Supplemental Material for

Unusual ferrimagnetism in $\mathrm{CaFe}_{2} \mathrm{O}_{4}$

 Max Burian ${ }^{1}$, Yoshikazu Tanaka ${ }^{2}$, Christine Klauser ${ }^{3}$, Silvia Damerio ${ }^{4}$, Beatriz Noheda ${ }^{4,5}$, and Urs Staub ${ }^{1, *}$
${ }^{1}$ Swiss Light Source, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
${ }^{2}$ RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan.
${ }^{3}$ Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institute, 5232 VilligenPSI, Switzerland.
${ }^{4}$ Zernike Institute for Advanced Materials, University of Groningen, 9747AG- Groningen, Netherlands.
${ }^{5}$ CogniGron Center, University of Groningen, 9747AG- Groningen, Netherlands.

[^0]
Contents:

1. Electric quadrupole contribution to resonant x -ray diffraction
2. Comparison between TEY and XEOL
3. Comparison between L_{3} and L_{2} edges

1. Electric quadrupole contribution to resonant x-ray diffraction

Resonant \mathbf{x}-ray scattering is anisotropic, and the scattering length f is represented by a tensor,

$$
f=\left(\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \tag{S1}\\
f_{x y} & f_{y y} & f_{y z} \\
f_{x z} & f_{y z} & f_{z z}
\end{array}\right) .
$$

Here we take a Cartesian coordinate system where x, y, and z are along [100], [010], and [001], respectively. Two Fe^{3+} sites of $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ locate at the Wyckoff position of $4 c$. Because of the mirror symmetry normal to [010] of the position, $f_{x y}=f_{y z}=0$. Four Fe^{3+} of $4 c$, labelled as $\mathrm{Fe}(1), \mathrm{Fe}(2), \mathrm{Fe}(3)$, and $\mathrm{Fe}(4)$, are connected by (1) the identical operation 1, (2) two-fold screw operation along [001] 2_{1}, (3) inversion operation -1 , and (4) the combination of -1 and 21 . Therefore, the scattering lengths of Fe^{3+} at respective positions are

$$
f_{1}=f_{3}=\left(\begin{array}{ccc}
f_{x x} & 0 & f_{x z} \tag{S2}\\
0 & f_{y y} & 0 \\
f_{x z} & 0 & f_{z z}
\end{array}\right) \text { and } f_{2}=f_{4}=\left(\begin{array}{ccc}
f_{x x} & 0 & -f_{x z} \\
0 & f_{y y} & 0 \\
-f_{x z} & 0 & f_{z z}
\end{array}\right) \text {. }
$$

The scattering factor F of (001) is obtained by summing up f at each position with its phase,

$$
\begin{align*}
F= & f_{1} \mathrm{e}^{2 \pi i z}+f_{2} \mathrm{e}^{2 \pi i\left(z+\frac{1}{2}\right)}+f_{3} \mathrm{e}^{-2 \pi i z}+f_{4} \mathrm{e}^{-2 \pi i\left(z-\frac{1}{2}\right)} \\
& =4 \cos (2 \pi z)\left(\begin{array}{ccc}
0 & 0 & f_{x z} \\
0 & 0 & 0 \\
f_{x z} & 0 & 0
\end{array}\right) . \tag{S3}
\end{align*}
$$

Hence, one quadrupole moment (the $x z$ component) contributes to (001), resulting in finite (001) intensities even above $T_{\mathrm{N} B}$.

2. Comparison between TEY and XEOL

A comparison of the XMCD spectra from the surface-sensitive total-electron yield (TEY) mode and from the bulk-sensitive x-ray excited optical luminescence (XEOL) mode is shown in Fig. S1. Here the XEOL signals including significant self-absorption distortion due to the film thickness were corrected with the method described in Ref. [1].

Fig. S1 Comparison of the XMCD spectra measured simultaneously with TEY and XEOL modes at 150 K and 6 T .
3. Comparison between L_{3} and L_{2} edges

Figure S2 shows experimental/simulated XMCD spectra, including both the Fe $L_{2,3}$ edges, measured at different conditions.

Fig. S2. Comparison of the experimental and simulated $\mathrm{Fe} L_{2,3}$ edges XMCD spectra. (a) At 30 K and +6 T , (b) at 30 K and -6 T , and (c) at 150 K and +6 T .

References

1. C. Piamonteze, Y. W. Windsor, S. R. V. Avula, E. Kirk, and U. Staub, Soft x-ray absorption of thin films detected using substrate luminescence: a performance analysis. J. Synchrotron Rad. 27, 1289-1296 (2020).

[^0]: ${ }^{\dagger}$ These authors contributed equally to this work.
 ${ }^{\ddagger}$ Present address: SwissFEL, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.

 * Correspondence authors: hiroki.ueda@psi.ch, elizabeth.skoropata@psi.ch, and urs.staub@psi.ch

