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a b s t r a c t

Multifractal Detrended Fluctuation Analysis stands out as one of the most reliable
methods for unveiling multifractal properties, specially when real-world time series
are under analysis. However, little is known about how several aspects, like artefacts
during the data acquisition process, affect its results. In this work we have numerically
investigated the performance of Multifractal Detrended Fluctuation Analysis applied to
synthetic finite uncorrelated data following a power-law distribution in the presence of
additive noise, and periodic and randomly-placed outliers. We have found that, on one
hand, spurious multifractality is observed as a result of data finiteness, while additive
noise leads to an underestimation of the exponents hq for q < 0 even for low noise levels.
On the other hand, additive periodic and randomly-located outliers result in a corrupted
inverse multifractality around q = 0. Moreover, the presence of randomly-placed outliers
corrupts the entire multifractal spectrum, in a way proportional to their density. As an
application, the multifractal properties of the time intervals between successive aircraft
landings at three major European airports are investigated.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Originated from the concept of multifractal sets [1–3], multifractality, i.e. when the scaling becomes a local property
ather than a global one, has been used for characterising the local scaling behaviour in empirical signals coming from
umerous areas of science, as for instance air traffic flow [4], financial data [5–9], brain electrical activity [10], human
eartbeat dynamics [11], extreme events in atmospheric turbulence [12], river discharge and precipitation [13], seismic
ecords [14,15] wind speed [16], musical signals [17], narrative texts [18,19] and avian influenza [20]. As evidenced,
any experimental measurements require multiple scaling exponents for a proper characterisation of the underlying
omplex dynamics. The multifractal nature originates from the presence of nonlinear correlations for small and large
luctuations [21]. Nevertheless, a multifractal behaviour can also be observed due to broad probability distributions of the
ata [9,21] or to finite-size linearly long-term correlated time series [22]. When analysing real-world data, it is common
o face an interplay between these three sources of multifractality. Nevertheless, multifractality originated by nonlinear
orrelations is normally considered the only real one, placing linear correlations in short sequences and the heavy tailed
istributed fluctuations as ingredients yielding ‘‘spurious’’ multifractality [9]. Particularly, power-law distributed data or
istributions with tails obeying a power-law give rise to the most simple case of multifractality—bi-fractality [21,23]—
hat is usually observed in systems exhibiting phase transitions [24] and Levy processes [23], as for instance financial
arkets [9].
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Among all multifractal approaches available in the literature [21,25–30], the most frequently used techniques to
quantify the multi-scaling nature in synthetic and empirical data sequences are the Wavelet Transform Modulus Maxima
method (WTMM) [26] and the Multifractal Detrended Fluctuation Analysis (MF-DFA) [21], the latter one being a generali-
sation of the classical DFA method [31]. Despite the fact that both methodologies can remove unwanted polynomial trends
in the data, MF-DFA one stands out over the WTMM approach for being more accurate with shorter signals. Furthermore,
it is more reliable in properly detecting monofractal and bifractal nature [24], and easier to implement [32,33]. In
general, MF-DFA is recommended when the multifractal properties of the signal under analysis are unknown a priori [24].
Specifically, MF-DFA generalises the classical Hurst exponent to a local exponent h to unravel the heterogeneous scaling
in the data. In such a manner, it identifies and quantifies local scaling behaviours—multiple scaling exponents.

The identification and quantification of multifractal features in empirical data is a challenging task due to the
unavoidable contamination with artefacts inherent to the data acquisition process [34–38]. It is worth mentioning here
that Ludescher et al. [36] have studied the performance of the MF-DFA method for characterising mono and multifractal
synthetic sequences under the influence of additive noise, short-term memory and periodicities. Particularly, they found
that multifractal analysis can easily be biased by those artefacts; for instance, multifractality is underestimated for
multifractal signals with additive periodic trends. Later, following the same idea, Gulich et al. [37] have studied the
spurious multifractality generated by the influence of additive coloured noises in multifractal time series. Still further, it
has been shown that a spurious broad multifractal spectrum is obtained when monofractal records having local isolated
singularities are considered, such as records with outliers due to measurement errors [38].

The aim of this work is to address how bifractal properties manifest in finite uncorrelated data obeying a power-
law distribution, in the presence of some artefacts usually related to empirical recordings, by implementing MF-DFA
methodology. More specifically, we focus on (i) finite size effects, since experimental data sets are constrained by data
availability and stationarity, (ii) the influence of additive noise that is inherent to any measurement, and (iii) the presence
of periodic and random outliers, both intrinsic to the underlying dynamics or due to errors in the data acquisition process.
Additionally, our findings are applied to the study of real-world time series describing the time between successive
landings at three major European airports.

2. Multifractal detrended fluctuation analysis (MF-DFA)

The MF-DFA algorithm has been described in [21], and a detailed implementation can be found in [32,33]. Yet, for the
sake of completeness, its main elements are described below.

Given a time series Xt = {xt , t = 1, . . . ,M}, with M being the number of observations, the cumulated time
eries Y (i) =

∑i
t=1(xt − ⟨x⟩) is considered, where ⟨x⟩ stands for mean value. This profile is divided into ⌊N/s⌋1 non-

verlapping windows of equal length s. A local polynomial fit yν,m(i) of degree m is fitted to the profile of each window
= 1, . . . , ⌊N/s⌋. The degree of the polynomial can be varied to eliminate constant (m = 0), linear (m = 1), quadratic

m = 2), or higher order trends of the profile. The variance of the detrended time series is aftward evaluated by averaging
ver all data points i in each segment ν,

F 2
m(s) =

1
s

s∑
i=1

{
Y [(ν − 1)s + i] − yν,m(i)

}2
, (1)

for ν = 1, . . . , ⌊N/s⌋. Aiming at analysing the influence of fluctuations of different magnitudes and at different time
scales, the generalised qth order fluctuation function is defined by

Fq(s) =

{
1

⌊N/s⌋

⌊N/s⌋∑
ν=1

[F 2
m(ν, s)]q/2

}1/q

. (2)

When q = 0, a logarithmic averaging procedure has to be employed because of the divergent exponent

F0(s) ≡ exp

{
1

2⌊N/s⌋

⌊N/s⌋∑
ν=1

ln[F 2
m(ν, s)]

}
. (3)

For q = 2 the classical fractal DFA algorithm is retrieved [31]. Generally, for long-term power-law correlated data, it holds
that

Fq(s) ∼ shq , (4)

inside a certain range of s. The scaling exponents hq are usually known as generalised Hurst exponents, and allow
accounting for heterogeneous scaling. Ideally, for a monofractal time series, hq is independent of q and equal to the Hurst
exponent, H . Its value quantifies the degree of correlation in the data: if H = 0.5 the time series is uncorrelated, while

1
⌊c⌋ denotes the largest integer less than or equal to c .
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> 0.5 indicates long-term correlations or persistence. On the other hand, antipersistent behaviour is characterised by
< 0.5.
A bi- or multifractal structure is observed when the scaling behaviours of small and large fluctuations are different. In

his case hq decreases with q, and the main Hurst exponent can be estimated from the second moment (h2 = H). More
pecifically, the generalised Hurst exponent with negative order q describes the scalings of small fluctuations, because the
egments ν with small variance dominate the average Fq. On the contrary, for positive orders q, the windows ν with large
ariance have a stronger influence, and thus hq focuses on large fluctuations. The strength of the multifractality present
n the data is usually defined as the spread of the generalised Hurst exponent [22]. As small fluctuations are characterised
y larger scaling exponents than those associated with large fluctuations, the multifractality degree can be quantified by

∆hq ≡ h(qmin) − h(qmax), (5)

here qmin and qmax are respectively the minimal and maximal value of the moment q considered in the analysis.
ormally qmin = −qmax is used. Another way to quantify multifractal features is by measuring the width of the singularity
pectrum [21,39]. For further details about this methodology and its implementation see [32]. Specifically for a MATLAB
mplementation we recommend Ref. [33].

. Numerical analysis

.1. A model of bi-fractal spectra

We consider finite uncorrelated time series with power-law distribution function:

P(x) = xmin x−(α+1) for xmin ≤ x < ∞, (6)

with α > 0, and xmin corresponding to the smallest value of x for which the power law holds [40]. In the present study
e set P(x) = 0 for x < xmin [31]. Yet, empirical data normally do not follow a power-law over their entire range; in fact,
he distribution usually deviates from the power-law from below the minimum value xmin [40]. For α ≤ 2, time series
istributed according to Eq. (6) exhibit multifractal scaling behaviours on all scales [21]. It was shown in [31] that the
eneralised Hurst exponent for data distributed according to Eq. (6) can be expressed as

hq =

{
1/α q ≤ α,

1/q q > α,
(7)

which describes a bi-fractal nature, i.e. a monofractal behaviour (hq = constant) for q ≤ α, while a multifractal nature for
> α [21].

.2. Synthetic data generation

For generating numerical uncorrelated sequences distributed according to a power-law we consider a transformation
rocedure. Being ri random real numbers uniformly distributed in the interval [0, 1], these are transformed according to

ri → xi = xmin r
−1/α
i , to obtain random power-law distributed real numbers xi in the range [xmin, ∞) [21]. We have

generated a set of one hundred independent realisations of length N = 10n with n = 3, 4, 5, 6, different values of
α ∈ [0.5, 2], and xmin = 1. The MF-DFA method considers 30 time scales s ∈ [10,N/10] equally distributed in a logarithmic
scale. We set the moments q ∈ [−10, 10] with a step equal to 0.1. Results shown in the present work were obtained by
using a detrending polynomial of second order (m = 2). Quantities averaged over one hundred realisations are reported
hereafter.

3.3. Finite-size effects

We firstly investigate the validity of the theoretical model for hq, given by Eq. (7), for short time series. Fig. 1(a) shows
the generalised fluctuation function for α = 1 and N = 106. Only integer values of the moment q are depicted. A good
scaling behaviour is observed over the whole range of temporal scales considered and for all moments q. The slope of
the Fq(s) in the log–log scale decreases with q. These results qualitatively hold for all α ∈ [0.5, 2]. The slopes hq are
depicted in Fig. 1(b) as a function of q, as estimated by a linear least-squares fit and for different time series length.
On one hand, we found a good agreement with the numerical simulation for q > α = 1, even for short time series.
On the other hand, for q < α the theoretical monofractal behaviour is corrupted, mimicking a multifractal behaviour,
i.e. hq decreasing with q. Fig. 2(a)–(b) illustrate this spurious multifractality for different values of α and q. For q = α, the
exponent hq is underestimated in comparison with the theoretical prediction, for all lengths N considered in this analysis.
Yet, for negative moments q, hq approaches from above as the time series length increases—see Fig. 2(b). Note that the
convergence to the scaling hq = 1/α with N is slower as α grows.

Furthermore, with the purpose of characterising the multifractal behaviour for q > α, we define

hq ∼ q−µ, (8)

here the exponent µ ≡ µ(N, α) accounts for deviations from the theoretical prediction (µ = 1). Fig. 2(c) shows the
stimated exponents µ as a function of α. We found that, independently of the length N , the theoretical expected value

s recovered up to α = 1. Yet, the exponent µ decreases for α ∈ [1, 2].

3
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Fig. 1. (a) Generalised Fluctuation function as a function of the time scale s with q ∈ [−10, 10] for α = 1 and N = 106 (only integer values of
q are depicted for sake of clarity). (b) Generalised Hurst exponent hq a function of q for the same value of α and for different values of the time
series length N . Dashed and solid lines describe the theoretical curve for power-law distributed data with α = 1 at long scales for q ≤ α and q > α

respectively.

Fig. 2. (a) Generalised Hurst exponent for q = α as a function of α for different values of N . (b) same as (a) but with hq evaluated in q = −10. The
ashed black lines in both previous panels represent the theoretical expected power law hq = 1/α. (c) Exponent µ as a function of α for different
alues of N .

.4. Influence of additive noise

We next study the influence of additive noise. For that, we define a noisy finite sequence as follows:

yi = xi + A ηi, (9)

where xi is a finite random time series distributed according to Eq. (6), ηi is a Gaussian white noise with zero mean and
nit variance, and An is the amplitude of the noise contamination defined as a multiple of the standard deviation of the
riginal sequence A = Anσxi (An ∈ R). For generating the numerical time series we set the length N = 105.
The generalised Hurst exponents are depicted in Fig. 3, as a function of the moment q, for α = (0.5, 1, 2), and

considering several intensities of additive noise. It stands out that, for q < 2, the exponents hq are considerable
nderestimated, even for small amount of noise—negative values of the moment q describes small fluctuations, which
re closer to the noise level. Of course, for very large noise levels, as for instance for An = 10, the exponent hq becomes
onstant and equal to 0.5, since the monofractal noise dominates the dynamics. This behaviour was previously observed
n numerical simulations of noisy multifractal cascades [36,37]. Interestingly enough, additive noise offsets the spurious
ultifractal behaviour due to finite size effects as α → 2 (see Fig. 3(c)), since hq<α → 0.5. These two biases compete
gainst each other and could eventually cancel out, e.g. when having short sequences in a noisy environment. Nevertheless,
he multifractal degree is, without a doubt, underestimated for α < 1.
4
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Fig. 3. Generalised Hurst exponent as a function of q for different values of the noise intensity An for (a) α = 0.5, (b) α = 1 and (c) α = 2. No error
ars are depicted for the sake of clarity.

.5. Influence of additive periodic outliers

We consider the influence of periodic outliers by defining:

yi = xi + I δτ (i), with δτ (i) =

−∞∑
i=∞

δ(t − iτ ), (10)

here the original sequence xi is perturbed by a periodic spike characterised by the intensity I , defined in terms of the
tandard deviation of xi, I = Apσxi + ηi (Ap ∈ R and ηi is a Gaussian white noise with zero mean and unit variance), and
ith δ being the Dirac delta function. For generating the numerical time series we set the length N = 105 and the period
= 720, which can represent, for instance, monthly spikes in hourly sampled data.
Fig. 4 shows Fq(s) as a function of the time scale s, for α = 1 and for intensities of the periodic outliers (a) Ap = 1

and (b) Ap = 100. A crossover at sc ∼ τ is observed. This spurious crossover is generated by the presence of periodic
trends [41]; and in this case it can be attributed to the added periodic outliers. The larger the intensity of the outlier
event, the larger the perturbation of the generalised fluctuation functions for s > τ . However, we observe that it is still
feasible to estimate of the slope hq if we restrict the fitting procedure to short time scales only, e.g. to s < 300 data
points. To illustrate, the estimated slopes hq are depicted in Fig. 5(a). We found that the multifractal nature is corrupted
around q = 0. The exponent hq is overestimated as Ap increases, since large events interfere mostly with moments in
the range [−1, 1]. In fact, a good<30 1 linear scaling in the log–log scale of Fq(s) with s is not observed, as most clearly
ev9+306idenced for q = 0, purple dashed line in Fig. 4(b). Therefore, with strictness, those exponents are not valid as a
measure of the fractal scaling. In synthesis, a spurious inverse multifractality is observed up to q = 0. Yet, for q > α, the
decreasing behaviour of hq with q remains the same. Consequently, the multifractal degree estimated by Eq. (5) is not
dramatically affected. Same conclusions can be drawn for other values of α.

The maximum value reached by hq gives account, in some way, of the intensity of the spikes added to the sequence, as
can be seen in Fig. 5(b). As α increases, the overestimation of hq for low Ap is compensated. Undeniably, when the intensity
of the event is sufficiently high, the estimated exponents hq are always overvalued, independently of α. A similar behaviour
is observed when different periodicities are considered. Fig. 6(a) summarises the results for α = 1 and different values
of τ . The same range of temporal scales (s ∈ [20, 100]) for all τ were considered to estimate hq. On one hand, as the
period increases, for a fixed intensity Ap, the inverse corrupted multifractality around q = 0 is magnified. On the other
hand, independently of the period, the maximum value of hq around q = 0 linearly scales with the logarithm of Ap (for
large intensities), as can be seen in Fig. 6(b). As pointed out before, the observation of the crossover at sc arises due to
additive periodic outliers, and the scale sc can approximately determine their period. Fig. 5(c) compares sc with the real
period τ . The estimated values sx obtained from the observed crossover scales are in a good agreement with the periods
τ considered in corrupted the synthetic sequences (Eq. (10)).

3.6. Influence of randomly located outliers

Lastly, we examine the effects when randomly located outliers perturb the original sequence xi. Fig. 7(a)–(b) sum-
marises the results for sequences of length N = 105, characterised by α = 1 and perturbed with randomly located outliers
with an intensity Ap = 100. We found that the linear scaling of the function Fq with s is corrupted in a qualitatively similar
way as though periodic spikes were perturbing the sequence, as can be seen in Fig. 7(a). It is observed that even for a
5
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(

Fig. 4. Generalised fluctuation function as a function of the time scale s with q ∈ [−10, 10] for α = 1, N = 105 , for (a) Ap = 1 and (b) Ap = 100. In
b) purple dashed line represents q = 0. Only integer values of q are depicted for the sake of clarity.

Fig. 5. (a) Generalised Hurst exponent as a function of q, estimated in the range s ∈ [20, 300], for α = 1, τ = 720 and different values of Ap; and
(b) maximum value of hq around q = 0 as a function of Ap . In panel (a) no error bars are depicted for the sake of clarity.

Fig. 6. (a) Generalised Hurst exponent as a function of q for α = 1, Ap = 100 and different values of τ (no error bars are depicted for the sake of
clarity), (b) maximum value of hq around q = 0 as a function of Ap; and (c) the crossover scale sc as a function of the period τ .
6
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Fig. 7. (a) Generalised fluctuation function as a function of the time scale s with q ∈ [−10, 10] for α = 1, N = 105 , and 0.02% of the data being
andom outliers with an intensity Ap = 100 (only integer values of q are depicted for the sake of clarity). Generalised Hurst exponent as a function
f q for α = 1, and different percentages of randomly located events, for (b) Ap = 100 and (c) Ap = 10.

Table 1
Main characteristics of the considered airports. First column: Airports names. Second column:
night inactivity period in hours. Third column: average number of flights per day. Fourth column:
time series lengths.
Airports Night inactivity period (hr.) Averaged #flights/day N

Frankfurt 6 740 451534
Heathrow 6.5 531 323766
Tegel 7 79 48112

small amount of perturbing events, e.g. 0.02% of the data, the multifractal spectrum is dramatically squeezed upwards at
large temporal scales.

Fig. 7(b) contrasts the exponents hq estimated from sequences with different percentages of the data being randomly
located outliers. For negative moments, there exists an overestimation of the exponents hq, proportional to the amount of
vents in the data. On the other hand, for negative values of q, the theoretical decay ∼ q−1 is not longer valid. Moreover,
ot even the model ∼ q−µ can be fitted. Consequently, the entire multifractal spectrum is corrupted, and thus, the
ultifractal degree estimated by Eq. (5). In contrast, the effect on the exponent estimation when having perturbing outliers
ith low intensity Ap = 10, is limited to q < 0, as observed in Fig. 7(c). Not least, the peak of hq appreciated around q ∈ 0,
ccounts for the presence of outliers as aforementioned.

. Application to landing return interval dynamics

In order to show how these results can impact real-world analyses, we study time series describing aircraft landing
ynamics. More specifically, we estimate the time between consecutive landings – landing return interval – starting on
ay 1 of 2018 and ending on December 31 of 2019 (609 days) from Frankfurt, Heathrow and Tegel airports. Estimated

anding times were extracted from ADS-B position reports, obtained from the OpenSky Network (https://opensky-network.
rg) [42]. ADS-B (Automatic Dependent Surveillance - Broadcast) is a technology allowing aircraft to continuously send
adio messages, stating their position and other information of relevance [43,44]; these messages are then received by
round stations, and integrated into coherent reports. For each airport, flights have been identified as performing a landing
hen the last known position was within a radius of 3 nautical miles from the center of the airport, and the last reported
ltitude below 500 m. Note that there exists observational noise as a result of the uncertainty associated with the time
f landing.
Table 1 lists, in the second column, the average number of flights per day. Additionally, being these airports close to

opulated areas, operations are not allowed at night (except for emergencies and other specified exceptions); the third
olumn then reports the duration of this night inactivity period, as extracted from the corresponding Jeppesen’s airport
harts. Depending of the airport activity, different length N of the landing return interval are obtained. The fourth column
n Table 1 shows N for each airport, being Tegel airport the one with the least number of landings per day and with the
ongest inactivity period.

As a representative time series, in Fig. 8(a) we illustrate a small portion of the landing return interval sequence from
rankfurt airport. Note that the vertical axis is in logarithmic scale for better visualisation of the outliers, corresponding
o the inactivity time during the night. Fig. 8(b) shows the histograms, by using logarithmic binning [45], of the return
nterval sequences from the three airports. It is observed that a power-law scaling applies only for times larger than
min ∼ 2 and less than 100 min. We can therefore say that the distributions follow a power-law upon a certain range [40].
or comparison purposes, we have depicted a power-law scaling of t−2 and t−3—see dotted and dashed black lines in
7
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Fig. 8. (a) A portion of the landing return intervals from Frankfurt airport in semilog scale. (b) Histogram of the landing return interval for Frankfurt
(solid blue circles), Tegel (solid red squares) and Heathrow (solid green diamonds) airports. Dotted and dashed black lines indicate power law t−2

nd t−3 respectively.

Table 2
Multifractal properties of the considered airports. First column: Airports names. Second
column: α value estimated by a linear fitting from the histogram in the range time
∈ [2, 100]. Third column: Hurst exponents h2 = H . Fourth column: µ exponent estimated
in the range q ∈ [2, 5]. SD stands for the error from the fitting procedure.
Airports α ± SD H ± SD µ ± SD

Frankfurt 2.3 ± 0.1 0.53 ± 0.01 0.90 ± 0.005
Heathrow 2 ± 0.1 0.58 ± 0.02 0.76 ± 0.010
Tegel 1.2 ± 0.2 0.53 ± 0.02 0.56 ± 0.017

Fig. 8(b), respectively. By a simple linear least-squares fit in the range (2, 100) minutes we have estimated the power-law
arameter α, reported in the second column in Table 2. We found a correlation between the total number of flights per
ay and the distribution parameter α. The more flights, the shorter the separation time between them, and consequently,
he lower the probability of finding two flights widely separated in time. For times larger than approximately 100 min, a
eak is observed, corresponding to the night inactivity period. Bearing in mind the noisy environment inherent to the data
cquisition procedure, and furthermore, that inactivity times may be considered as outliers of the power-law distribution,
hese empirical sequences are ideal to study how these artefacts may corrupt their multiscaling properties.

We have analysed the multifractal properties of the landing return intervals with a second order polynomial. Sixty
emporal scales s ∈ [10, 104

] equally distributed in the logarithmic scale were considered and q ∈ [−5, 5] with a step
equal to 0.1. Fig. 9 shows the Fq as a function of s for the landing return intervals for each airport. The time between
the closing and opening hours squeezes upwards the scaling for a windows size s > 1000 for Frankfurt and Heathrow
airports. On the other hand, since Tegel has less flights per day, the scaling is corrupted at smaller time scales. These
results show that the night inactivity period is having the role of a periodic outlier.

By setting a fitting range s ∈ [15, 100] for the three airports, we have estimated hq for all values of q. These results
are depicted in Fig. 10 (blue open circles). Slightly linear correlations are found, which are quantified by the classical
Hurst exponent—see the intersection between solid vertical black line and hq in Fig. 10. The second column of Table 2
summarises the values of H = h2 for each airport. The generalised exponents hq are overestimated in the range q ∈ [0, 1],
most probably because of the long return times, i.e. of the nights. Out of this region, the evolution of hq behaves as one
could expect from the probability distribution of the data, that is, bi-fractal. We have estimated the exponent µ in the
range q ∈ [2, 5]—see last column in Table 2. These results are in accordance with those obtained by using synthetic data
(compare with Fig. 2(c)).

In order to clarify the origin of the observed multifractality, we have contrasted the evolution of hq estimated from
the original data, with what was obtained from surrogate data. By shuffling the data points, all temporal correlations are
removed, and only the multifractal nature due to the distribution probability remains. Open red squares in Fig. 10 show
these results. One can observe that the multifractality is slightly affected for Frankfurt and Heathrow airports, indicating
that the corrupted bi-fractality is mostly originated by the probability distribution. On the contrary, the result for Tegel
airport shows some differences for negative moments. We hypothesise that this could be a product of the presence of
nonlinearities in the dynamics. Certainly, a Hurst exponent equal to 0.5 is estimated for the shuffled versions of all the

three sequences. Finally, by considering a Fourier Transform surrogate approach [9] to retain all temporal correlations but
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Fig. 9. Fq as a function of s for the landing return interval for (a) Frankfurt, (b) Heathrow, and (c) Tegel airports. Black dashed lines indicate the
emporal range to estimate the exponents hq . Only integer values of the moments q used to estimate the generalised fluctuation function are
depicted.

Fig. 10. Generalised Husrt exponents as a function of q for (a) Frankfurt, (b) Heathrow and (c) Tegel airports. Error bars stand for the error from
the fitting procedure for the original sequences. Solid black lines indicate the second moment q = 2, and therefore the classical Hurst exponent
2 = H . Dashed black lines show h = 0.5 (totally uncorrelated dynamics).

hanging the probability distribution to a Gaussian one by phase randomisation [46], we found that the exponents hq are
onstant in the range q ∈ [−5, 5] and close to the Hurst exponent estimated from the original sequences—see open green
iamonds in Fig. 10. These results confirm the origin of the bi-fractality.
Lastly, we focus on the presence of linear correlations in the landing return intervals per day. We consider Frankfurt and

eathrow airports only, in order to get sequences long enough, and consequently a reliable estimation of H . Fig. 11(a) and
b) show a histogram of the Hurst exponents estimated for the 609 days of Frankfurt and Heathrow airports respectively.
e found that the landing return interval dynamics is linearly correlated. By comparing this to the exponent H estimated

rom the whole data set (nights included), we observe that the presence of outliers underestimate the degree of temporal
orrelation—see dashed black lines in Fig. 11(a) and (b). To corroborate this finding, we have simulated linearly correlated
ata with H = 0.6 and 0.8 following a power-law distribution with α = 2, corrupted by additive periodic outliers, with
= 720 and different amplitudes, as described in Section 3.5. For generating temporal correlated time series with the
esired probability distribution, we have followed the iterative algorithm introduced by Schreiber and Schimitz [47]. In
ig. 11(c) is observed that the degree of correlation is underestimated due to the presence of additive periodic outliers.
he larger the amplitude Ap, the closer is the estimated Hurst exponent to 0.5. Then, we conclude that the intermittency
n the landing return interval dynamics due to nights (large and periodic return intervals) leads to a slightly decrease
f the linear correlation. From an applied point of view, the dynamics of landing return intervals can be used as a way
f characterising the underlying airport dynamics. Specifically, one may hypothesise that the time between successive
andings may present correlations when the airport reaches a saturation state, i.e. when the landing of one aircraft is
imited by those of the aircraft preceding it. Results here reported indicate that the calculation of a simple H may not be
nough, as the presence of outliers and observational noise leads to an underestimation.
9
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Fig. 11. Histogram of the estimated Hurst exponents H per day for (a) Frankfurt and (b) Heathrow airports. Dashed black lines indicate H estimated
rom the entire time series (nights included). (c) Averaged H , over 100 independent realisations, as a function of the amplitude of the outliers Ap
dded to a linear correlated sequence following a power-law distribution with α = 2 (N = 105 and τ = 720).

. Conclusions

By investigating the performance of MF-DFA applied to finite uncorrelated power-law distributed data in the presence
f additive noise and periodic and random-located outliers, we have evidenced that the original bi-fractal properties of
he data are considerable corrupted by those artefacts. In particular, short time series overestimate exponents hq, for
egative moments and for α ∈ [0.5, 2], which leads to a spurious multifractal spectrum rather than a bi-fractal one. This
esult may be useful for analysing short time series, to avoid erroneous conclusions. When dealing with observational
oise, we found that bi-fractality is corrupted for q < 0. However, for α = 2 we found a noise-enhanced bi-fractality
henomenon, i.e. the presence of noise offsets the spurious multifractality originated by finite-size effects. This result
s valuable for analysing experimental data characterised by α ∼ 2. The influence of additive periodic outliers corrupts
he bi-fractal spectrum around q = 1, since the outliers affect the moments close to the mean value. This effect does not
hange the estimation of the multifractal degree, yet it generates an inverted behaviour of the exponent hq with q. Finally,
andomly-located outliers deform the entire bi-fractal spectrum, making the theoretical prediction not longer valid for
ll moments q. We believe that the present study gives a more solid characterisation of the bi-fractal nature in empirical
ime series by MF-DFA approach.
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