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Conductance of electrostatic wire junctions in bilayer graphene
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The conductance of electrostatic wire junctions in bilayer graphene, classified as trivial-trivial or trivial-
topological regarding the confinement character on each junction side, is calculated. The topological side always
corresponds to a kink-antikink system, as required for a proper connection with a trivial side. We report a
conductance quench of the trivial-topological junction, with a conductance near quantization to 4e2/h, which is
only half of the maximum value allowed by the Chern number of a kink-antikink system. The analysis allowed
us to uncover the existence of a chiral edge mode in the trivial wire under quite general conditions. A double
junction, trivial-topological-trivial, displays periodic Fano-like conductance resonances (dips or peaks) induced
by the created topological loop.
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I. INTRODUCTION

Electrostatic confinement in bilayer graphene (BLG) in-
duced by microelectrodes acting at a distance from the top
and bottom sides of the graphene planes has attracted no-
table attention in the graphene community [1–9]. The physical
principle behind this electrostatic confinement is a spatial
modulation of the asymmetry potential Va between the two
graphene planes. Bulk BLG in the absence of asymmetry
potential is gapless, while it becomes gapped around zero
energy in the presence of the asymmetry potential. The gap
is proportional to |Va|, and so the spatial modulation achieved
with microelectrodes is able to create regions of confinement
whose shape and size can be controlled by the geometry of the
fabricated microelectrodes.

Smooth electrostatic confinement in BLG avoids diffi-
culties introduced by atomically rough edges made when
parts of the graphene system are physically etched, such
as strong intervalley scattering induced by edge roughness
[10]. Confinement by etching in graphene is challenging
mostly due to the resulting edge imperfections. See, how-
ever, Ref. [11] for a recent experiment in which monolayer
graphene nanoconstrictions with low edge roughness showed
conductance quantization in 2e2/h steps. As discussed below,
we restrict ourselves in this paper to BLG electrostatic con-
finement, where conductance quantization steps are 4e2/h due
to the valley degeneracy in the absence of a magnetic field.

Two qualitatively different types of electrostatic confine-
ment in BLG can be considered: (a) trivial confinement,
where all top gates have the same potential, which is op-
posed to that of all bottom gates [12–17]; and (b) topological
confinement, where the polarities of the microelectrodes are
such that there are borders separating regions of opposite
sign [18–22]. Figure 1 illustrates these two different possi-
bilities. Particularly, the topological confinement along two
parallel lines of sign inversion (a kink-antikink system) can

be seen on the right side of Fig. 1(b). Both types of BLG
confinement, trivial and topological, have been intensively
investigated theoretically [12–22] and, importantly, also real-
ized in experiments [6–9,23–26].

BLG trivial confinement has some similarities with the
two-dimensional electron gas (2DEG) confinement achieved
in semiconductor nanostructures by modulated gating. In both
systems, the quantum states are characterized by a sizable
region of two-dimensional (2D) character; for example, the
inner part of quantum dots and quantum wires is 2D-like,
while its surrounding part shows an exponential decay across
the border in the outer direction with respect to the bulk. The
topological confinement, on the other hand, is characterized
by a predominantly 1D character; the wave functions vanish
with increasing distance in both directions from the border,
without requiring any 2D bulk.

This paper focuses on junctions between electrostatically
confined wires in BLG. Sketches of the junctions can be
seen in Fig. 1. We are particularly interested in the measur-
able differences between trivial-trivial and trivial-topological
junctions that could be used to unambiguously identify each
confinement character. We always consider a trivial side since,
in practice, asymptotic leads are more likely to be trivial due to
the abovementioned 2D character of this type of confinement.
The case of purely topological confinement, with scattering
due to kink-antikink constrictions, was studied in Ref. [21].
After the single junction, this paper also addresses the double
junction with left and right trivial leads, highlighting the new
features induced by a finite central region that may be trivial
or topological.

Our main finding is a conductance quench of the trivial-
topological junction [Fig. 1(b)] as compared with the value
given by the number of propagating modes or Chern num-
ber of the topological side N ′

top. While it is N ′
top = 2 for

a kink-antikink, with additional valley and spin degenera-
cies, the junction conductance remains nearly quantized to

2469-9950/2022/106(3)/035424(8) 035424-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1587-9372
https://orcid.org/0000-0001-8496-7873
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.035424&domain=pdf&date_stamp=2022-07-26
https://doi.org/10.1103/PhysRevB.106.035424


RYU, LÓPEZ, AND SERRA PHYSICAL REVIEW B 106, 035424 (2022)

FIG. 1. Sketches representing BLG electrostatic junctions of
(a) trivial-trivial and (b) trivial-topological type. The graphene layers
are the gray planes, and the top and bottom microelectrodes are the
colored planes. Blue and red indicate different signs of the applied
potential on the corresponding microelectrode. The white dashed line
indicates the junction position. The lateral widths on each junction
side are Ly and L′

y. Bulk and edge electronic modes incident from the
left are indicated by thick and thin white arrows, respectively. Notice
that in (b), bulk modes are mostly backscattered and only the edge
chiral modes discussed in this paper are transmitted from left to right.

G ≈ G0, where G0 = 4e2/h, instead of the a priori possi-
ble G = N ′

topG0. That is, as a function of energy a large
plateau with G ≈ G0 is found, even when the number of
incident modes from the trivial side increases up to Ntri ≈ 4.
In sharp contrast, the conductance of the trivial-trivial junction
[Fig. 1(a)] closely follows the Chern number of the right wire
N ′

tri, showing a smooth staircase quantization G = N ′
triG0,

with N ′
tri = 1, 2, 3, . . . .

We explain the conductance quench of the trivial-
topological junction by realizing that only the lowest trivial
mode (per valley and spin) is effectively transmitted from left
to right, while the other modes are mostly reflected. Notice
that there is a degeneracy factor 4, due to the accumulated
valley and spin degeneracies such that the corresponding con-
ductance is the above-defined G0 ≡ 4e2/h. As shown below,
we found that the lowest mode of a trivial wire acquires a
remarkable chiral edge character for an increasingly large
magnitude of momentum k. Such a property explains the
nearly perfect transmission of the chiral edge mode on the left
to the topological chiral modes on the right side of the trivial-
topological junction. The possibility of boundary modes in
gapped BLG has been discussed in general terms in Ref. [2].

Next, this paper addresses double-junction systems. In the
trivial-topological-trivial double junction, closed loops can
be formed in the central part for specific energies. We find
that these closed-loop states yield conspicuous quasiperiodic
resonances—conductance peaks or dips of Fano type—as a
function of energy or length of the central part. Overall, our
work suggests the conductance quench of the single junction
and the periodic Fano resonances of double junctions to be

characteristic features signaling topological confinement in
BLG electrostatic wire junctions.

II. MODEL AND METHOD

Our modeling of BLG nanostructures is based on the
low-energy multiband Hamiltonian with continuum space op-
erators for position (x, y) and momenta (px, py), as well as
three pseudospin vectors, �σ , �τ , and �λ for sublattice, valley,
and layer, respectively [1]. In detail, the Hamiltonian reads

H = vF pxτzσx + vF pyσy

+ t

2
( λxσx + λyσy ) + Va(x, y) λz, (1)

where h̄vF = 660 meV nm and t = 380 meV are the BLG
Fermi velocity and interlayer coupling, respectively. We stress
here that our notation of using different symbols for Pauli ma-
trices in different subspaces is not only more compact but also
equivalent to other approaches using always the same symbols
for Pauli matrices, irrespective of the subspace, but keeping
track of the strict ordering of operators to define generalized
matrices [27,28]. For example, for an operator such as σxλx

we have the following equivalences:

σxλx = λxσx ⇔ σ sublattice
x ⊗ σ layer

x ⊗ 1valley

⇔

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ ⊗ 1valley. (2)

The symbol ⊗ is used to indicate the tensor product of dif-
ferent subspaces, and the last equivalence in Eq. (2) assumes
a specific spinor ordering (A1, B1, A2, B2), where A and B
indicate the sublattice and 1 and 2 indicate the layer.

The position-dependent asymmetry potential Va(x, y) in
Eq. (1) is chosen according to the distributions of micro-
electrodes, as shown in Fig. 1. We assume the saturating
potential values +20 meV (−20 meV) on the graphene planes
beneath the blue (red) colored microelectrodes, with smooth
transitions at interfaces of diffusivity s = 12 nm. The smooth
asymmetry potentials are modeled with logistic functions
[21]. Va(x, y) is piecewise defined depending on the position
x either as trivial V tri

a (y) or as topological V top
a (y), as indicated

in Fig. 1. Assuming transverse boundaries at ya and yb (> ya),
the potentials read

V tri
a (y) = Va

(
1 + 1

1 + e
y−ya

s

− 1

1 + e
y−yb

s

)
, (3)

V top
a (y) = Va

(
1 + 2

1 + e
y−ya

s

− 2

1 + e
y−yb

s

)
. (4)

Notice that the asymmetry potential vanishes in the 2D-bulk
region of trivial confinement, in the central part (ya < y < yb)
of the trivial wires.

Our junction modeling is based on complex-band-structure
theory [29]. The method proceeds in two steps: First, a large
set of complex-k eigenmodes is determined in each piece of
a junction by matrix diagonalization; and second, a system
of linear equations describing the wave-function matching
at the junction interface is solved for each incidence condi-
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FIG. 2. Conductance of electrostatic single junctions (green) of
trivial-trivial type (a) and trivial-topological type (b). Black and red
data show the number of propagating modes (Chern number) on
the left and right sides of the junction, labeled as Ntri, N ′

tri (a) and
Ntri, N ′

top (b), respectively. Parameters: Ly = 600 nm, L′
y = 400 nm,

|Va| = 20 meV, and s = 12 nm.

tion. The conductance is obtained from the transmissions tkk′

with Landauer’s formula G = G0
∑

kk′ |tkk′ |2. High numerical
efficiency is achieved by exploiting the sparse character of
the matrix which is diagonalized and of the matrix for the
matching condition at the junction interface. Details of the
method were presented in Appendix C of Ref. [21]. An im-
portant aspect is the proper filtering of spurious solutions that
emerge due to fermion doubling [30–32]. In our complex-
band-structure approach only a 1D y grid is required at the
junction interface. This allows a high spatial resolution and
thus a good filtering of the spurious states by means of coarse
graining. We refer the reader to Refs. [21,29] for more details
about the modeling method, focusing next on the specific
physical results.

III. RESULTS AND DISCUSSION

A. Wire single junctions

Figure 2 compares, as a function of energy, the conduc-
tances of the trivial-trivial [Fig. 2(a)] and trivial-topological
[Fig. 2(b)] junctions sketched in Fig. 1. Both Fig. 2(a) and
Fig. 2(b) show the same staircase evolution of the number of
propagating modes on the left, Ntri (black), but the number

of modes on the right, N ′
tri or N ′

top, differs. Figure 2(a) shows
that N ′

tri also presents a staircase behavior similar to that of
Ntri, while in Fig. 2(b) N ′

top remains at a constant value of
2. The behavior of Ntri and N ′

tri are as expected, since the
band structure of the trivial wire is such that successive modes
are activated as the Fermi energy overcomes successive band
minima. On the other hand, the topological wire contains
two branches E (k) without a corresponding band minimum,
but crossing from negative to positive energies with a fixed
slope [18].

The conductance of the trivial-trivial junction [green,
Fig. 2(a)] saturates to N ′

tri as the energy is increased, with
the modifications of a rounding of the N ′

tri steps and small
conductance dips at the onset of the Ntri steps. These features
are rather similar to the results of semiconductor wire junc-
tions in 2DEGs, the smoothened conductance being due to
wave-function reflections at the junction interface for energies
near the activation onset of propagating modes.

In sharp contrast, the conductance of the trivial-topological
junction [green, Fig. 2(b)] displays a conspicuously different
behavior. In this case the conductance does not saturate to
N ′

top, at least not with a fast convergence as in Fig. 2(a). Actu-
ally, G settles to a value close to 1 (in units of G0 = 4e2/h), in
a plateaulike behavior, with deviations of the quantized value
becoming visible only when Ntri > 4.

The conductance quench of Fig. 2(b) to a value G ≈ 4e2/h,
even when the topological kink-antikink system could in prin-
ciple conduct N ′

top = 2 propagating modes (per valley and
spin), is a remarkable feature. It indicates that the incident
modes from the trivial side are mostly reflected, except for one
mode which is transmitted. We know that the modes on the
topological side (kink-antikink) are localized to the y values
near the kink or the antikink and they have a valley-dependent
chirality. That is, two K modes can be transmitted in the lower
(y < 0) kink, while two K ′ modes can be transmitted in the
upper (y > 0) antikink. A priori, the modes on the left (trivial)
side are expected to be nonchiral, mostly propagating along
the bulk of the wire −Ly/2 < y < Ly/2. The observation
that one mode is transmitted to the right, however, strongly
suggests that one particular mode of the trivial wire is also
edgelike and chiral, so that it can effectively couple to the
chiral modes on the right side.

The emergence of an edge chiral mode in an electrostatic
BLG wire of trivial confinement is a surprising result, more
so in the absence of a magnetic field such as in our case.
This is the main finding of our work. A valley-momentum-
locked edge mode does not necessarily require a topological
confinement with two nearby electrodes of opposite sign, as
on the right side of Fig. 1(b), but the simpler trivial electrode
distribution on the left side of Fig. 1(b) or in Fig. 1(a) is also
enough to sustain such a mode at the border between biased
and unbiased BLG regions. This rather counterintuitive result
is further discussed in the remainder of this section and in
Secs. III B and III C.

Next, we validate our above interpretation by analyzing the
physical character of the modes of a trivial wire with numer-
ical and analytical results. Figure 3 shows the band structure
of a trivial 600-nm-wide wire and the spatial distributions of
probability densities for a few selected states along the lower
energy branches. It only displays results for positive-energy
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FIG. 3. (a) Energy bands of the trivial confinement wire with
Ly = 600 nm, |Va| = 20 meV, and s = 12 nm. The shaded region
corresponds to the existence of real-q modes, k < kc with kc being
the critical value given in Eq. (11). (b)–(d) Probability densities for
the k values of the successive bands indicated with red dots in (a).

states since the negative-energy ones are mirror symmetric
by energy and y inversion, E → −E and y → −y. Notice
also that, while the energy branches are valley degenerate, the
shown spatial distributions correspond to valley K . The corre-
sponding distributions for K ′ are again given by y inversion.

The results of Fig. 3 prove that the lowest branch of a trivial
wire indeed becomes edge and chiral as the wave number
k ≡ px/h̄ is increased along the branch. Those results have
been obtained numerically, but it is also possible to perform
an analytical analysis.

B. Analytics

Assuming wave numbers k and q along x and y, re-
spectively, and a constant Va in Eq. (1), the eigenmode
equation becomes an algebraic 4 × 4 matrix problem for each
valley, i.e., replacing τz → sτ with sτ = ±1 for valley K (K ′).

In the purely homogenous case we can assume a spinorial
wave function (σ, λ = 1, 2)

� ≡ �σλ ei(kx+qy), (5)

with a four-component spinor of constants �σλ for each k
and q. These constants are determined from the eigenvalue
problem H� = E� with the Hamiltonian of Eq. (1). We
rewrite the eigenvalue problem as

σyH� = Eσy�, (6)

and with the � of Eq. (5) it can be recast as

1

h̄vF

[
E σy + isτ h̄vF k σz + t

2
(i λxσz − λy) − Va σyλz

]
�

= q �. (7)

Equation (7) is a 4 × 4 eigenvalue problem, M� = q �,
determining the transverse wave numbers q for a given E and
k from

det (M − q 1) = 0. (8)

Straightforward algebra yields

q = ± 1

h̄vF

[−h̄2 v2
F k2 + V 2

a + E2

±
√

4V 2
a E2 + t2

(
E2 − V 2

a

) ]1/2
. (9)

Equation (9) yields four q roots whose characters as purely
real or complex numbers determine whether states having
propagating or evanescent character along y can emerge. If,
for given E and k, Eq. (9) has no real q, it necessarily implies
that only transverse decaying states can emerge for those E
and k values. In a large Va, either positive or negative, all q’s
are complex for reasonable E and k values, and thus states
must necessarily decay. This is not surprising, since a large Va

causes the decay in the sides of a trivial wire [Fig. 1(a)] and
also the decay in the two directions when y departs from the
kink and antikink positions [Fig. 1(b)]. Notice that a negative
Va causes a similar decay of a positive Va, a usual property of
relativisticlike Dirac systems.

A surprising behavior for unbiased (Va = 0) BLG is that
Eq. (9) still predicts a range of E and k values such that all q’s
are complex. Naively, one could expect that unbiased BLG,
being gapless, would only sustain bulk propagating states for
any k. However, Eq. (9) for Va = 0 reads

q = ± 1

h̄vF

√
−h̄2v2

F k2 + |E |(|E | ± t ), (10)

and since |E | < t , it is then clear from Eq. (10) that all q’s are
purely imaginary for k > kc, where kc is the critical value

kc = 1

h̄vF

√
|E | (|E | + t ). (11)

The shaded area in Fig. 3(a) corresponds to k < kc, where
real q’s exist. Notice that the lowest branch of Fig. 3(a) is
then in the region of transverse decaying states, except for
k close to zero, where the band presents a small maximum.
This confirms the emerging edge chiral character of the lowest
branch as k is increased seen in Fig. 3(b), as well as the bulk
character of the states in Figs. 3(c) and 3(d).

C. Semi-infinite unbiased-biased interface

Having identified an edge chiral mode in a trivial wire from
the conductance of a trivial-topological junction, a natural
question to address next is whether this mode is also present
in a semi-infinite interface between unbiased and biased BLG
[Fig. 4(a)]. We have then calculated the transverse localized
states by numerically imposing the zero boundary condition
for y → ±∞ with the electrode configuration sketched in
Fig. 4(a). Indeed, for k > kc a localized state is found with the
energy dispersion of Fig. 4(b) for K (magenta) and K ′ (green)
valleys.

Figure 4 highlights the opposite chiralities of the K and K ′
edge modes propagating along the dashed line interface. The
modes are characterized by their opposite slopes for K and
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FIG. 4. (a) Sketch of a semi-infinite interface between unbiased
and biased BLG. The arrows indicate the propagation of the edge
chiral mode for K and K ′ valleys along the interface shown with
a dashed line. (b) Energy dispersion of the edge chiral modes. The
shading corresponds to the continuum of states for k < kc of Eq. (11).
Parameters: |Va| = 20 meV and s = 12 nm.

K ′, indicating their valley-momentum locking, similarly to the
topological modes of a kink [18]. However, clear differences
compared with the kink modes are as follows: (a) Only one
mode per valley is present in Fig. 4, while there are two kink
modes per valley; and (b) kink modes lie in an energy-gapped
region of the spectrum, while the present edge chiral modes
coexist with bulk modes of the shaded area of Fig. 4 lying at
the same energy. In fact, the edge chiral branches even merge
with the continuum for k close to zero. The Appendix provides
further analysis of the edge chiral modes using quasianalytic
complementary approaches and also investigates their robust-
ness against the diffusivity s and the value of the asymmetry
potential Va.

D. Wire double junctions

As a final item in this paper, we address the study of the
double junctions with trivial leads and a scattering center
which either is also trivial or is topological. Sketches of the
two types of double junctions can be seen in Figs. 5(a) and
5(b). In these geometries a new parameter appears as com-
pared with the preceding single junctions, the length Lx of
the central section. The double junction with a trivial center
[Fig. 5(c)] displays similar results to the trivial-trivial single
junction [Fig. 2(a)]. The conductance saturates to N ′

tri as the
energy increases. The rounded steps are now transformed
into short oscillations. They are caused by interferences of
Fabry-Pérot type due to multiple reflections between the first
and the second interfaces of the junction. The oscillation

FIG. 5. (a) and (b) Sketches of the double-junction setups similar
to Fig. 1. The length of the central part is Lx = 1 μm. (c) and
(d) Results of the double junctions shown in (a) and (b), respectively.
The black line indicates the number of modes in trivial left and right
leads, while the red line indicates the number of modes in the center,
which can be either trivial [(a) and (c)] or topological [(b) and (d)].
The rest of the parameters are as in Fig. 2.

amplitude is larger near the activation thresholds of trans-
mitted modes, N ′

tri → N ′
tri + 1, and it smoothly decays

for increasing energy until the next activation threshold is
reached. The thresholds for incident modes, Ntri → Ntri + 1,
also leave a trace on the conductance curve, and, in particu-
lar, a rather flat conductance is seen for (Ntri,N ′

tri ) = (4, 2)
and (5,3). The Fabry-Pérot interferences would be strongly
enhanced in the presence of barriers at the junction interfaces
[dashed lines in Fig. 5(a)], but this would require using addi-
tional electrodes.

The conductance of the double junction with a topological
center [Fig. 5(d)] shows outstanding features. The quenching
to G ≈ 4e2/h due to the transmission of a single edge chiral
mode of the trivial wire is again observed, as in Fig. 2(b).
However, a remarkable sequence of dips and peaks is now
found in the double junction. These features are evidence of
the spectrum of topological eigenstates forming closed loops
around the central region of the double junction. The ener-
gies of those topological loops can be well described by a
Bohr-Sommerfeld quantization rule [22], requiring an integer
number of wavelengths fit into the loop perimeter. The dips
or peaks are then consequences of Fano resonances due to
the coupling of localized states, the closed loops, with the
scattering states. The effective coupling varies with energy
and transforms the resonances from dips at low energy into
peaks at higher energy in Fig. 5(d).

Fano resonance profiles are characterized as [33–35]

G ≈ |ε + q|2
ε2 + 1

, (12)

where q is the Fano parameter and the energy dependence
is contained in ε ≡ (E − ER)/�, with ER and � being the
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resonance energy and width. Different values of the Fano
parameter q yield varying resonance profiles, from symmetric
dips (q → 0) to intermediate asymmetric profiles (finite q’s)
and symmetric peaks (large q’s). Figure 5 indicates a fast
evolution of the Fano parameter with energy, an asymmetric
profile being observed only around 0.85 meV for that specific
set of parameters. A detailed analytical modeling of the cou-
pling between the topological closed loops and the scattering
states requires a fine-tuning of the coupling intensities and is
beyond the scope of this paper.

IV. CONCLUSIONS

Junctions of electrostatically confined BLG wires show
outstanding transport features that are feasible to detect. A
trivial-topological junction is characterized by a conductance
quench with respect to a trivial-trivial junction. A single mode
of edge chiral character, per valley and spin, is transmitted
from the trivial to the topological side causing a near quanti-
zation G ≈ 4e2/h when the number of incident modes is low
(Ntri < 4). With larger values of Ntri the conductance devia-
tion from the quantized value becomes increasingly visible.

(a
rb

. 
u
n
it

s)

FIG. 6. (a) Energy dispersion of the K and K ′ edge chiral mode
for the semi-infinite interface [Fig. 4(a)] and for two different values
of the diffusivity parameter s. We have assumed Va = 20 meV, and
the shaded region corresponds to k < kc. (b) Spatial distribution of
the probability densities for the states indicated in (a). The solid
curves in (a) and (b) are the results of the quasianalytic model for
a sharp interface, and they show an excellent agreement with the
s = 0.5 nm smooth potential data.

The edge chiral character of the lowest mode of a trivial
BLG wire is surprising, the more so in the absence of any
magnetic field. Such a mode is also present at a semi-infinite
interface between unbiased and biased BLG planes. It is char-
acterized by a locking between valley and momentum, and
there is an analytical critical value of momentum kc for the
presence of such a mode when k > kc, which is otherwise
damped in the continuum of bulk states.

Double junctions of electrostatic BLG wires with trivial
leads and a topological center show conspicuous Fano res-
onances: dips or peaks in the conductance. They are due to
an energy-dependent coupling of the closed loop around the
topological center and the scattering states. Altogether, the
above features may help to place hybrid trivial-topological
BLG graphene wires with electrostatic confinement as a use-
ful and controllable platform for graphene electronics.
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FIG. 7. Same as Fig. 6 for different values of the asymmetry
potential Va. We assumed a sharp interface s = 0.5 nm.
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APPENDIX: THE EDGE CHIRAL MODE

In this Appendix we analyze further the existence of an
edge chiral mode at the boundary between unbiased (Va = 0)
and biased (Va 
= 0) BLG as sketched in Fig. 4(a). Specifically,
we obtain such a mode in two complementary approaches.
First we use a y-grid diagonalization as in Fig. 4(b) to investi-
gate the dependence of the mode dispersion on the asymmetry
potential diffusivity s and on its saturating value Va. Second,
we use a quasianalytic method valid for the sharp interface,
imposing the matching of the properly decaying solutions on
the two sides of the interface. The two approaches are in
excellent agreement and thus support the physical existence
of the edge chiral mode.

Figure 6(a) addresses the dependence on the smoothness s,
showing that the sharper the asymmetry potential, the larger
the separation of the mode branch from the continuum indi-
cated in gray. Figure 6(b) shows that the probability densities
with a larger s extend farther from the interface than the den-
sities for smaller s, as one could intuitively expect. We have
also obtained (not shown in the figure) that the probability
distributions are unchanged when reversing the momentum
(k ↔ −k) for a given valley, or reversing the valley (K ↔ K ′)
for a given momentum.

In the case of a sharp transition interface s = 0 we have
solved the matching condition at the interface considering
exponentially decaying solutions towards both sides. The q
wave numbers and � wave functions are determined from
Eqs. (9) and (7), respectively. The matching approach does
not use any grid discretization of the y coordinate and only
requires the calculation of 4 × 4 matrices, as determined by
the number of q modes. The results are in excellent agreement
with the grid result for small diffusivity, as shown by the solid
curves in Fig. 6(a), thus confirming the physical character of
the edge chiral mode. We also stress that the two methods
prove that there is only one branch for K and one branch
for K ′, different from the result for kink states yielding two
branches per valley [18,19]. Notice, however, that the present
chiral edge branches are not topologically protected from the
continuum of bulk states (gray) by an energy gap, as occurs
for the kink states.

Finally, the dependence on Va is analyzed in Fig. 7. The
energy dispersion E (k) becomes flatter with increasing Va

[Fig. 7(a)], while the density distribution becomes narrower
[Fig. 7(b)], corresponding to a more localized state at the
interface. Nevertheless, the mode features are qualitatively
preserved even with large changes in Va.
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