. Herein, we report a catalyst-free access to
1-aryl 2,3-diiodo-carbazoles[7,8] involving iodine trans-
position (Scheme 1D). Noteworthy, our protocol al-
lows for the controlled functionalization of the
carbazole core at three contiguous positions,[9] namely,
C1, C2 and C3.

Cyclization precursors, (iodoindolyl)alkynols 1a–n,
were prepared from the appropriate indole-2-carbalde-
hyde using known procedure.[5] Our journey started
with the study of the reaction of phenyl-substituted
alkynol 1a as model substrate (Table 1).[10] We ex-
plored the reaction of 1a with several iodinated
reagents such as I2, NIS, ICl and Ipy2BF4. The tandem
iodocyclization-iodine translocation was effectively
attained through the use of ICl[11] in isopropanol at
� 15 °C in presence of sodium carbonate. The utiliza-
tion of 1.1-fold excess of ICl provided tricycle 2a in
50% yield (Table 1, entry 5) while the use of 2.5-fold
excess produced the desired heterocycle in 60% yield
(Table 1, entry 3). Total conversion was observed by
TLC and 1H NMR analysis of the crude reaction
mixture, and no side-products or polymerisation reac-
tions were detected. However, some decomposition
was observed during purification of 2,3-diiodo-
carbazole 2a by column chromatography, which may
be responsible for the moderate isolated yield. Note-
worthy, the rearranged 1-phenyl-2,3-diiodo-carbazole
2a was obtained as the only regioisomer. The use of
organic bases instead K2CO3 or different solvents

generated 2,3-diiodo-carbazole 2a in diminished yield
(Table 1).

With the optimal conditions in hand, we next
studied the generality of the process (Scheme 2). The
presence at the alkyne end of electron-rich aromatic
moieties such as 4-tolyl in 1b or 4-anisyl in 1c was
beneficial because the corresponding 2,3-diiodo-carba-
zoles 2b and 2c were achieved in 78% and 86%
yields, respectively. Besides, the sequence displayed
steric tolerance as evidenced by the formation of 2,3-
diiodo-carbazole 2f bearing an ortho-methoxyphenyl
moiety. However, 2,3-diiodo-carbazoles 2d and 2e
having 2,4-dimethylphenyl or 2,4-dimethoxyphenyl
substituents were achieved in diminished yields (35%
and 44%) in comparison with parent 2a. 4-Arylbut-3-
yn-1-ol 1g linked to a 5-methyl substituted indole
nucleus reacted to provide 2,3-diiodo-carbazole 2g.
Replacing the N-methyl group with a N-benzyl moiety
such as in 1c-Bn smoothly formed product 2c-Bn in
total selectivity, while the reaction of precursors having
a carbamate or a sulfonamide group failed. Disappoint-
ingly, the reaction of free (NH)-indoles with ICl
resulted in a complicated mixture, thus avoiding its use
for accessing 2,3-diiodo-carbazoles. 1-(3-Iodo-4-meth-
oxy-indol-2-yl)-4-but-3-yn-1-ol 1c-MeO was trans-
formed into 5-methoxy-carbazole 2c-MeO in a com-
petent way (Scheme 2), which evidenced that it is also
possible to prepare 2,3-diiodo-C5-substituted carba-
zoles through our iodocyclization/iodo-translocation
strategy. Unfortunately, neither the presence of an

Table 1. Iodination-carbocyclization-iodine migration of (iodoindolyl)butynol 1a under modified reaction conditions.

entry Iodinated reagent[a] base solvent T (°C) yield 2a (%)[b]

1 I2 K2CO3 iPrOH � 15 12
2 NIS K2CO3 iPrOH � 15 8
3 ICl K2CO3 iPrOH � 15 60
4 Ipy2BF4 K2CO3 iPrOH � 15 7
5 ICl[c] K2CO3 iPrOH � 15 50
6 ICl K2CO3 iPrOH 0 19
7 ICl K2CO3 iPrOH 20 6
8 ICl Et3N iPrOH � 15 28
9 ICl DBU iPrOH � 15 21
10 ICl K2CO3 EtOH � 15 44
11 ICl K2CO3 MeCN � 15 20
12 ICl K2CO3 1,4-dioxane � 15 15
[a] The reactions were run using 1a (0.1 mmol) and iodinated reagent (0.25 mmol).
[b] Yield of pure, isolated product with correct analytical and spectral data.
[c] 0.11 mmol of ICl were used.
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electron-poor 4-nitrophenyl substituent at the alkyne
end nor a fluorine atom at the C5 indole nucleus were
tolerated, because in both cases the exclusive forma-
tion of 2-iodo-carbazoles 3h and 3 i was detected
(Scheme 2). Interestingly, sterically congested
(iodoindolyl)alkynols 1j–n bearing an extra indole
nucleus at the alkyne end were well accommodated
and were transformed into 2,3-diiodo-carbazoles 2j–n
and 2,3,6-triiodo-carbazole 2n-I (Scheme 3). In some
cases (1 j,l,n), chromatographically separable regioiso-
meric C4-indolyl carbazoles (2j,l,n-I-isomer) were
isolated as minor components. The positional selectiv-
ity in 1-aryl carbazoles 2c, 2j and 2j-isomer was
identified through selective NOE irradiation of the N-
9-CH3 protons, which resulted in enhancement in the

signals of the aromatic protons of the 4-MeOC6H4
group at C1 in 2c, in enhancement in the signal of the
aldehydic proton in 2j, and in enhancement in the
signals of C1� H and C8� H in 2j-isomer (see ESI).

Having suitably exemplified the cyclization reac-
tion to give 2,3-diiodocarbazoles 2, we decided to
investigate the reactivity under Pd-catalyzed cross-
coupling reactions. By subjecting selected 1-aryl-2,3-
diiodo-carbazoles 2 to Sonogashira, Suzuki or Heck
protocols, the corresponding 1,2,3-trifunctionalized
carbazoles 4–6 were obtained in reasonable yields
through double functionalization reactions (Scheme 4).
Even sterically encumbered 2-bromophenylboronic
acid allowed the simultaneous two-fold customization
at C2 and C3 in 2c resulting in the formation of
triarylated carbazole 5c, but with a slightly lesser
efficiency. Similarly, precursor 2g having a bulky
aromatic ring conveniently afforded polysubstituted

Scheme 2. Synthesis of 2,3-diiodo-carbazoles 2a–g.[a]The reac-
tion was carried out at room temperature.

Scheme 3. Synthesis of 2,3-diiodo-carbazoles 2 j–m and 2,3,6-
triiodo-carbazole 2n–I.
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heterocycle 6b after treatment with styrene under Pd
catalysis.

Haloarenes bearing several halogen functionalities
such as 2,3-diiodo-carbazoles 2 are challenging sub-
strates for chemoselective cross-coupling reactions due
to site selectivity problems. Having successfully
accomplished two-fold cross coupling reactions in 2,
we decide to pursue a controlled monofunctionaliza-
tion. Pleasingly, chemoselective Sonogashira mono-
coupling reaction was attained in 2,3-diiodo-carbazole
2c at the C3 position, giving rise to 3-alkynyl-1-aryl-2-
iodo-carbazole 7 in 79% yield. NMR data analysis
demonstrated to be a convenient tool to establish the
linking position of the alkyne moiety on alkynyl-
iodocarbazole 7 (see ESI), allowing full structural
assignment.[12] The chemoselective C3� I activation
was probably dictated by steric factors, taking place at
the less hindered position. Nicely, heterocycle 7 was
prone to further functionalization at C2� I through

Heck reaction with styrene, leading to 1-aryl-2-
alkenyl-3-alkynyl carbazole 8 in 61% yield
(Scheme 5). In addition of the Heck functionalization,
Suzuki-type termination was successfully accom-
plished in the mono- Sonogashira adduct 7, which
smoothly provided 1,2-diaryl-3-alkynyl carbazole 9
(Scheme 5). In this way, many 1,2,3-trifunctionalized
carbazoles could be conveniently constructed in a
predictable fashion.

A reasonable pathway for the ICl-assisted genesis
of 2,3-diiodo-carbazoles 2 is depicted in Scheme 6.
The transformation is speculated to hold an ionic
nature, with the initial formation of the three-mem-
bered iodonium intermediate INT-1 by reaction of the
alkyne moiety with the cationic iodine atom of ICl.
INT-1 evolves to spirocyclic species INT-2 through
nucleophilic attack of the C2 indole position into the
external carbon atom of the iodonium INT-1. After the
5-endo-dig spirocyclization, the formation of indoli-
nium intermediate INT-3 should occur by selective
1,2-alkyl migration. The driving force of this migration
may well be the stability of the so-formed indolinium
intermediate INT-3. Next, water release occurs to form

Scheme 4. Two-fold functionalization of 2,3-diiodo-carbazoles
2.

Scheme 5. Controlled mono-functionalization of 2,3-diiodo-
carbazole 2c.
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iminium species INT-4 which is followed by a further
1,2-iodine migration. The generation of intermediate
INT-5 should be followed by an additional 1,2-iodine
migration to build carbocationic species INT-6. Fi-
nally, loss of proton creates the neutral and aromatic
2,3-diiodo-carbazoles 2.[13] Our guess is that the
mixture of positional isomers 2j/2 j-isomer, 2 l/2 l-
isomer and 2n/2n-isomer arises from competitive
1,2-migrations (alkyl versus alkenyl) in intermediates
INT-2 (1,2-alkyl migration for compounds 2 and 1,2-
alkenyl migration for isomers 2-isomer). The iodocyc-
lization/de-iodination pathway followed by precursors
1h,i to form mono-iodo carbazoles 3h,i may be
explained from an increased tendency to iodonium
elimination in intermediates INT-4 due to the presence
of electron-withdrawing substituents.

In conclusion, we report the metal-free iodination-
carbocyclization-iodine migration of
(iodoindolyl)butynols as a direct and controlled access
to the elusive 2,3-diiodo-carbazole core. Both, further
chemoselective functionalization at C3� I as well as
two-fold cross-coupling reactions were applicable and

a number of 1,2,3-trifunctionalized carbazoles were
built.

Experimental Section
General Procedure for the Synthesis of 2,3-Di-iodo-
1-aril-9H-carbazoles 2
K2CO3 (1 equiv.) was added to a solution of the appropriate
(iodoindolyl)butynol 1 (1 equiv.) in iPrOH (38 mL/mmol) at
� 15 °C. After five minutes, ICl (2.5 equiv.) disolved in iPrOH
was added dropwise, under argon atmosphere. Then, the
reaction mixture was stirred at room temperature for 2 hours.
After completion of the reaction as indicated by TLC, the
mixture was poured into Na2S2O3 and extracted with EtOAc
(3×10 mL). The organic extract was washed with water (3×
10 mL), dried (MgSO4) and concentrated under reduced
pressure. Chromatography of the residue using ethyl acetate/n-
hexane mixtures gave analitically pure diidocarbazoles 2.

2,3-Diiodo-1-(4-methoxyphenyl)-9-methyl-9H-carbazole 2c.
From 93 mg (0.215 mmol) of alkynol 1c, and after flash
chromatography of the residue using n-hexane/ethyl acetate
(6:1) as eluent, compound 2c (97 mg, 86%) was obtained as a
pale-yellow thick gum; 1H NMR (300 MHz, CDCl3): δ =8.38
(1H, d, J=1.7 Hz, CHAr), 7.79 (1H, d, J=8.2 Hz, CHAr), 7.72–
7.69 (2H, m, CHAr), 7.24-7.20 (2H, AA’XX’, 2×CHArPMP), 7.08-
7.03 (3H, m, CHAr and 2×CHArPMP), 3.93 (3H, s, O-CH3), 3.14
(3H, s, N-CH3); 13C NMR (75 MHz, CDCl3): δ=159.5 (CAr),
140.6 (CAr), 138.8 (CAr), 135.5 (CAr), 134.4 (CHAr), 131.8 (2×
CHAr), 129.7 (CHAr), 129.6 (CAr), 128.8 (CHAr), 124.6 (CAr),
122.3 (CAr), 120.7 (CHAr), 113.5 (2×CHAr), 111.0 (CHAr), 101.2
(CAr), 81.9 (CAr), 55.3 (O-CH3), 32.1 (N-CH3); IR (CHCl3): ν=

1512, 1544 cm� 1; HRMS (ES): calcd for C20H16I2NO [M+H]+:
539.93158; found: 539.92909.

Supporting Information Available
Experimental procedures, characterization data of new
compounds, and copies of NMR spectra.
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