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1. Electric quadrupole contribution to resonant x-ray diffraction  

Resonant x-ray scattering is anisotropic, and the scattering length f is represented by a 

tensor,  

𝑓 =  (

𝑓𝑥𝑥 𝑓𝑥𝑦 𝑓𝑥𝑧

𝑓𝑥𝑦 𝑓𝑦𝑦 𝑓𝑦𝑧

𝑓𝑥𝑧 𝑓𝑦𝑧 𝑓𝑧𝑧

). (S1)  

Here we take a Cartesian coordinate system where x, y, and z are along [100], [010], and 

[001], respectively. Two Fe3+ sites of CaFe2O4 locate at the Wyckoff position of 4c. Because 

of the mirror symmetry normal to [010] of the position, fxy = fyz = 0. Four Fe3+ of 4c, labelled 

as Fe(1), Fe(2), Fe(3), and Fe(4), are connected by (1) the identical operation 1, (2) two-fold 

screw operation along [001] 21, (3) inversion operation -1, and (4) the combination of -1 and 

21. Therefore, the scattering lengths of Fe3+ at respective positions are  

𝑓1 = 𝑓3 = (

𝑓𝑥𝑥 0 𝑓𝑥𝑧

0 𝑓𝑦𝑦 0

𝑓𝑥𝑧 0 𝑓𝑧𝑧

) and 𝑓2 = 𝑓4 = (

𝑓𝑥𝑥 0 −𝑓𝑥𝑧

0 𝑓𝑦𝑦 0

−𝑓𝑥𝑧 0 𝑓𝑧𝑧

). (S2) 

The scattering factor F of (001) is obtained by summing up f at each position with its phase,  

𝐹 = 𝑓1e2𝜋𝑖𝑧 + 𝑓2e2𝜋𝑖(𝑧+
1
2

) + 𝑓3e−2𝜋𝑖𝑧 + 𝑓4e−2𝜋𝑖(𝑧−
1
2

) 

= 4 cos(2𝜋𝑧) (
0 0 𝑓𝑥𝑧

0 0 0
𝑓𝑥𝑧 0 0

). (S3)  

Hence, one quadrupole moment (the xz component) contributes to (001), resulting in finite 

(001) intensities even above TNB.  

 

2. Comparison between TEY and XEOL  

A comparison of the XMCD spectra from the surface-sensitive total-electron yield 

(TEY) mode and from the bulk-sensitive x-ray excited optical luminescence (XEOL) mode is 

shown in Fig. S1. Here the XEOL signals including significant self-absorption distortion due 

to the film thickness were corrected with the method described in Ref. [1].  

  
Fig. S1 Comparison of the XMCD spectra measured simultaneously with TEY and XEOL 

modes at 150 K and 6 T.  

 

3. Comparison between L3 and L2 edges  
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Figure S2 shows experimental/simulated XMCD spectra, including both the Fe L2,3 

edges, measured at different conditions.  

 
Fig. S2. Comparison of the experimental and simulated Fe L2,3 edges XMCD spectra. (a) 

At 30 K and +6 T, (b) at 30 K and -6 T, and (c) at 150 K and +6 T.  
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