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SUMMARY
We analyze transposable elements (TEs) in glioblastoma (GBM) patients using a proteogenomic pipeline that
combines single-cell transcriptomics, bulk RNA sequencing (RNA-seq) samples from tumors and healthy-tis-
sue cohorts, and immunopeptidomic samples. We thus identify 370 human leukocyte antigen (HLA)-I-bound
peptides encoded by TEs differentially expressed in GBM. Some of the peptides are encoded by repeat se-
quences from intact open reading frames (ORFs) present in up to several hundred TEs from recent long inter-
spersed nuclear element (LINE)-1, long terminal repeat (LTR), and SVA subfamilies. Other HLA-I-bound pep-
tides are encoded by single copies of TEs from old subfamilies that are expressed recurrently in GBM tumors
and not expressed, or very infrequently and at low levels, in healthy tissues (including brain). These peptide-
coding, GBM-specific, highly recurrent TEs represent potential tumor-specific targets for cancer immuno-
therapies.
INTRODUCTION

T cells can control, and sometimes reject, solid tumors, espe-

cially after reprogramming by immune checkpoint blockade

(ICB) (Morotti et al., 2021; Waldman et al., 2020). The nature of

the tumor antigens targeted by these T cells, however, remains

unclear. After identification of differentiation and tumor-testis an-

tigens decades ago (Almeida et al., 2009; Boon and van der

Bruggen, 1996; Simpson et al., 2005; van der Bruggen et al.,

1991), a new family of antigens derived from tumor somatic mu-

tations was discovered (Coulie et al., 1995; Robbins et al., 1996;

Tran et al., 2015; vanRooij et al., 2013). Defined sets ofmutations

in single cells, occurring before or after oncogenic transforma-

tion, are amplified by clonal expansion of tumor cells (Castle

et al., 2012). This ‘‘amplified’’ set of mutations becomes ‘‘visible’’

to the immune system and triggers T cell immune responses

(Lennerz et al., 2005; Robbins et al., 2013; van Rooij et al.,

2013). Unlike differentiation and tumor testis antigens that are,

by definition, also expressed in certain normal cells, mutational

neo-antigens are strictly tumor specific. However, most such

mutations are passenger events and are largely specific to
This is an open access article under the CC BY-N
individual patients. The presence of mutation-specific T cells in

ICB-treated cancer patients, the high rate of clinical responses

to ICB in patients with microsatellite instability, and the correla-

tion between the median number of mutations in certain cancer

types and the rate of response to ICB, all indicate that passenger

mutations can be effectively targeted by T cells in cancer pa-

tients (Carreno et al., 2015; Chauvin et al., 2015; Gubin et al.,

2014; Le et al., 2015; Rizvi et al., 2015; Schadendorf et al.,

2015; Snyder et al., 2014).

Several lines of evidence, however, also suggest that point

mutations are not the only antigens seen by T cells on human tu-

mors. First, there are exceptions to the correlation between the

frequency ofmutations and the rates of response to ICB (McGrail

et al., 2021). Renal cell carcinoma (RCC), for example, has a

mutational burden around two mutations per megabase (MB)

and a response rate to ICB around 25%, as comparedwith squa-

mous non-small cell lung cancer (LUSC), with around nine muta-

tions/MB and a response rate to ICB of 17% (Yarchoan et al.,

2017, 2019). Second, at the level of individual patients, the num-

ber of mutations is not highly predictive of clinical responses to

ICB (Gromeier et al., 2021; McGrail et al., 2021). Finally, there
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are multiple examples in the literature of T cell responses to non-

mutational antigens in cancer patients, including differentiation

and tumor-testis antigens (Novellino et al., 2005; Rapoport

et al., 2015; Rooney et al., 2015).

Different teams have recently used proteogenomic ap-

proaches to search broadly for tumor-specific, non-canonical

open reading frames (ORFs) that encode peptides presented

by human leukocyte antigen (HLA)-I molecules on tumor cells

(Chong et al., 2020; Laumont et al., 2016). Most of the identified

peptides in these studies derive from non-coding genomic re-

gions. Some of these potential tumor-specific antigens are found

in multiple patients and can induce immune responses in vitro or

in mouse models (Ehx et al., 2021; Laumont et al., 2018). A large

fraction of the non-coding genome is composed of transposable

elements (TEs). TEs include DNA transposons (Burns, 2017) as

well as three main classes of retrotransposons (short inter-

spersed nuclear elements [SINEs], long interspersed nuclear el-

ements [LINEs], and long terminal repeats [LTRs]). Each class is

sub-divided into families and subfamilies that arose during evo-

lution from common ancestors and are classified according to

sequence homology of the individual copies in the genome.

The age of TE subfamilies can be estimated based on the con-

servation of their repeat motifs (Choudhary et al., 2020). A small

proportion of young LINE-1 in the human genome can still be

active for retro-transposition ( Lanciano and Cristofari, 2020;

Zhao et al., 2020). Retro-transposition can compromise the sta-

bility of the genome, and mammalian differentiated cells in tis-

sues protect themselves against TE-induced genome instability

through epigenetic repression of TE transcription (Burns, 2017;

Slotkin and Martienssen, 2007). As a result, TE transcription is

low in most adult cells and more active during embryonic devel-

opment, in stem cells and, intriguingly, in tumors (Garcia-Perez

et al., 2016). TE de-repression in tumors occurs through multiple

epigenetic changes to TE loci, including DNA and histone de-

methylation (Anwar et al., 2017; Grundy et al., 2021; Lynch-Su-

therland et al., 2020). Both epigenetic changes can be associ-

ated with oncogenesis, resulting in different levels of epigenetic

de-regulation.

TE overexpression in tumors comparedwith healthy tissue has

prompted multiple teams to search for anti-TE T cell responses

in cancer, and there is clear evidence that this can occur (Neu-

kirch et al., 2019; Rycaj et al., 2015; Saini et al., 2020; Wang-Jo-

hanning et al., 2008). One recent study showed presentation of

TE-derived peptides on HLA-I molecules (Kong et al., 2019).

This study, however, only analyzed peptides derived from TE-

subfamilies and did not address the cellular origin of the

identified HLA-I-presented peptides. Whether TEs de-repressed
Figure 1. Single-cell TE expression distinguishes cell populations in G

(A) t-SNE visualizing all single cells after filtering (n = 3,167) segregated based on g

expression (right). Cells are color coded based on cell population.

(B) Violin plots representing TE-specific signatures for neoplastic cells (top) and

(C) Unsupervised heatmap showing expression of top 20 differentially expressed

(D) Plot showing TE subfamily enrichment analysis using all expressed TEs (lef

adjusted p < 0.05 on x axis.

(E) Radar plots displaying the rate of genes (top) and TEs (bottom) along all chro

(F) Barplot showing the number of TEs in proximal or distal regions of nearest pr

(G) t-SNE visualizing cell populations using the individual distal TE copy express

(H) Plots summarizing the association between TEs and genes described above
in tumors can be a source of truly tumor-specific antigens is

therefore still an open question. Here, we propose an original

TE-centered proteogenomic approach based on a combination

of single-cell transcriptomics and bulk RNA sequencing (RNA-

seq) analyses in tumor and healthy tissues, together with immu-

nopeptidomics, to identify single and recurrent, tumor-selective

TE-derived peptides presented by HLA-I molecules on GBM

tumors.

RESULTS

Single-cell TE expression resolves all cell populations in
tumors
We reasoned that a powerful way to identify TEs expressed spe-

cifically in tumor cells would be to compare TE expression in tu-

mor and in tumor-infiltrating cells from the samepatient. Todoso,

we used single-cell transcriptomics (single-cell RNA-seq

[scRNA-seq]) of all cells present in the tumor microenvironment.

We initiated the study on a public dataset including tumor and

juxta-tumor samples from four GBM patients analyzed by

SMARTseq2 (Figure S1A). Consistent with the analysis per-

formed in the original article (Darmanis et al., 2017), dimension-

ality reduction and t-distributed stochastic neighbor embedding

(t-SNE) visualization based on gene expression resolves the

seven sorted cell populations from the tumor core and the sur-

rounding tissue (tumor and periphery in Figure S1A): immune

cells (mostly macrophages), neoplastic cells, and oligodendro-

cyte precursor cells (OPCs) are the most numerous (Figures 1A,

left panel, and S1B).

To investigate TE expression in single cells, we mapped

scRNA-seq reads to either TE subfamilies (as shown previously;

Kong et al., 2019) or to individual genomic TEs (Figure S1C).

Because mapping of TEs to individual genomic locations

can be affected by high conservation of their repeat motifs,

we compared the use of uniquely and multi-mapping reads.

Uniquely mapping reads allow accurate estimation of the

expression of oldest TE subfamilies but underestimate

the expression for youngest TE subfamilies, as compared with

multi-mapping reads, which reflect more accurately expression

of young TE subfamilies (Figure S1D; Lanciano and Cristofari,

2020).

t-SNE based on expression on all 992 TE subfamilies, or 5,000

most variable individual TEs in single cells, like gene expression,

resolves all cell populations in the tumor microenvironment (Fig-

ure 1A, middle panel). Neoplastic cells and OPCs are mostly pre-

sent in tumor and juxta-tumor (Figure S1A, right panel) samples,

respectively, while immune cells are present in both. Individually
BM tumors

ene expression (left), TE subfamily expression (middle), and individual TE copy

immune cells (bottom).

TEs for each cell population.

t), neoplastic (middle), and immune (right) signatures. Red dashes represent

mosomes.

otein-coding genes in neoplastic and immune signatures.

ion.

in neoplastic (top) and immune signatures (bottom).

Cell Reports 39, 110916, June 7, 2022 3



Article
ll

OPEN ACCESS
mapped TEs allow better resolution of the different cell popula-

tions than TE subfamilies (Figure 1A, right panel). These results

show that expression of individual TEs can be resolved at the sin-

gle cell level and is sufficient to distinguish different cell popula-

tions in the tumor microenvironment.

TE subfamilies are differentially expressed in neoplastic
and immune cells
To better understand the nature of these TEs, we performed dif-

ferential expression (DE) analyses of TEs in each cell population

against all others, thus defining population-specific TE signa-

tures (Figure S1E). These signatures are selective for neoplastic

cells, immune cells (Figure 1B), and for each of the other cell pop-

ulations present in the tumor microenvironment (Figure S1F).

Heatmap representation of the 20 most differentially expressed

TEs based on the average log2 fold change shows selective

expression in each cell population, including in neoplastic cells

(Figure 1C). To further investigate the nature of the TEs differen-

tially expressed in each cell population, we compared each

signature with all TEs expressed in the dataset (130,028). TEs

differentially expressed in neoplastic cells are depleted in

SINEs (51.7% versus 44.5%) and enriched in LTRs (8.3% versus

12.1%), while TEs in immune cells are depleted in LINEs (30.3%

versus 26.5%) and LTRs (8.3% versus 5.6%) and enriched in

SINEs (51.7% versus 59.2%) (Figure S2A), confirming the results

from direct mapping of TE subfamilies (Figure S2B). Statistical

analyses by subfamily show strong enrichment for several LTR

subfamilies in neoplastic cells (mainly human endogenous retro-

virus [HERV]), while immune cells differentially express several

SINE subfamilies (mainly Alu) (Figure 1D). We conclude that the

different cell types present in the tumor environment express

distinct patterns of TE subfamilies that can be analyzed from

individually mapped TEs by single-cell transcriptomics.

Gain of chromosome 7 and loss of chromosome 10 are recur-

rent genomic copy number alterations in GBM (Kurscheid et al.,

2015). As an internal control for TE mapping to chromosomal

loci, we quantified genes and TEs in each cell-type-specific

signature to their respective chromosomes. As shown in Fig-

ure 1E, TEs differentially expressed in neoplastic cells, but not

in other cell populations, present a clear bias for chromosome

7 (Figures 1E, S2C, and S2D). The bias for chromosome 7 in

neoplastic cells is even stronger for TEs than for genes, while

the loss of chromosome 10 is similar in the TE and gene signa-

tures (Figure S2C). A chromosome 7 bias is also observed

when considering only the expression of distal TEs, i.e., TEs

located atmore than 2 Kb from the nearest protein-coding genes

(mostly intergenic), indicating that this bias is not due to high

contamination with intron retained TEs in the scRNA-seq data-

sets (Figure S2E). We conclude that individual TEs can be accu-

rately mapped from scRNA-seq and, as expected, show a chro-

mosome 7 bias selectively in neoplastic GBM cells.

TEexpression in neoplastic cells is enriched in elements
independent of their closest gene
To better understand the control of TE expression in different cell

populations, we first analyzed TE genomic locations. As

compared with all expressed TEs in the dataset, TEs differen-

tially expressed in neoplastic cells show reduced intronic loca-
4 Cell Reports 39, 110916, June 7, 2022
tions (77% versus 38.7%), including when compared with the

proportion of intronic TEs differentially expressed in immune

cells (68.8%) or astrocytes (71%) (Figure S2F). Neoplastic Tes

also show a marked increase in 30 UTR encoded TEs (25.3%),

compared with all expressed TEs (5%) or with immune cell TEs

(11.3%) (Figure S2F). These results show that, while TEs differen-

tially expressed in immune cells are largely intronic, TEs differen-

tially expressed in neoplastic cells are more frequently from in-

tergenic and 30 UTRs regions.

Consistent with these results, the proportion of distal TEs is

higher in the neoplastic cell signature (22.3%) than in the immune

cell signature (13%; Figure 1F). t-SNE analysis based on distal

TEs resolves all cell populations (Figure 1G), suggesting that

cell-type-specific TE expression may not be exclusively due to

gene-driven transcription. Consistently, the TE-gene distances

are increased for TEs differentially expressed in neoplastic cells,

especially for LINEs and LTRs (Figure S2G), as compared with

the TEs differentially expressed in immune cells. Higher dis-

tances from the closest genes for TEs expressed selectively in

neoplastic cells could reflect gene-independent TE expression,

including enhancer-dependent or long non-coding (Lnc) RNA-

dependent readthrough transcription. We therefore next

analyzed the correlation between expression of TEs and their

closest genes in neoplastic and immune cells. Figure S2H shows

examples of proximal and distal TEs, expressed together or

independently of their closest gene. Quantification of the propor-

tions of TEs in the two categories shows that the proportion of

both proximal and distal TEs that are expressed while their

closest gene is silent (TE+gene�) is higher in the neoplastic cells

(39%) signature as comparedwith the immune cells (24%) signa-

ture (Figure 1H). These results show that higher proportions of

TEs differentially expressed in neoplastic cells are distant and

transcribed independently of their closest gene neighbor, sug-

gesting a higher level of autonomy in TE transcription in GBM tu-

moral cells.

Tumor enrichment and patient recurrence of the single-
cell neoplastic TE signature
To validate the single-cell-based neoplastic TE signature, we

next analyzed bulk RNA-seq from the Cancer Genome Atlas

(TCGA) (155 GBM patients) and Genotype-Tissue Expression

(GTEx) (1,080 healthy samples from 25 tissues; Figures S3A

and S3B) cohorts. As previously observed within the single-cell

RNA-seq data, the proportion of intronic TEs is higher in normal

tissue than in GBM: 53.7% versus 68.6% (Figure S2F). These re-

sults indicate that neoplastic GBM cells express higher propor-

tions of non-intronic TEs than non-neoplastic cells and that this

difference is detected in both bulk and scRNA-seq datasets.

We next performed principal-component analysis (PCA) and

uniform manifold approximation and projection (UMAP) based

on neoplastic TE signature, and we show that GBM samples

cluster away from normal tissue GTEx samples (Figures 2A,

2B, S3C, and S3D). Heatmap Z score representation in TCGA

and GTEx samples show higher expression of the 2,000 top

TEs from the single-cell neoplastic TE signature in TCGA GBM

samples and reduced expression in healthy tissues (Figure 2C).

Gene set enrichment analysis (GSEA) shows that expression of

the neoplastic TE signature is highly enriched in GBM versus
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normal brain samples (normalized enrichment score [NES] = 1.67

and false discovery rate [FDR] < 0.05; Figure 2D) and versus

other normal tissues samples in GTEx (Figures S3E and S3F).

The median neoplastic TE signature expression level is also

higher in GBM samples, compared with normal-tissue GTEx

samples (Figures 2E and S3G). Examples of individual TEs over-

expressed in both datasets, bulk RNA-seq (Figure 2F, top

panels) and scRNA-seq (bottom panels), illustrate the selective

expression of certain TEs in GBM cells as compared with

epidermal growth factor receptor (EGFR), a known GBMmarker.

We conclude that analysis of individual TEs from scRNA-seq is

accurate and allows the identification of recurrent, tumor-en-

riched individual TEs.

TE-derived peptides are presented on HLA-I and are
immunogenic in vitro

To investigate whether TE-derived peptides are presented by

HLA-I molecules in GBM cells, we used 30 mass spectrometry

(MS)-based immunopeptidomic samples from GBM primary tu-

mors and cell lines (Forlani et al., 2021; Sarkizova et al., 2020;

Shraibman et al., 2016, 2018; Figure 3A). Multi-mapping

(3,428) or uniquely mapping (1,945) differentially expressed

TEs from the neoplastic TE signature were in silico translated

in the six reading frames (RFs) and concatenated to the human

annotated proteome. We thus obtained 370 TE-derived pep-

tides, including 63 peptides identified in both signatures, 147

only in the multi-mapped reads signature, and 160 only in the

uniquely mapped reads signature (Figures 3B and 3C; Data

S1). Heatmap representation of all identified TE-derived pep-

tides shows that the number of peptides varies among samples

and that some peptides are found in several patients and cell

lines (Figure 3D).

TE-derived peptides showed similar SEQUEST quality scores

and peptide length distribution as Uniprot-annotated peptides

(Figures 3E and S4A). TE-derived peptides binding to HLA-A3

(the most abundant HLA-I among all TE-derived peptides; n =

96) contained the expected binding motif obtained from the Im-

mune Epitope Database (IEDB) (Figure 3F; Vita et al., 2019). In

addition, TE-derived peptides maintained the correlation be-

tween hydrophobicity and retention time (three representative

examples in Figure S4B). These results indicate that TE-derived

peptidome is reliable and contains similar characteristics to the

canonical peptidome. In addition, 23 TE-derived peptides were

synthesized and validated by comparison with the endogenous

MS/MS spectra (out of 24 tested; Data S1 and S2). Confirming

the robustness of our pipeline, the identified peptides, similar

to the neoplastic TE signature, are preferentially encoded by

TEs from chromosome 7 and depleted from TEs on chromosome

10 (Figure 3G). We conclude that HLA-I molecules on GBM
Figure 2. Single-cell neoplastic TE signature is highly enriched in TCG

(A and B) PCA and UMAP projection of TCGA. GBM tumor samples and health

shown.

(C) Heatmap and hierarchical clustering on TCGA GBM tumor and GTEx normal sa

(D) GSEAwas performed to assess the specific enrichment of the neoplastic TE sign

(E) Violin plot showing the median expression of single-cell neoplastic TE signatu

unpaired Wilcoxon test: ****p % 0.0001.

(F) Violin plots showing specific expression of EGFR gene and five individual TEs
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neoplastic cells present peptides encoded by differentially ex-

pressed TEs.

To investigate the possibility that TE-encoded peptides can

represent potential tumor antigens, we searched for T cell pre-

cursors in healthy donors. Using a tetramer-formation assay,

we first experimentally tested the binding for HLA-A*02:01 (six

peptides from immunopeptidomics and 17 from NetMHC pre-

dictions on in silico translated TEs from the neoplastic signature;

Figure S4C) and for HLA-B*07:02 (two peptides from the immu-

nopeptidomics) (Figure S4D; Data S1). Nineteen peptides were

confirmed as HLA-I binders and were used to test immunoge-

nicity in vitro. Peptide-loaded, monocyte-derived dendritic cells

were cultured with autologous CD4+ and CD8+ T cells from

seven healthy donors, and tetramer staining was used as

readout (Figures 3H and S4E). Figure 3H shows examples of

expanded populations of TE-specific, tetramer-positive, CD8+

T cells. Mutated Melan-A peptide, a strong binder to HLA-

A*02:01 and with high T cell precursor frequency in most healthy

donors (Pittet et al., 1999), was used as positive control for cell

expansions. Three HLA-A*02:01-binding peptides from canoni-

cal proteins not specifically expressed in GBM were also

included as negative controls. The three peptides derived from

canonical proteins induced very weak or no responses, although

mutated Melan-A-derived peptide (also a non-TE-derived, non-

GBM-specific protein) induced high T cell responses

(Figures 3I and S4F). Expanded tetramer-positive populations

were observed for 15 TE-derived peptides (including five from

the immunopeptidomic identifications), in at least one donor.

These results demonstrate that a subgroup of TEs differentially

expressed in GBM can encode HLA-I-binding peptides that

are immunogenic in vitro in healthy donors and could potentially

represent a source of tumor antigens.

Young L1, LTR, and SVA subfamilies are main source of
TE-derived HLA-I peptides
To investigate the nature of the neoplastic-enriched TEs that

encode HLA-I-presented peptides in GBM, we next mapped

the peptide sequences to all differentially expressed TEs from

the single-cell neoplastic TE signature. In doing so, we realized

that, although 85.4% of the 370 peptides are encoded by one

single TE per peptide, the remaining 15% of peptides could

potentially be encoded by 2–200 neoplastic differentially ex-

pressed TEs per peptide (Figure 4A). We will refer to these pep-

tides as ‘‘single-TE’’ or ‘‘multi-TE’’ encoded peptides, respec-

tively. Several TEs coding for the same peptide will be

referred to as ‘‘redundant.’’ For further analyses, regarding

redundant TEs, since we cannot determine which TE or TEs en-

codes the peptide, we considered either all the TEs bearing the

peptide-coding nucleotide sequence (‘‘all assignments’’) or
A GBM samples compared with GTEx normal tissues

y tissue samples from GTEx based on single-cell neoplastic TE signature are

mples representing Z score of top 2,000 TEs from the neoplastic TE signature.

ature in TCGAGBM tumor samples comparedwith GTEx normal brain samples.

re in TCGA GBM and GTEx samples (brain and other tissues). We performed

in bulk and single-cell datasets.
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only one (chosen uniformly) of these TEs per peptide (‘‘single

assignment’’).

We first analyzed the genomic location of the peptide-
coding TEs relative to the nearest gene
Among TEs coding for HLA-I-presented peptides, 37.9% and

31.9% (for all and single assignments, respectively) are distal

compared with all expressed TEs (12.1%) or to neoplastic differ-

entially expressed TEs (22.3%) (Figure 4B). Analysis of the

genomic locations of peptide-coding TEs revealed increased

proportions of intergenic TEs (35% and 28.9% for all and single

assignments, respectively, compared with 15.2% in the

neoplastic TE signature) (Figure 4C). The proportion of intronic

TEs is also increased, but not as much (50% and 50.7% for all

and single assignments, respectively, compared with 38.7% in

TEs expressed in neoplastic cells). 30 UTR encoded TEs are

less frequent in peptide-coding TEs: 25.3% of TEs in the

neoplastic TE signature and only 5.8% and 7% for all and single

assignments, respectively, among peptide-coding TEs. These

results establish selectivity in the genomic location of peptide-

coding TEs, which are preferentially distal, intergenic, and not

present in 30 UTRs.
We next sought to investigate whether the identified peptides

are preferentially derived from certain TE classes. Based on both

all and single assignments, peptide-coding TEs are significantly

enriched for LINEs, which represent around 30% of all ex-

pressed or neoplastic differentially expressed TEs, and from

52% to 64% for all and single assignments of peptide-coding

TEs, respectively (Figure 4D, statistics in Figure S5A, and individ-

ually for each immunopeptidomic sample in Figure S5B). These

TE class analyses also revealed that TEs classified as ‘‘other’’ are

also enriched. This category includes SVA elements and other

types of repeats codified in RepeatMasker as RC, RNA, satellite,

and unknown. Among the 51 TE-derived peptides in the other

category, 23 are from SVA elements (Figure S5C). SINEs, in

contrast, are depleted among peptide-coding TEs (from 51.7%

to 44.5% in all expressed TEs and neoplastic differentially ex-

pressed TEs to around 11% in peptide-coding TEs). Therefore,

neoplastic differentially expressed LINEs are a major source of

TE-derived peptides presented on HLA-I in GBM.

TEswithin each class are classified in families and subfamilies.

The evolutionary ‘‘age’’ of these subfamilies can be estimated

from the degeneration of their characteristic repeat motifs

(Choudhary et al., 2020). We reasoned that the peptides that

can be redundantly encoded by multiple TEs could be derived

from conserved sequences present in different young TEs from

the same subfamilies. Figure 4E shows the age of all TEs from
Figure 3. GBM-enriched, TE-derived, immunogenic peptides are prese

(A) Workflow for the identification of TE-derived peptides using MS-based immu

(B and C) Venn diagrams summarizing the overlap between neoplastic TE signatu

(D) Heatmap summarizing TE-derived peptides found in each immunopeptidomi

(E) Boxplot showing the peptide-spectrum identification score (SEQUEST score)

(F) HLA-A3 binding motif obtained by GibbsCluster 2.0 from TE-derived peptido

(G) Radar plot showing the percentage of peptide-coding TEs among all chromo

(H) Examples of expanded tetramer-positive CD8 T cells for TE-derived peptides

(I) Total frequency of tetramer-positive populations for HLA-A*02:01 predicted or M

donor. Lines below indicate peptide mixes used for each donor (n = 7). P#, predic

tide and N#, normal proteome-derived peptides.
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each class in RepeatMasker, as well as all expressed TEs,

neoplastic differentially expressed TEs, and peptide-coding

TEs. The median age of the peptide-coding SINE and DNA TEs

are similar to all genomic TEs annotated in RepeatMasker and

to all expressed and neoplastic TE signatures. For LTRs, the pro-

portion of younger TEs is increased among peptide-coding TEs

(decreasing the median age of the peptide-coding TEs

compared with other categories), but older TEs are also pre-

sented on HLA-I. For LINE and other (see above for a more

detailed analysis of this category) classes, a bimodal distribution

is observed, with a clear enrichment in peptides encoded by TEs

from young subfamilies (under 50 Ma) that are rare in

RepeatMasker in all expressed and in neoplastic differentially

expressed TEs (Figure 4E). We conclude that, among LINE and

LTR classes, recent TEs are more prone to provide peptides

for HLA-I presentation.

Conserved viral proteins are a source of HLA-I-
presented peptides
A few of the youngest subfamilies include TEs that contain intact

viral protein ORFs, including a few ‘‘active’’ TEs in terms of retro-

transposition (Burns, 2017; Rodic et al., 2015; Scott et al., 2016).

We next investigated whether peptides from TEs are derived

from validated endogenous viral elements (EVEs) in the gEVE

database (Nakagawa and Takahashi, 2016). These EVEs of

at least 80 amino acids were identified processing both

RepeatMasker annotations and conserved known motifs from

viral proteins, such as Gag and Pol. Mapping peptide-coding

TEs to gEVE shows that, for both LINEs and LTRs, TEs with an

annotated EVE are significantly enriched among peptide-coding

TEs (based on both all and single assignments), as compared

with RepeatMasker, all expressed, and the neoplastic TE signa-

ture (Figure 4F). Consistent with these results, mapping of the

TE-derived peptides to annotated EVE protein sequences shows

selectivity for Alu among SINEs; L1PA/B/x and L2 among LINEs;

ERV1, ERVK, ERVL, and ERV-MaLR among LTRs; and SVA

among other (Figure S5C). Allowing one or two nucleotide mis-

matches (to take into account possible mutations or polymor-

phisms) increases markedly the proportion of TE-derived pep-

tides that map to annotated EVE protein sequences, including

for classes and families (Figure S5C, middle and right panels),

suggesting that recently mutated TEs are also a major source

of peptides for HLA-I presentation. Most peptides are derived

from ORFs bearing a start codon, either ATG (canonical) or

CTG/GTG/TTG (non-canonical) (Figures 4G and S5D). We

conclude that TEs from young subfamilies, preferentially bearing

retroviral protein motifs, are more prone to provide peptides for
nted on HLA-I molecules

nopeptidomics.

res or TE-derived peptides obtained from uniquely or multi-mapped analysis.

c sample analyzed.

from annotated-canonical and TE-derived peptides.

me (top) and IEDB reference peptides (bottom).

somes.

after in vitro immunogenicity assay.

S-derived peptides and HLA-B*07:02 MS-derived peptides in each evaluated

ted TE-derived peptides; pMS#, MS-derived peptides; mutated Melan-A pep-
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presentation on HLA-I molecules in GBM cells. Figure S5E

shows an example of three peptides encoded by an SVA family

member, SVA_B_dup189. Peptides can be encoded by different

reading frames (RFs) and rarely outside of ORFs. In these cases,

it could be that the ORF is shorter than 30 nt, that the start codon

for this ORF is not among the four start codons used in the pipe-

line, or that the start codon is upstream the TE sequence.

Analysis of the length of the ORFs encoding HLA-I-presented

peptides shows that, among L1PA/B/x, but not among other TE

families, ORFs generating peptides and containing a canonical

ATG start codon are longer than the ORFs beginning with a

non-canonical start codon (Figure 4H). Among peptide-coding

LTRsmapping to a gEVE annotatedORF, ORFs from all retroviral

proteins are found in the peptide-coding TE sequences (Fig-

ure 4I), with an enrichment for Gag (which represents 10.6% of

LTR EVE annotated versus 28% of LTR peptide-coding TEs).

In the case of LINEs, Pol are the only gEVE-annotated proteins

(Figure 4I). Blast of the peptide-coding sequences shows that

the majority of LINE-encoded peptides are not derived from

the two major LINE ORFs, ORF1p (3.1%) and ORF2p (10.8%)

(Figure 4J). Therefore, TE-derived peptides are derived from

10- to 1,000-amino-acids-long ORFs bearing canonical or alter-

native start codons.

TE subfamilies share HLA-I-presented peptide coding
sequences
To investigate whether some types of TEs aremore prone to pro-

vide HLA-I-binding peptides than others, we next compared the

proportions of TE families among the ones differentially ex-

pressed in GBM (and used for the immunopeptidomic search)

and the proportions found among the TEs that code for peptides.

Figure S6A shows that, for LTRs, SINEs, and other, the propor-

tions of most families are similar between the neoplastic TE

signature and peptide-coding TEs (both with all or single assign-

ments) (Figure S6A, middle and right panels). For LINEs, in

contrast, peptides are preferentially derived from L1PA/B/x:

25.3% in the neoplastic TE signature versus 76.6% or 49.7%

for all and single assignments, respectively. Other LINE families

are depleted among peptide-coding TEs (especially L2, which

represents 25.1%of LINE in the neoplastic TE signature and pro-

vides for only 7.4% or 15.4% of LINE peptide-coding TEs, with

all and main assignments, respectively) (Figure S6A, left panel).

Statistical analysis shows significant enrichment in peptide-cod-

ing TEs over neoplastic differentially expressed TEs for L1PA/B/x

and SVA, considering either all or single assignments (Figures 5A

and S6B). ERV1 and ‘‘other L1’’ are enriched with all assign-

ments, while on the other hand, ERVKs are enriched with single
Figure 4. TE-derived peptides are located in long ORFs starting with c

(A) Barplot showing the proportion of peptides encoded by one or several TEs fr

(B–D) Bar plots displaying proportions of proximal and distal TEs (B), genomic loc

(E) Violin plots representing the TE age distribution per class and subset.

(F) Bar plots showing for different subsets the quantification of LINE and LTR TE

performed proportion test. ns: p > 0.05; *p % 0.05; **p % 0.01; ***p % 0.001; ***

(G) Pie charts showing the percentage of TE-derived peptides found in an ORF w

(H) Plot showing the peptide-coding TE ORF length distribution depending on the

0.05; **p % 0.01; ***p % 0.001; ****p % 0.0001.

(I) Bar plots displaying the proportions of LTRs and LINEs matching a hidden Ma

(J) Pie chart representing the percentage of LINE-derived peptides matching OR
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assignment. ‘‘Other repeats,’’ classified in RepeatMasker as RC,

RNA, satellite, and unknown, are also enriched. L2, SINEs

(including Alu and MIR), and ERVs (including ERVL and ERVL-

MalR) are all significantly depleted among peptide-coding TEs,

as compared with neoplastic differentially expressed TEs

(Figures 5A and S6B). L1PA/B/x includes L1HS (or L1PA1, TE

subfamily with few members still active in human genome) and

their closely related subfamilies L1PA(x) and L1PB(x), which

are all among the younger subfamilies compared with other

LINE-1 subfamilies. We conclude that some recent, mainly

LINE-1, TE families preferentially generate HLA-I-presented

peptides in GBM.

Because recent TEs have more conserved repeat motifs, we

next sought to investigate whether multi-TE-encoded, HLA-pre-

sented peptides corresponded to shared subfamily motifs. We

represented the 152 TE subfamilies coding for the 370 identified

HLA peptides in 2-dimensional plots coloring the intersections

between two subfamilies according to the number of shared

peptides. The green diagonal in this plot indicates that most sub-

families code for only one peptide (Figure 5B). The three main

groups of TE subfamilies coding shared peptides, or ‘‘redun-

dancy clusters,’’ appear as large squares and are enlarged in

Figure 5B (bottom panel). The first redundancy cluster corre-

sponds to a group of L1HS and L1PA(x), which are young

subfamilies of LINE-1 elements that share up to 25 peptides,

pairwise. The second cluster identifies relatively young SINEs

(mainly Alu) that share single peptides. The third cluster corre-

sponds to a group of young subfamilies of SVA elements that

share variable numbers of peptides. Therefore, redundancy oc-

curswithinmultiple TEs from the same recent related subfamilies

that could all potentially code for multiple peptides presented on

HLA-I molecules. Redundancy in peptide-coding TEs is there-

fore limited to a small number of recent TE subfamilies.

To investigate further the links between redundancy and age

of TEs, we extended the analysis to all TEs in the genome

(redundancy was so far analyzed among the neoplastic TE

signature). Genomic TE redundancy analysis shows that

49.5% of the 370 peptides identified by immunopeptidomics

are encoded by only one TE in the genome (Figure 5C) (as

compared with 85.4% in the neoplastic TE signature; Fig-

ure 4A). At the opposite end, 15.9% of these peptides could

potentially be encoded by 201–13,500 TE occurrences in the

genome. A plot of each peptide according to the number of

TEs it can potentially be encoded by and the age of the corre-

sponding subfamilies is shown in Figure 5D. Among SINEs,

Alu-derived peptides are highly redundant and from recent

subfamilies, while the MIR-derived peptides are encoded by
anonical and non-canonical start codons

om the single-cell neoplastic signature.

ation proportions (C), and TE class proportions (D) at RNA and peptide levels.

s with an endogenous viral element ORF documented in gEVE database. We

*p % 0.0001.

ith a canonical or non-canonical start codon.

type of start codon. We performed unpaired wilcoxon test. ns: p > 0.05; *p%

rkov model (HMM) profile of a known viral protein motif in gEVE.

F1p and ORF2p proteins (from Uniprot) using BlastP alignment.
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single TEs from older subfamilies. The same correlation is

observed among LINE-1 peptides, with young L1HS-,

L1PA(x)-, and L1PB(x)-derived peptides being encoded by

multiple elements and peptides derived from older L2 and

‘‘other L1’’ subfamilies by single elements. The negative corre-

lation between the number of TEs potentially encoding single

peptides and the age of the corresponding TE subfamilies is

confirmed across all TE families (r = �0.61; Figure 5E). We

conclude that, regardless of TE classes (LINE, SINE, LTR, or

DNA), subfamilies of young TEs bear shared (redundant) se-

quences that could code for the same HLA-I peptide, while

peptides encoded by TEs from older, more degenerated sub-

families are vastly derived from one genomic sequence.

Ancient single-TE encoded peptides are more tumor
enriched
To investigate how redundancy of TE-derived peptides affects

tumor specificity, we next calculated for each TE-derived pep-

tide the ratio between the aggregate expression of all TEs coding

for the same peptide in TCGA GBM versus all healthy tissues

from GTEx samples (Figure 6A; brown for higher expression in

GBM and blue for the opposite). Unsupervised clustering of

the aggregate TE expression identifies two main groups of TE-

derived peptides, group 1 and 2, dominated by peptide-coding

TEs overexpressed in GTEx and in GBM, respectively. Group 1

contains higher proportions of LINEs and others (including all

23 peptide-coding SVA elements), while group 2 contains

more LTRs and DNA transposons (Figure 6A, right panels).

Moreover, group 1 contains a majority of multi-TE encoded pep-

tides (63.5%), compared with only 26.6% in group 2 (Figure 6A).

Consistently, the median age of group 1 TEs is significantly lower

than the median age of group 2 (Figure 6B). These results show

that single-TE encoded peptides from older TE subfamilies are

more likely to be overexpressed in GBM than TEs from younger

subfamilies containing multi-TE encoded peptides.

Can we, then, identify tumor-specific TE peptides? Figure 6C

shows expression of the top 50 tumor-enriched, peptide-coding

TEs in GBM and all GTEx healthy tissues (as 90 percentile

expression, left panel, and percentage of samples with higher

expression than GBM median expression, right panel). The

most tumor-enriched TEs are from diverse classes but are pref-

erentially derived from ORFs containing a canonical start codon

(right histograms in Figures 6C and S7A). Some of these TEs are

expressed in a majority of GBM tumors and undetectable in all,

or in a majority, of GTEx healthy tissues (including brain) (Fig-

ure 6D). For some of these TEs, over 90% of the cells expressing

the TEs are GBM neoplastic cells from all four patients in the

scRNA-seq datasets (pie charts in Figure 6D; violin plots in Fig-

ure S7B). We conclude that a subset of non-redundant, peptide-
Figure 5. TE-derived peptide redundancy depends on the age of TEs

(A) Plot showing TE family enrichment analysis using peptide-coding TEs with al

(B) Plot showing the number of shared TE-derived peptides among TE subfamilies

shared peptides between L1PA/B/x, SVA, and Alu subfamilies.

(C) Pie charts displaying the percentage of redundancy of TE-derived peptides.

(D) Dot plot representing the median age of peptide-coding TEs in each family c

(E) Correlation plot between the total number of peptide-coding TEs and their m

value are indicated on the figure.
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coding TEs are highly tumor enriched and recurrent in cancer pa-

tients. These non-redundant, peptide-coding TEs represent

interesting potential targets for immunotherapy.

DISCUSSION

In search for tumor-specific, recurrent antigens, we use a TE-

centered proteogenomic approach to investigate HLA-I presen-

tation of TE-derived peptides. We first analyze scRNA-seq from

total live cells of four primary GBM tumors to identify individual

TEs expressed selectively in GBM tumor cells and not in hemato-

poietic or stromal cells. We show that the TEs differentially ex-

pressed in neoplastic cells are overexpressed in a cohort of

155 bulk RNA-seq samples from GBM patients (TCGA), as

comparedwith all tissues, including brain tissue from healthy do-

nors (GTEx). This neoplastic-enriched TE signature is used to

interrogate MS-based immunopeptidomic datasets from 30 cell

lines and primary GBM tumors. We identify 370 TE-derived pep-

tideswith reliable profiles andmotif compliance toHLA-I allelesof

the corresponding samples. These peptides are encoded by 568

TEs, whose analysis revealed some interesting aspects of the

biology of HLA-I presentation of peptides from TEs in GBM cells.

Our study relies on scRNA-seqmapping of TEs. Several recent

papers have analyzed TEs in scRNA-seq datasets. Although a

few early studies pointed to possible bias and limitations (He

et al., 2021; Shao andWang, 2021), reliable pipelines and guide-

lines are now available and have been applied in our study. Our

results are also supported by internal controls that confirm the

robustness of our TE scRNA-seq analyses. First, we show that

the TEs expressed in neoplastic GBM cells, but not in other

cell populations, are biased for TEs encoded by chromosome

7 (all or intergenic TEs, suggesting that the bias is not due to in-

tronic TE expression) (Figure 1E). Second, the neoplastic TE

signature based on scRNA-seq is overexpressed in GBM bulk

RNA-seq patient cohorts compared with healthy tissues

(Figures 2D and 2E). Importantly, the peptides identified in immu-

nopeptidomic databases are also biased for chromosome 7,

further and independently validating our peptide discovery and

validation pipelines.

One conclusion of our study is that the proportions of intronic

and intergenic TEs are increased among peptide-coding TEs, as

compared with the neoplastic TE signature (the database used

to identify the peptides), at the expense of 30 UTR TEs. HLA-I-

presented peptides can therefore be derived from both gene-

dependent and gene-independent transcription and translation,

but the reasons why intronic TEs provide proportionally more

peptides than 30 UTR TEs is worth further analyses. Previous

studies have found that 30 UTRs can code for HLA-presented

peptides (Laumont et al., 2016; Zhao et al., 2020), but these
l or single assignment(s).

. A closed-up representation is displayed on the bottom, showing the number of

lassified by TE classes.

edian age. We performed Pearson correlation test. Pearson coefficient and p
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studies did not consider TEs from other genomic locations, as

we do here. We also find that LINE-1 elements are the major

source of HLA-I-presented peptides in GBM. LINE-1 represents

around 30%of TEs in the human genome, of all TEs expressed in

GBM, and of neoplastic TE signature but over 50% of the TE-en-

coded peptides presented on HLA-I. SVA-derived peptides are

also strongly enriched, while the proportion of SINE-derived

peptides is reduced (as compared with genomic, expressed,

and differentially expressed SINEs in GBM). LINE-1 elements

with and without intact ORFs are preferentially represented

among peptide-generating TEs, and this bias is observed

whether TEs are assigned to multiple or to single locations, indi-

cating that the bias is not due to TE mapping issues.

Another conclusion from our study is that HLA-I molecules

present peptides that can be encoded by either one or multiple

TEs (bearing nucleotide sequence encoding the exact same

peptide). Redundancy, in most cases, occurs within TE subfam-

ilies and, in some cases, within different subfamilies that are al-

ways from the same TE class. The most redundant TEs (from

several hundred to several thousand occurrences) are from

L1PA/B/x and often bear intact annotated ORFs. Peptides

derived from Alu (a SINE family member), ERV1 (an LTR family),

and SVA (an intermediate-length independent family), which are

all among the youngest TE families in humans, are also highly

represented and redundant. Redundancy is negatively corre-

lated with the age of the TE subfamily, suggesting that the recur-

rent sequences encoding HLA-I-binding peptides are part of the

ancestral TE insertion event, which subsequently degenerated

by mutations and disappeared with time as members of the sub-

families diverged. This scenario is supported by the observation

that, if one or two nucleotide mismatches are allowed, the num-

ber of redundant TEs is even larger (Figure S5C). This is an

intriguing observation, and we do not know yet whether the pep-

tides identified by mass spectrometry are derived from multiple

or single TE loci.

Analysis of the peptide-coding TE ORFs reveals that peptides

are generally encoded by 10- to 100-amino-acid-long ORFs

(with the exception of around half of the LINE-encoded peptides

that are derived from longer ORFs). In LTRs, peptides are derived

from all viral ORF types, with a positive bias for gag-derived pep-

tides, as compared with the proportion of gag genes annotated

in the databases (Figure 4I). Among LINE-derived peptides, only

a small proportion (around 10%) are derived from the known

ORF1p and ORF2p proteins. The TE-coding ORFs bear either

canonical or alternative start codons, with exception of the

longer LINE-1 ORFs (over 100 amino acids), which are all driven

by canonical ATG start codons.
Figure 6. A subset of non-redundant, peptide-coding TEs are highly tu

(A) Heatmap displaying the log2 ratio between TCGA GBM and GTEx samples

classified into five normal tissue categories defined in Bradley et al. (2020) (left). H

classes is shown for each group (right).

(B) Plot showingmedian age of peptide-coding TEs for each group.We performed

as follows: ns: p > 0.05; *p % 0.05; **p % 0.01; ***p % 0.001; ****p % 0.0001.

(C) Heatmaps of top 50 TEs from group 2 coding for single-TE encoded peptide d

tumor samples and 25 normal tissues from GTEx. ORF length is plotted (right) fo

(D) Plots showing TE expression for four examples marked with a star in (C). Med

positive cells in each cell type described in scRNA-seq is represented using pie
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How, then, can we use this knowledge to identify tumor-spe-

cific, TE-derived antigens? Analysis of the relative expression

of individual peptide-coding TEs in GBM tumors and a wide se-

ries of healthy tissues reveal that redundant TEs from younger

subfamilies are generally less tumor enriched than single TEs

from older ones (Figure 6A). Because of their wide tissue expres-

sion, it is most likely that the immune system is more tolerized to

the antigens from these TEs (although this would need to be ad-

dressed specifically). Redundant TEs are therefore probably not

the best candidates for tumor-specific targets for immuno-

therapy, although vaccination with LINE-1 intact ORFs has

been shown to be both immunogenic and safe in mice and mon-

keys (Sacha et al., 2012). Our results, however, also identify non-

redundant, peptide-coding TEs that are preferentially from MIR,

LINE-1 and -2, and some ERV oldest subfamilies. These non-

redundant, peptide-coding TEs are in majority from relatively

old TE subfamilies (over 50 Ma), and tBLASTn analysis shows

that some of these sequences are present only once in the

genome. Some of these TEs are from subfamilies recurrently

and selectively de-repressed in tumors, mostly through local

DNA demethylation (Brocks et al., 2017; Chiappinelli et al.,

2017; Lavie et al., 2005; Ohtani et al., 2020; Roulois et al., 2015;

Sacha et al., 2012). We show that some of these peptide-coding

TEs that are expressed in amajority of GBM tumors are either not

detected in healthy tissues or detected at low frequencies and/or

low levels (Figure 6). Further studies will investigate whether

these tumor-enriched, peptide-coding TEs can be expressed in

other pathological conditions, such as apoptosis or inflamma-

tion, in which TE de-repression can be observed.

Our results of in vitro stimulation with some of the TE-derived

peptides indicate that the TCR repertoire for TEs in healthy individ-

uals exists, opening the possibility that these TEs are immuno-

genic in patients. Previous studies, however, have shown T cell

reactivity against tumor-expressed TEs, establishing the proof of

concept that TEs, including ERVs, can be immunogenic in cancer

patients (Saini et al., 2020; Smith et al., 2018; Wang-Johanning

et al., 2008). In this context, mapping the expression of individual

TEs from single-cell and bulk RNA-seq in cancer patients proved

efficient indefining individual TEoccurrences that yieldHLA-I-pre-

sented peptides. The tumor enrichment and high recurrence of

these peptide-coding TEs opens perspectives for immunother-

apies in many cancer types with de-repressed TEs and beyond,

in other pathologies in which TEs expression is de-regulated.

Limitations of the study
First, our study maps RNA-seq reads to annotated TEs. At least

in part because TEs are largely repetitive, TE annotation in the
mor enriched and recurrent in cancer patients

of TE-derived peptides aggregate RNA-related expression. GTEx tissues are

ierarchical clustering identified two groups. Distribution of redundancy and TE

unpairedWilcoxon test. The correspondence between p values and symbols is

isplaying their 90th percentile expression (left) and frequency (middle) in GBM

r each TE.

ian expression for each tissue is indicated with a black line. The percentage of

charts.
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human genome is far from perfect (even it has made significant

progress in the last few years). Consequently, it is possible

that the genomic location and the assignment to a specific lo-

cus or subfamily will change in the coming years. Second,

even if our analysis of T cell stimulation in healthy peripheral

blood mononuclear cells (PBMCs) shows potential immunoge-

nicity, the actual direct demonstration of TE immunogenicity

would come from analyses of T cell responses in GBM patients.

This is not trivial, as tumor-infiltrating lymphocytes (TILs) in

GBM are rare and difficult to amplify ex vivo. Thirdly, despite

our demonstration that numerous transcribed TEs can poten-

tially code for some of the identified HLA-I-bound peptides,

we still do not know which and how many of those TEs actually

encode the peptides. Finally, even if the expression of some

TEs seems truly specific (absent completely from all healthy

tissues), these TEs are very rare (maybe three in this study). Tu-

mor-enriched TEs in contrast are quite numerous and could be

sufficiently immunogenic to develop effective immunotherapy

tools.
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Antibodies

BV711 Streptavidin BD Biosciences Cat# 563262; RRID:AB_2869478

APC Streptavidin BD Biosciences Cat# 554067; RRID:AB_10050396

FITC Streptavidin BD Biosciences Cat# 554060; RRID:AB_10053373

PE Streptavidin BD Biosciences Cat# 554061; RRID:AB_10053328

BV421 Streptavidin BD Biosciences Cat# 563259; RRID:AB_2869475

PE-CF594 Streptavidin BD Biosciences Cat# 562284; RRID:AB_11154598

PE-Cy5 Streptavidin BD Biosciences Cat# 554062; RRID:AB_10053563

PE Mouse Anti-Human HLA-A2 (Clone BB7.2) BD Biosciences Cat# 558570; RRID:AB_647220

PE Mouse IgG2b k isotype BD Biosciences Cat# 555743; RRID:AB_396086

PE-Cy7 Mouse Anti-Human CD8 (Clone RPA-T8) BD Biosciences Cat# 557746; RRID:AB_396852

BV650 Mouse Anti-Human CD3 (Clone HIT3) BD Biosciences Cat# 740562; RRID:AB_2740263

BV605 Mouse Anti-Human CD4 (Clone OKT4) Biolegend Cat# 317438; RRID:AB_11218995

APC anti-human HLA-B7 Antibody (clone BB7.1) Biolegend Cat# 372405; RRID:AB_2650775

PE Anti-human b2-microglobulin (Clone BBM.1) Santa Cruz Cat# sc-13565; RRID:AB_626748

Biological samples

Human peripheral blood Etablissement Français du Sang Paris, France

Chemicals, peptides, and recombinant proteins

Bovine Serum Albumin SIGMA A7906

X-VIVO 15 Serum-free Hematopoietic Cell Medium Lonza BE02-060F

Penicillin-Streptomycin Gibco 15070063

Synthetic peptides Genecust N/A

Proleukin (IL-2) Novartis Proleukin SC

Lymphoprep StemCell 07851

Human GM-CSF Miltenyi 130-093-864

Human IL4 Miltenyi 130-093-922

Recombinant Human IL7 Preprotech 200-07

Critical commercial assays

Easymer HLA-A*02:01 Immunaware 1002-01

Easymers HLA-B*07:02 Immunaware 1048-01

CD8 MicroBeads, human Miltenyi Cat# 130-045-201; RRID:AB_2889920

CD4 MicroBeads, human Miltenyi Cat# 130-045-101; RRID:AB_2889919

CD14 MicroBeads, human Miltenyi Cat# 130-050-201; RRID:AB_2665482

Streptavidin coated beads Spherotech SVP-60-5

LIVE/DEADTM Fixable Aqua Dead Cell Stain Kit Thermo Fischer Scientific L34957

Fetal Calf Serum Eurobio CVFSVF00-01

Deposited data

Mass spectrometry raw data from GBM CIITA+

cell line immunopeptidomics

(Forlani et al., 2021) PRIDE: PXD020079

Mass spectrometry raw data from GBM tumor

immunopeptidomics

(Shraibman et al., 2018) PRIDE: PXD008127

Mass spectrometry raw data from GBM

decitabine treated cell line immunopeptidomics

(Shraibman et al., 2016) PRIDE: PXD003790

Mass spectrometry raw data from GBM

immunopeptidomics

(Sarkizova et al., 2020) MASSIVE: MSV000084442

Raw data files for GBM single-cell SMART-Seq2 data (Darmanis et al., 2017) GEO: GSE84465
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Raw data files for TCGA GBM Bulk RNA-seq data (Brennan et al., 2013) https://portal.gdc.cancer.gov/legacy-archive

Raw data files for GTEx Bulk RNA-seq data (Consortium, 2013) https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000424.v8.p2

Software and algorithms

Proteome Discoverer 2.5 ThermoFisher OPTON-31040

GibbsCluster 2.0 DTU Health Tech https://services.healthtech.dtu.dk/

service.php?GibbsCluster-2.0

NetMHC 4.0 DTU Health Tech https://services.healthtech.dtu.dk/

service.php?NetMHC-4.0

R 3.6.3 R https://www.r-project.org/

R 4.0.3 R https://www.r-project.org/

RStudio RStudio https://www.rstudio.com/

Pheatmap (Kolde, 2019) https://cran.r-project.org/web/packages/

pheatmap/index.html

ComplexHeatmap (Gu et al., 2016) https://www.bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

ggplot2 (Wickham, 2016) https://cran.r-project.org/web/packages/

ggplot2/index.html

Tidyr (Wickham and Girlich, 2022) https://github.com/tidyverse/tidyr

Dplyr (Wickham et al., 2022) https://github.com/tidyverse/dplyr

ORFik (Tjeldnes et al., 2021) http://bioconductor.org/packages/release/

bioc/html/ORFik.html

Bedtools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

Deeptools (Ramirez et al., 2014) https://deeptools.readthedocs.io/en/

develop/

Seurat (Butler et al., 2018) www.satijalab.org/seurat/

FeatureCounts (Liao et al., 2014) http://subread.sourceforge.net/

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

Samtools (Li et al., 2009) http://samtools.sourceforge.net/

GSEA (Subramanian et al., 2005) https://www.gsea-msigdb.org/gsea/

index.jsp

Lift Genome annotations UCSC https://genome.ucsc.edu/cgi-bin/

hgLiftOver

Blast (McGinnis and Madden, 2004) https://blast.ncbi.nlm.nih.gov/Blast.cgi

IGV (Robinson et al., 2017) https://software.broadinstitute.org/

software/igv/

Other

Script to annotate ORFs on TE sequences This paper Mendeley (https://doi.org/10.17632/

23b45jkb29.1)

Homer annotations Benner lab http://homer.ucsd.edu/homer/

Gencode gene annotations (Harrow et al., 2006) https://www.gencodegenes.org/human/

release_19.html

TEtranscripts TEs annotations (Jin et al., 2015) http://hammelllab.labsites.cshl.edu/

software

gEVE TEs annotations (Nakagawa and

Takahashi, 2016)

http://geve.med.u-tokai.ac.jp/
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Sebastian

Amigorena (sebastian.amigorena@curie.fr) and Christel Goudot (christel.goudot@curie.fr).
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This study did not generate new unique reagents.

Data and code availability
All data used in the paper are listed in the key resources table.

All original code has been deposited at Mendeley and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human research participants
Buffy coats from healthy donors were obtained from Etablissement Français du Sang (Paris, France) in accordance with INSERM

ethical guidelines. According to French Public Health Law (art L 1121-1-1, art L 1121-1-2), written consent and IRB approval are

not required for human non-interventional studies.

In-vitro vaccinations assay
PBMCs were obtained by density gradient separation using Lymphoprep (StemCell Technologies) and phenotyped by FACS using

anti-HLA-A2 (clone BB7.2, BD Biosciences) and anti-HLA-B7 antibodies (clone BB7.1, Biolegend). Only HLA-A2+ and/or HLA-B7+

donors were used.

Monocytes and lymphocytes from the same donor were purified as CD14+, CD4+ and CD8+ cells, respectively, by positive selec-

tion using magnetic beads (Miltenyi Biotec). Monocyte-derived dendritic cells (mo-DCs) were obtained by differentiation of CD14 +

fraction during 5 days at 106 cells/mL in RPMI-1650/Glutamax (Gibco), 10% FBS, penicillin (100 U/mL)/streptomycin (100 mg/mL),

recombinant human IL-4 (50ng/mL, Miltenyi Biotec) and GM-CSF (10ng/mL, Miltenyi Biotec). Isolated CD4+ and CD8+ T cells

were cryopreserved after purification.

After differentiation, mo-DCs were seeded in 24 well plates at 1 3 106 cells/mL and maturated overnight with LPS (100 ng/mL).

Then, culture media was removed, and LPS treated mo-DCs were pulsed during 3h at 37�C with a mix of selected good-binder

TE-derived peptides (either predicted or from HLA-I peptidomic data). Each peptide was added at 1 mg/mL final concentration.

Finally, peptide-loaded mo-DCs were harvested, pelleted and counted.

Cryopreserved lymphocyte fractions were thawed, and co-cultures were performed by mixing 1 3 106 CD8+ T cells, 0,1 3 106

CD4+ T cells and 0,1 3 106 peptide-loaded mo-DCs (CD8-CD4-mo-DCs ratio: 10:1:1, respectively) in a final volume of 2mL in 24

well plate. Each well was considered as an independent replicate. Total number of replicates was limited by the total number of

CD8+ T cells. Without disturbing the cells, half of the media was changed after 5 days and then, the culture was monitored every

3 days until day 15-20. Expansion of specific CD8+ T cell populations was evaluated by FACS using tetramer staining.

X-vivo 15 medium (Lonza) supplemented with penicillin (100 U/mL)/streptomycin (100 mg/mL) (Gibco), 10% FBS, IL-2 (10 U/mL,

Novartis) and IL-7 (10 ng/mL, PeproTech) was used as culture media.

As negative control, a replicate using non-peptide pulsed mo-DCs was included. For HLA-A2+ donors, a positive control of T cell

expansions (1 or 2 replicates) usingmo-DCs pulsed with mutatedMelan-A peptide (ELAGIGILTV) was included. 3 HLA-A*02:01 bind-

ing peptides derived from normal proteins were included.

Peptide binding to HLA-A*02:01 and HLA-B*07:02 by tetramer formation.

Predicted peptides were synthetized byGeneCust with a >98%purity. HLA-A*02:01 andHLA-B*07:02monomers were purchased

as easYmers from Immunaware (Copenhagen, Denmark). The binding to HLA-A*02:01 and HLA-B*07:02 of the predicted andMSTE-

derived peptides was measured by HLA-I-tetramer complex formation following manufacturer’s instructions. Briefly, biotinylated

monomers were incubated with synthetic peptides (100 mM) at 18�C during 48h. Then, they were bound to streptavidin-coated

beads and stained with PE-conjugated anti-b2-microglobulin antibody. As positive controls for HLA-A*0201-complex formation,

CMV pp65 495-503 (NLVPMVATV) and mutated Melan-A (ELAGIGILTV) were used. CMV pp65 417-426 (TPRVTGGGAM) peptide

was used for HLA-B*07:02. Binding is represented as percentage of HLA-I-complex formation relative to CMV positive controls. Pep-

tides with HLA-I-complex formation of at least 50% relative to positive control were used in in-vitro vaccination experiments.

For tetramer formation, peptide-HLA-I-complexes were tetramerized using different fluorescent streptavidins (PE, APC, BV421,

BV711, PE-CF549 and PECy5) at a final concentration of 8 mg/mL. All tetramers were kept at 4�C and used within 2 months.

Tetramer staining and analysis
Tetramer staining was performed on total cells after in-vitro vaccination experiments by combining 1mL of each tetramer specificity,

and two different streptavidin-labelled tetramers per specificity. The staining was performed during 20 min at RT in a final volume of

100 mL of PBS 1%BSAper 1M cells. Then, 100 mL of surface antibodymix containing anti-CD3 BV650 (BDBiosciences) and anti-CD8

PECy7 (BD Biosciences) at 1/200 final dilution was added and incubated for further 20 min at 4�C. Finally, cells were washed twice

with PBS-1% BSA and analyzed by flow cytometry. Live/Dead Aqua-405nm (ThermoFisher) was used to exclude dead cells. Data

was collected using a ZE5 Cell Analyzer (Bio-Rad) and analyzed using FlowJo v10.3.
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Tetramer analysis was done on live, single cells, CD3+CD8+ cells following the strategy described by Andersen et al. (Andersen

et al., 2012). Expansions were considered positive when positive for both streptavidin-labelled tetramers. Expanded populations for

each peptide are represented either as frequencies of total CD8+ cells in each replicate or as total tetramer frequencies among total

CD8+ T cells evaluated in all replicated for one donor.

METHOD DETAILS

Transposable element annotations
Classification and TE metadata

Transposable Element annotations have been retrieved from two different databases: from Homer repeat gtf annotation file (v4.11.1)

based on hg19 (v6.4) UCSC annotations, and from TEtranscript (Jin et al., 2015) hg19 gtf annotation file. Both annotations are based

onRepeatMasker database and have beenmerged based on identical coordinates (Chr, Start, End) to obtain following information on

each repeat: Class, Family, Subfamily, Divergence, coordinates. L1 family was subdivided into 2 families: (1) ‘‘L1PA/B/x’’ that include

TEs from closely related L1HS, L1PA(x), L1PB(x), L1P(x) subfamilies; and (2) ‘‘Other L1’’ regrouping all other L1 that are not present in

‘‘L1PA/B/x’’. All DNA transposonswere classified as DNA. annotatePeaks.pl fromHomer was performed to obtain genomic locations

(intron, exon, 30UTR, 50UTR, intergenic, other) for each individual TE. Closest and intersect tools from bedtools (v2.29.2) have been

used to retrieve, for each TE, the distance from closest protein-coding genes from gencode gtf annotation file (Release 19

GRCh37.p13) (Harrow et al., 2006).

Age of TEs

Repeat agewas calculated using percentage of divergence for human repeats: Divergence/(2.2 * 10-9), following the formula from this

article (Choudhary et al., 2020).

Ancient viral protein motif identification
Open reading frame (ORF) locations from Endogenous Viral Elements (EVE) were retrieved from gEVE database. As analyses were

performed on human genome version hg19, hg38 gEVE annotations were formatted and adjusted to hg19 using ‘‘Lift Genome an-

notations’’ tool from UCSC available here: https://genome.ucsc.edu/cgi-bin/hgLiftOver. ORFs coordinates from gEVE annotations

and from all individual TEs in the genome were matched to assign an EVE ORF to individual TEs in case of coordinate overlap.

30517 individual TEs overlapped an EVE ORF, with most of them being L1 (mostly L1PA/B/x) and ERV (mostly ERV1, ERVK,

ERVL) elements. To identify amino acid sequence similarity between canonical TE proteins from gEVE database and peptides

from immunopeptidomics, a blastp (McGinnis and Madden, 2004) was performed between gEVE protein sequences and the immu-

nopeptidomic sequences. No threshold on Evalue was set, and the similarity was estimated and classified in 3 categories: (1) 100%

match: no mismatch, no gap and query coverage per HSP to 100%; (2) at most 1 mismatch: 1 mismatch, no gap and query coverage

per HSP above 85%; and (3) at most 2 mismatches: 2 mismatches, no gap and query coverage per HSP above 85%.

Analysis of known TE proteins
LTR and LINE proteins

LTRs coding for peptides overlapping an intact ORF were classified as Env, Gag, Pol or Pro using RetroTector annotations from

gEVE. For LINE elements, a blastp (v2.12.0+) was performed between LINE-derived peptides and either ORF1p and ORF2p protein

sequences found in Uniprot (accession numbers Q9UN81 and O00370). LINE and LTR coding for a peptide were also compared to

gEVE HMM profile annotations to classify the TE protein motif found in those TEs.

TE ORF annotations

A homemade R script was used to identify and annotate ORFs from TE sequences. (1) TE nucleotide sequences were formatted to

obtain 6 frames using R package Biostrings (v2.58.0) and its functions DNAStringSet and reverseComplement. (2) 6-frame se-

quences were translated with translate function from Biostrings. (3) Stop codons and methionines were detected using matchPDict

function from Biostrings. (4) Peptides from immunopeptidomics were mapped using matchPDict function. (5) ORFik R package

(v1.10.13) (Tjeldnes et al., 2021) was used to detect ORF with at least 30bp (3 for the start codon, 8AA*3 for the sequence, 3 for

the stop codon) and to keep only the longest ORF. Two different start codon patterns were submitted to detect ORFs: ‘‘ATG’’ for

canonical start codons and ‘‘ATG|CTG|GTG|TTG’’ for canonical and non-canonical start codons. ORFs only found using the second

pattern were classified as ‘‘CTG|GTG|TTG’’. (6) Length of ORFs were calculated using start and end positions. (7) R package ggplot2

was used to represent all identified ORFs, stop codons, methionines and peptide locations in all 6 frames of the TEs.

Single-cell data analysis
Downloading data and read alignment to genome

Smart-seq2 data (GEO accession number: GSE84465) were downloaded from the Sequence Read Archive (SRA) database using

prefetch from SRA Toolkit (v2.10.0). SRA files were converted to fastq files using fastq-dump. Fastq files were 75bp paired-end

unstranded reads. Raw RNA reads were mapped to the human genome (hg19) using the 2-pass mode of STAR (version 2.7.1.a)

(Dobin et al., 2013) (parameters: –quantMode GeneCounts, –twopassMode Basic, –alignSJDBoverhangMin 1, –bamRemoveDu-

plicatesType UniqueIdentical, –winAnchorMultimapNmax 1000, –outFilterMultimapNmax 1000, –outFilterScoreMinOverLread
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0.33, –outFilterMatchNminOverLread 0.33, –outFilterMismatchNoverLmax 0.04, –outMultimapperOrder Random, –sjdbOverhang

76).

Quantification of gene and TE expression
To compute quantification of TE and gene expression, featureCounts (Liao et al., 2014) from Subread (v1.6.4) was computed on

each genome-mapped read files. Different parameters were used depending on the analysis : (1) for gene expression : –p –ignor-

eDup –g gene_id using gencode gtf annotation file; (2) for TE expression on individual copies (a) considering only uniquely map-

ping reads: –p –ignoreDup –g transcript_id using TEtranscript hg19 gtf annotation file; (b) considering uniquely and multi-mapping

reads : –p –ignoreDup –g transcript_id -M –primary; (3) for TE expression on subfamilies with uniquely and multi-mapping reads :

–p –ignoreDup –g gene_id -M –primary. Cell count files were merged into a matrix with a homemade python script (Python 3.6).

Filtering features and cells, normalization and batch correction
Cell metadata and feature raw countmatriceswere imported to R (v4.0.3) to create a SingleCellExperiment R object. CPM, FPKMand

TPM values on gene and TE expression were calculated on raw counts prior to any filtering using scuttle R package (v1.0.4) and its

functions: calculateCPM, calculateFPKM, calculateTPM. Cells with low number of counts and low number of features (3 times lower

than MAD) were removed using Scater and Scran packages. To remove low expressed features, several filters have been applied

depending on the analysis. For TE expression using uniquely-mapped reads (1), individual TEs with less than 1 count/cell in average

were removed [22000 individual remaining TEs]. For TE expression using multi-mapped reads (2), individual TEs with less than 5

counts in at least 20 cells were removed to take into account expression in small populations [130028 individual TEs]. For gene

expression (3), genes with less than 5 counts in at least 20 cells were removed [19867 genes remaining]. For TE subfamily expression,

no filtering was performed [992 subfamilies]. Raw count matrices were then normalized using logNormCounts function from scater R

package. After several verifications, a batch effect linked to the plate ID of the cells was identified. To correct it, removeBatchEffect

function from limma R package was used providing the plate ID as batch and the cell type as design.

Dimensionality reduction
A single Seurat object was created importing raw, normalized and normalized + corrected feature matrices into different assays.

CPM, FPKM and TPM matrices were also imported. Seurat v3 was used for the uniquely mapped read analysis; Seurat v4 was

used for the multi-mapped read analysis, the subfamily analysis and the gene analysis. From Seurat, FindVariableFeatures was per-

formed to distinguish the 5,000most variable genes or individual TEs; ScaleData to scale feature expression, RunPCA to compute 75

Principal Components, RunTSNE to perform t-SNE dimension reduction on 50 Principal Components. Dimensionality reduction step

was performed on normalized + corrected assay.

Differential expression analysis and enrichment tests
From Seurat, FindAllMarkers was performed on annotated cell types with a threshold of 0.25 foldchange (either natural log with

Seurat v3 or log2with v4) on features expressed in at least 10%of all cells in 1 cell type. Genes, subfamily and individual TE signatures

were designed based on FindAllMarkers results using differentially expressed features with an adjusted p value lower or equal to

0.05. Signature scoreswere computedwith the Seurat function AddModuleScore using the feature signature of interest. This function

calculates, for each individual cell, the average expression of each feature from the signature, subtracted by the aggregated expres-

sion of control feature sets. TE subfamily enrichment was performed using all annotated individual TEs in the genome (4.6million TEs)

as a reference and either all expressed TEs or individual TE signatures from each population as ours queries. A hypergeometric test

was computed using phyper from stats R package (v4.0.3). Then, a False Discovery Rate correction was applied using p.adjust from

stats R package.

Radarplot and chromosome distribution
Radarplots representing feature distribution on chromosomes were made using radarchart function from fmsb R package (v0.7.1).

Genomic proportions were calculated using all annotated genes and individual TEs from gencode and TEtranscript annotations,

respectively.

Bulk RNA-seq data analysis
Downloading, alignment to genome and quantification

Around 50 samples from each GTEx tissue (Consortium, 2013) were randomly targeted and their fastq read files were downloaded

using prefetch and fasterq-dump from sratoolkit (v2.10.0). Fastq reads from TCGA-GBM project (Brennan et al., 2013) were down-

loaded using gdc-client (v1.6.1). Alignment and feature quantification (genes, individual TEs, TE subfamilies) were done in the same

protocol described for the Smart-seq2 analysis. Expression was normalized using estimateSizeFactors from DESeq2 R package

(v1.30.1) to obtaine normalized counts. TPM values were also computed using calculateTPM function from scuttle. Two subsets

of TE expression matrices were obtained for each database: (1) Expression matrices with only TEs from the neoplastic single-cell

TE signatures; (2) Expression matrices with only expressed TEs. TEs were considered as expressed if we could observe at least 5

counts for 20% or more of the samples (considering separately either all samples from TCGA or GTEx database). 130640 TEs
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were retained for the TCGA samples whereas 192243 TEswere kept for the GTEx samples. Among those, 103585 TEswere common

to both databases.

Downstream analysis of bulk RNA-seq samples
Merged neoplastic signature specificmatrix with all samples from TCGA andGTExwas imported in a Seurat object. DESeq2 normal-

ized counts and TPM values were both imported. Using normalized counts, ScaleData, RunPCA and RunUMAP were applied to

obtain UMAP representations. To assess signature expression in the samples, median expression of all TEs from the neoplastic

signature was done using TPM values.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was performed using DESeq2 normalized count matrices of com-

mon expressed TEs between TCGA and GTEx databases (103585 TEs) to test enrichment of neoplastic single-cell signature in either

Normal or Tumor samples. GSEA (v4.2.1) was runwith default parameters. GSEA results were imported to R and ggplot2 was used to

make representations.

Mass spectrometry based immunopeptidomics
Mass spectrometry data analysis

MS-based immunopeptidomic files were obtained from PXD020079, PXD008127, PXD003790 and MSV000084442. They were an-

alysed with ProteomeDiscoverer 2.5 (ThermoFisher) using the following parameters: no-enzyme, precursor mass tolerance 20ppm

and fragment mass tolerance 0.02 Da. Methionine oxidation and N-acetylation were enabled as variable modifications. Using Perco-

lator, a false discovery rate (FDR) of 1% was applied at peptide level and no FDR was used at protein level. Spectra were searched

against the human Uniprot/SwissProt with isoforms (updated 06/03/2020) concatenated with the 6 reading frame in silico translated

neoplastic enriched TE database (from uniquely- or multiple-mapped analysis). Identified potential TE-derived peptides were filtered

afterwards with UniProt/TrEMBL database, considering leucine-isoleucine and lysine-glutamine as equivalent, respectively. Finally,

spectrums from TE-derived peptides were manually verified.

Peptide hydrophobicity index (HI) calculation
For retention time versus hydrophobicity comparisons, HI was predicted using SSRCalc web server (http://hs2.proteome.ca/

SSRCalc/SSRCalcX.html).

Single and all assignments definition
As multiple TEs can code for the same peptides, we made two different categories to make observations on TE-encoded peptide

features. All assignments correspond to all TEs coding for a peptide (all 568 TEs for 370 peptides). Single assignment corresponds

to a random selection for each peptide of an individual TE that can encode the corresponding peptide (370 TEs for 370 peptides).

Identifying potential peptide-coding TEs
To identify all TEs coding for peptides identified with immunopeptidomic results, peptide amino acid sequences were aligned to all

annotated individual TEs in the genome in all 6 reading frames using tblastn (v2.11.0+). Sequences from all TEs in the genome were

retrieved using getfasta from bedtools (v2.30.0) (Quinlan and Hall, 2010) with TETranscript gtf processed into BED format. No restric-

tion on Evalue was requested. All hits with a number of mismatches equal to 0, a number of gap openings equal to 0 and a query

coverage per HSP of 100 were kept and considered as peptide-coding TEs in addition to those from the neoplastic signature iden-

tified with ProteomeDiscoverer.

Spectrum validation with synthetic peptides
To validate the spectra, 24 of the identified peptides were synthesized (GeneCust) with an HPLC purity of 95% and were injected in a

Velos Orbitrap (CID or HCD). Raw files were analysed with ProteomeDiscoverer 2.5 (ThermoFisher). Spectrums were exported and

compared to the spectrums derived from the immunopeptidomic analysis. Only PSM with the same charge between synthetic and

endogenous and without modifications were analysed. The same fragmentation type (CID or HCD) between both spectrums was

prioritized when possible.

Assessing related RNA expression of TE-derived peptides
Identification of tumor-enriched TE-derived peptides

TPM expression of all possible TEs from the genome that can potentially code for the identified peptides was retrieved, and 90th

percentile values were calculated for each tissue. TEs coding for each specific peptide were selected and their 90th percentile values

were summed to obtain the total transcript expression related to these peptides. For single-TE encoded peptides, related transcript

expression was directly the 90th percentile value of the TE coding for the peptides. A log2 ratio was then performed between peptide

related expression in GBM samples compared to each GTEx tissue to assess if the related expression of these peptides were higher

in GBM samples compared Normal tissues. Using median TPM expression in GBM samples as a threshold, the percentage of
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expression in normal samples with an equal or higher expression was also calculated for each tissue. Pheatmap function from

ComplexHeatmap R package (v2.6.2) was then used to represent the log2 ratio, the 90th percentile values as well as the percentage

of expression in normal samples. Clustering method used in the heatmap with the log2 ratio was ward.D2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Figures
Most figures were made using R (v4.0.3). Piecharts, lollipop charts, barplots, violin plots, boxplots, jitterplots, volcano plots, density

plots, scatterplots and dimensionality reduction plot weremade using either ggplot2 R package (v3.3.3) (Wickham, 2016) or functions

from Seurat package (Butler et al., 2018). Pie donut chart was made with PieDonut function from webR package (v0.1.6). Heatmaps

were built with Pheatmap R package (v1.0.12) (Kolde, 2019) and ComplexHeatmap (v2.6.2) (Gu et al., 2016). Clustering method used

was ward.D2. IGV (v2.8.10) (Robinson et al., 2017) was used to visualize read coverage of bulk RNA-seq samples.

Statistical analyses
Wilcoxon tests were performed with R package ggpubr (version 0.4.0) and its function stat_compare_means (1) to compare distance

to closest gene between Immune and Neoplastic signatures; (2) to compare mean expression of the neoplastic signature in bulk

RNA-seq samples; and (3) to compare length of canonical and non-canonical TE-derived peptides ORFs. Pearson correlation scores

were computed using stat_cor from ggpubr: (1) to assess the correlation between TEs and their closest protein-coding gene; and (2)

to assess the correlation between median age of TEs coding for a peptide and the number of TEs that can code for the peptide. Two

proportions z-test were computed to compare LINE proportions in different subsets of individual TEs. The correspondence between

p values and symbols is as follows: ns: p > 0.05; *: p % 0.05; **: p % 0.01; ***: p % 0.001; ****: p % 0.0001.
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